def test(self, envs):
        self.load_param(self.saved_path)

        best_reward = 0
        visited_rooms = set()
        n_episodes = 0
        mean_eplen = 0
        mean_reward = 0

        state = np.transpose(envs.reset(), (0, 3, 1, 2))

        # rollout
        rollout_idx = 0
        while rollout_idx < self.num_rollouts:
            rollout_idx += 1
            hidden = None

            for t in range(self.num_steps):
                action, _, hidden = self.select_action(state,
                                                       hidden,
                                                       eval=True)
                next_state, _, done, info = envs.step(action)
                # TensorFlow format to PyTorch
                next_state = np.transpose(next_state, (0, 3, 1, 2))

                if self.render:
                    envs.render(0)
                state = next_state

                # done
                for i, dne in enumerate(done):
                    if dne:
                        epinfo = info[i]['episode']
                        if 'visited_rooms' in epinfo:
                            visited_rooms |= epinfo['visited_rooms']

                        best_reward = max(epinfo['r'], best_reward)
                        mean_reward = (mean_reward * n_episodes +
                                       epinfo['r']) / (n_episodes + 1)
                        mean_eplen = (mean_eplen * n_episodes +
                                      epinfo['l']) / (n_episodes + 1)
                        n_episodes += 1

            # logger
            logger.info('GAME STATUS')
            logger.record_tabular('n_episodes', n_episodes)
            logger.record_tabular('best_reward', best_reward)
            logger.record_tabular(
                'visited_rooms',
                str(len(visited_rooms)) + ', ' + str(visited_rooms))
            logger.record_tabular('mean_reward', mean_reward)
            logger.record_tabular('mean_eplen', mean_eplen)
            logger.dump_tabular()
Beispiel #2
0
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          save_path=None,
          **network_kwargs):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    set_global_seeds(seed)

    q_func = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space

    model = deepq.DEEPQ(q_func=q_func,
                        observation_shape=env.observation_space.shape,
                        num_actions=env.action_space.n,
                        lr=lr,
                        grad_norm_clipping=10,
                        gamma=gamma,
                        param_noise=param_noise)

    if load_path is not None:
        load_path = osp.expanduser(load_path)
        ckpt = tf.train.Checkpoint(model=model)
        manager = tf.train.CheckpointManager(ckpt, load_path, max_to_keep=None)
        ckpt.restore(manager.latest_checkpoint)
        print("Restoring from {}".format(manager.latest_checkpoint))
        return model

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    model.update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    # always mimic the vectorized env
    if not isinstance(env, VecEnv):
        obs = np.expand_dims(np.array(obs), axis=0)
    reset = True

    for t in range(total_timesteps):
        if callback is not None:
            if callback(locals(), globals()):
                break
        kwargs = {}
        if not param_noise:
            update_eps = tf.constant(exploration.value(t))
            update_param_noise_threshold = 0.
        else:
            update_eps = tf.constant(0.)
            # Compute the threshold such that the KL divergence between perturbed and non-perturbed
            # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
            # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
            # for detailed explanation.
            update_param_noise_threshold = -np.log(1. - exploration.value(t) +
                                                   exploration.value(t) /
                                                   float(env.action_space.n))
            kwargs['reset'] = reset
            kwargs[
                'update_param_noise_threshold'] = update_param_noise_threshold
            kwargs['update_param_noise_scale'] = True
        action, _, _, _ = model.step(tf.constant(obs),
                                     update_eps=update_eps,
                                     **kwargs)
        action = action[0].numpy()
        reset = False
        new_obs, rew, done, _ = env.step(action)
        # Store transition in the replay buffer.
        if not isinstance(env, VecEnv):
            new_obs = np.expand_dims(np.array(new_obs), axis=0)
            replay_buffer.add(obs[0], action, rew, new_obs[0], float(done))
        else:
            replay_buffer.add(obs[0], action, rew[0], new_obs[0],
                              float(done[0]))
        # # Store transition in the replay buffer.
        # replay_buffer.add(obs, action, rew, new_obs, float(done))
        obs = new_obs

        episode_rewards[-1] += rew
        if done:
            obs = env.reset()
            if not isinstance(env, VecEnv):
                obs = np.expand_dims(np.array(obs), axis=0)
            episode_rewards.append(0.0)
            reset = True

