Beispiel #1
0
def train_network(train_loader, test_loader, depth, width, epochs, init_lr,
                  decay):

    model = SimpleNet(depth, width).cuda()
    optim = Nero(model.parameters(), lr=init_lr)
    lr_lambda = lambda x: decay**x
    lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optim, lr_lambda)

    model.train()

    train_acc_list = []

    for epoch in range(epochs):

        correct = 0
        total = 0

        for data, target in tqdm(train_loader):
            data, target = (data.cuda(), target.cuda())
            data, target = normalize_data(data, target)

            y_pred = model(data).squeeze()
            loss = (y_pred - target).norm()

            correct += (target.float() == y_pred.sign()).sum().item()
            total += target.shape[0]

            model.zero_grad()
            loss.backward()
            optim.step()

        lr_scheduler.step()
        train_acc_list.append(correct / total)

    model.eval()
    correct = 0
    total = 0

    for data, target in tqdm(test_loader):
        data, target = (data.cuda(), target.cuda())
        data, target = normalize_data(data, target)

        y_pred = model(data).squeeze()
        correct += (target.float() == y_pred.sign()).sum().item()
        total += target.shape[0]

    test_acc = correct / total

    return train_acc_list, test_acc, model
Beispiel #2
0
## Check kernel compared to random networks

depth = 3
width = 5000
num_train_examples = 5
num_networks = 10**3

_, _, train_loader, _ = get_data(num_train_examples=num_train_examples,
                                 num_test_examples=None,
                                 batch_size=num_train_examples,
                                 random_labels=False,
                                 binary_digits=False)

for data, target in train_loader:
    data, target = normalize_data(data, target)

out_matrix = np.zeros((num_train_examples, num_networks))

with torch.no_grad():
    print(f"Sampling {num_networks} random networks")
    for network_idx in tqdm(range(num_networks)):
        model = SimpleNet(depth, width)
        for p in model.parameters():
            p.data = torch.randn_like(p) / math.sqrt(p.shape[1])

        pred = model(data).squeeze()
        out_matrix[:, network_idx] = pred.numpy()

sample_mean = np.mean(out_matrix, axis=1)
sample_cov = np.cov(out_matrix)
Beispiel #3
0
def train_network(train_loader, test_loader, depth, width, init_lr, decay, cuda, alpha, break_on_fit=True):


    model = SimpleNet(depth, width, alpha, residual=True)
    if cuda:
        model = model.cuda()
    optim = Nero(model.parameters(), lr=init_lr)
    lr_lambda = lambda x: decay**x
    lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optim, lr_lambda)

    train_acc_list = []
    train_acc = 0

    # import pdb; pdb.set_trace()

    for epoch in tqdm(range(100)):
        model.train()

        for data, target in train_loader:
            if cuda:
                data, target = (data.cuda(), target.cuda())
            data, target = normalize_data(data, target)

            y_pred = model(data).squeeze()
            loss = (y_pred - target).norm()

            model.zero_grad()
            loss.backward()
            optim.step()

            # analyze_model(model)


            # print("haha")

        lr_scheduler.step()

        model.eval()
        correct = 0
        total = 0

        for data, target in train_loader:
            if cuda:
                data, target = (data.cuda(), target.cuda())
            data, target = normalize_data(data, target)

            y_pred = model(data).squeeze()
            correct += (target.float() == y_pred.sign()).sum().item()
            total += target.shape[0]

        train_acc = correct/total
        train_acc_list.append(train_acc)

        if break_on_fit and train_acc == 1.0: break

    model.eval()
    correct = 0
    total = 0

    for data, target in test_loader:
        if cuda:
            data, target = (data.cuda(), target.cuda())
        data, target = normalize_data(data, target)

        y_pred = model(data).squeeze()
        correct += (target.float() == y_pred.sign()).sum().item()
        total += target.shape[0]

    test_acc = correct/total

    return train_acc_list, test_acc, model