        if t > learning_starts and t % train_freq == 0:
            # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
            if prioritized_replay:
                experience = replay_buffer.sample(batch_size,
                                                  beta=beta_schedule.value(t))
                (obses_t, actions, rewards, obses_tp1, dones, weights,
                 batch_idxes) = experience
            else:
                obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                    batch_size)
                weights, batch_idxes = np.ones_like(rewards), None
            obses_t, obses_tp1 = tf.constant(obses_t), tf.constant(obses_tp1)
            actions, rewards, dones = tf.constant(actions), tf.constant(
                rewards), tf.constant(dones)
            weights = tf.constant(weights)
            td_errors = model.train(obses_t, actions, rewards, obses_tp1,
                                    dones, weights)
            if prioritized_replay:
                new_priorities = np.abs(td_errors) + prioritized_replay_eps
                replay_buffer.update_priorities(batch_idxes, new_priorities)

        if t > learning_starts and t % target_network_update_freq == 0:
            # Update target network periodically.
            model.update_target()

        mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
        num_episodes = len(episode_rewards)
        if done and print_freq is not None and len(
                episode_rewards) % print_freq == 0:
            logger.record_tabular("steps", t)
            logger.record_tabular("episodes", num_episodes)
            logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
            logger.record_tabular("% time spent exploring",
                                  int(100 * exploration.value(t)))
            logger.dump_tabular()

    if save_path is not None:
        save_path = osp.expanduser(save_path)
        ckpt = tf.train.Checkpoint(model=model)
        manager = tf.train.CheckpointManager(ckpt, save_path, max_to_keep=None)
        manager.save()

    return model
Beispiel #3
0
    def _train(self, env, policy, pool):
        """Perform RL training.

        Args:
            env (`rllab.Env`): Environment used for training
            policy (`Policy`): Policy used for training
            pool (`PoolBase`): Sample pool to add samples to
        """
        self._init_training()
        self.sampler.initialize(env, policy, pool)

        # evaluation_env = deep_clone(env) if self._eval_n_episodes else None
        # if self.high_lv_control:
        #     evaluation_env = env
        # else:
        evaluation_env = deep_clone(env) if self._eval_n_episodes else None
        # TODO: use Ezpickle to deep_clone???

        with tf.get_default_session().as_default():
            gt.rename_root('RLAlgorithm')
            gt.reset()
            gt.set_def_unique(False)

            for epoch in gt.timed_for(range(self._n_epochs + 1),
                                      save_itrs=True):
                logger.push_prefix('Epoch #%d | ' % epoch)

                for t in range(self._epoch_length):
                    self.sampler.sample()
                    if not self.sampler.batch_ready():
                        continue
                    gt.stamp('sample')

                    for i in range(self._n_train_repeat):
                        self._do_training(iteration=t +
                                          epoch * self._epoch_length,
                                          batch=self.sampler.random_batch())
                    gt.stamp('train')

                self._evaluate(policy, evaluation_env)
                gt.stamp('eval')

                params = self.get_snapshot(epoch)
                logger.save_itr_params(epoch, params)

                time_itrs = gt.get_times().stamps.itrs
                time_eval = time_itrs['eval'][-1]
                time_total = gt.get_times().total
                time_train = time_itrs.get('train', [0])[-1]
                time_sample = time_itrs.get('sample', [0])[-1]

                logger.record_tabular('time-train', time_train)
                logger.record_tabular('time-eval', time_eval)
                logger.record_tabular('time-sample', time_sample)
                logger.record_tabular('time-total', time_total)
                logger.record_tabular('epoch', epoch)

                self.sampler.log_diagnostics()

                logger.dump_tabular(with_prefix=False)
                logger.pop_prefix()

                # Added to render
                # if self._eval_render:
                #     from schema.utils.sampler_utils import rollout
                #     rollout(self.env, self.policy, max_path_length=1000, animated=True)

            self.sampler.terminate()
    def train(self, envs):
        self.training_step = 0
        best_reward = 0
        visited_rooms = set()
        eplen = 0

        rollout_idx = 0
        state = np.transpose(envs.reset(), (0, 3, 1, 2))

        # rollout
        while rollout_idx < self.num_rollouts:
            states = np.zeros((self.num_steps, self.num_envs, 1, 84, 84),
                              np.float32)
            actions = np.zeros((self.num_steps, self.num_envs), np.int32)
            action_log_probs = np.zeros((self.num_steps, self.num_envs),
                                        np.float32)
            rewards = np.zeros((self.num_steps, self.num_envs), np.float32)
            next_states = np.zeros((self.num_steps, self.num_envs, 1, 84, 84),
                                   np.float32)
            dones = np.zeros((self.num_steps, self.num_envs), np.int32)

            current_best_reward = 0
            hidden = None

            for t in range(self.num_steps):
                action, action_log_prob, hidden = self.select_action(
                    state, hidden)
                next_state, reward, done, info = envs.step(action)
                # TensorFlow format to PyTorch
                next_state = np.transpose(next_state, (0, 3, 1, 2))

                # transitions
                states[t, ...] = state
                actions[t, ...] = action
                action_log_probs[t, ...] = action_log_prob
                rewards[t, ...] = reward
                next_states[t, ...] = next_state
                dones[t, ...] = done

                if self.render:
                    envs.render(0)
                state = next_state

                # done
                for i, dne in enumerate(done):
                    if dne:
                        epinfo = info[i]['episode']
                        if 'visited_rooms' in epinfo:
                            visited_rooms |= epinfo['visited_rooms']

                        best_reward = max(epinfo['r'], best_reward)
                        current_best_reward = max(epinfo['r'],
                                                  current_best_reward)
                        eplen += epinfo['l']

            # logger
            logger.info('GAME STATUS')
            logger.record_tabular('rollout_idx', rollout_idx)
            logger.record_tabular(
                'visited_rooms',
                str(len(visited_rooms)) + ', ' + str(visited_rooms))
            logger.record_tabular('best_reward', best_reward)
            logger.record_tabular('current_best_reward', current_best_reward)
            logger.record_tabular('eplen', eplen)
            logger.dump_tabular()

            # train neural networks
            self.update_parameters(states, actions, action_log_probs, rewards,
                                   next_states, dones)
            rollout_idx += 1
    def update_parameters(self, states, actions, action_log_probs, rewards,
                          next_states, dones):
        # T * B * features
        states = torch.from_numpy(states).to(dtype=torch.float32,
                                             device=self.device)
        actions = torch.from_numpy(actions).to(dtype=torch.int32,
                                               device=self.device)
        old_action_log_probs = torch.from_numpy(action_log_probs).to(
            dtype=torch.float32, device=self.device)
        rewards = torch.from_numpy(rewards).to(dtype=torch.float32,
                                               device=self.device)
        next_states = torch.from_numpy(next_states).to(dtype=torch.float32,
                                                       device=self.device)
        masks = 1 - torch.from_numpy(dones).to(dtype=torch.float32,
                                               device=self.device)

        # GENERALIZED ADVANTAGE ESTIMATION
        with torch.no_grad():
            advantages = torch.zeros_like(rewards)
            _, values, _ = self.actor_critic(
                torch.cat([states, next_states[-1].unsqueeze(0)], dim=0))
            values = values.squeeze(2)  # remove last dimension

            last_gae_lam = 0
            for t in range(self.num_steps - 1, -1, -1):
                delta = rewards[t] + masks[t] * \
                    self.gamma * values[t + 1] - values[t]
                advantages[t, :] = delta + masks[t] * \
                    self.lamda * self.gamma * last_gae_lam
                last_gae_lam = advantages[t]

            returns = advantages + values[:-1]

        logger.info('GENERALIZED ADVANTAGE ESTIMATION')
        logger.record_tabular('advantages mean', advantages.mean(dim=(0, 1)))
        logger.record_tabular('advantages std', advantages.std(dim=(0, 1)))
        logger.record_tabular('returns mean', returns.mean(dim=(0, 1)))
        logger.record_tabular('returns std', returns.std(dim=(0, 1)))
        logger.dump_tabular()

        # train epochs
        for epoch_idx in range(self.update_epochs):
            self.training_step += 1
            # sample (T * B * features)
            slic = random.sample(list(range(self.num_envs)), self.sample_envs)

            state = states[:, slic, ...].contiguous()
            action = actions[:, slic, ...]
            old_action_log_prob = old_action_log_probs[:, slic, ...]
            retur = returns[:, slic, ...]
            advantage = advantages[:, slic, ...]

            # policy loss
            dist, value, _ = self.actor_critic(state)
            action_log_prob = dist.log_prob(action)

            ratio = torch.exp(action_log_prob - old_action_log_prob)
            surr1 = ratio * advantage
            surr2 = torch.clamp(ratio, 1.0 - self.clip_range,
                                1.0 + self.clip_range) * advantage
            action_loss = -torch.mean(torch.min(surr1, surr2), dim=(0, 1))

            # value loss
            smooth_l1_loss = nn.SmoothL1Loss(reduction='mean')
            value_loss = smooth_l1_loss(retur.flatten(), value.flatten())

            # entropy loss
            entropy_loss = -torch.mean(dist.entropy(), dim=(0, 1))

            # backprop
            loss = action_loss + value_loss + self.coeff_ent * entropy_loss
            self.optimizer.zero_grad()
            loss.backward()

            if self.max_grad_norm > 1e-8:
                nn.utils.clip_grad_norm_(self.actor_critic.parameters(),
                                         self.max_grad_norm)

            self.optimizer.step()

            if self.training_step % 10000 == 0:
                self.save_param(self.saved_path)

        logger.info('UPDATE')
        logger.record_tabular('training_step', self.training_step)
        logger.record_tabular('value_loss', value_loss.item())
        logger.record_tabular('policy_loss', action_loss.item())
        logger.record_tabular('entropy_loss', entropy_loss.item())
        logger.dump_tabular()
Beispiel #6
0
def learn(env,
          policy,
          vf,
          gamma,
          lam,
          timesteps_per_batch,
          num_timesteps,
          animate=False,
          callback=None,
          desired_kl=0.002):

    obfilter = ZFilter(env.observation_space.shape)

    max_pathlength = env.spec.timestep_limit
    stepsize = tf.Variable(initial_value=np.float32(np.array(0.03)),
                           name='stepsize')

    X_v, vtarg_n_v, loss2, loss_sampled2 = vf.update_info
    optim2 = kfac.KfacOptimizer(learning_rate=0.001, cold_lr=0.001*(1-0.9), momentum=0.9, \
                                clip_kl=0.3, epsilon=0.1, stats_decay=0.95, \
                                async=0, kfac_update=2, cold_iter=50, \
                                weight_decay_dict=vf.wd_dict, max_grad_norm=None)
    vf_var_list = []
    for var in tf.trainable_variables():
        if "vf" in var.name:
            vf_var_list.append(var)
    update_op2 = optim2.minimize(loss2, loss_sampled2, var_list=vf_var_list)

    ob_p, oldac_p, adv_p, loss, loss_sampled = policy.update_info
    optim = kfac.KfacOptimizer(learning_rate=stepsize, cold_lr=stepsize*(1-0.9), momentum=0.9, kfac_update=2,\
                                epsilon=1e-2, stats_decay=0.99, async=0, cold_iter=1,
                                weight_decay_dict=policy.wd_dict, max_grad_norm=None)
    pi_var_list = []
    for var in tf.trainable_variables():
        if "pi" in var.name:
            pi_var_list.append(var)
    update_op = optim.minimize(loss, loss_sampled, var_list=pi_var_list)

    sess = tf.get_default_session()
    sess.run(tf.variables_initializer(set(tf.global_variables())))

    i = 0
    timesteps_so_far = 0
    while True:
        if timesteps_so_far > num_timesteps:
            break
        logger.log("********** Iteration %i ************" % i)

        # Collect paths until we have enough timesteps
        timesteps_this_batch = 0
        paths = []
        while True:
            path = rollout(env,
                           policy,
                           max_pathlength,
                           animate=(len(paths) == 0 and (i % 10 == 0)
                                    and animate),
                           obfilter=obfilter)
            paths.append(path)
            n = pathlength(path)
            timesteps_this_batch += n
            timesteps_so_far += n
            if timesteps_this_batch > timesteps_per_batch:
                break

        # Estimate advantage function
        vtargs = []
        advs = []
        for path in paths:
            rew_t = path["reward"]
            return_t = discount(rew_t, gamma)
            vtargs.append(return_t)
            vpred_t = vf.predict(path)
            vpred_t = np.append(vpred_t,
                                0.0 if path["terminated"] else vpred_t[-1])
            delta_t = rew_t + gamma * vpred_t[1:] - vpred_t[:-1]
            adv_t = discount(delta_t, gamma * lam)
            advs.append(adv_t)

        # Update value function
        paths_ = []
        for p in paths:
            l = pathlength(p)
            act = p["action_dist"].astype('float32')
            paths_.append(
                np.concatenate([p['observation'], act,
                                np.ones((l, 1))],
                               axis=1))
        X1 = np.concatenate(paths_)
        y = np.concatenate(vtargs)
        logger.record_tabular("EVBefore",
                              explained_variance(vf._predict(X1), y))
        #        for _ in range(20):
        #            sess.run(update_op2, {X_v:X1, vtarg_n_v:y}) #do_update2(X, y)
        logger.record_tabular("EVAfter",
                              explained_variance(vf._predict(X1), y))

        # Build arrays for policy update
        ob_no = np.concatenate([path["observation"] for path in paths])
        action_na = np.concatenate([path["action"] for path in paths])
        oldac_dist = np.concatenate([path["action_dist"] for path in paths])
        adv_n = np.concatenate(advs)
        standardized_adv_n = (adv_n - adv_n.mean()) / (adv_n.std() + 1e-8)

        # Policy update
        sess.run(update_op, {
            ob_p: ob_no,
            oldac_p: action_na,
            adv_p: standardized_adv_n
        })

        min_stepsize = np.float32(1e-8)
        max_stepsize = np.float32(1e0)

        # Adjust stepsize
        kl = policy.compute_kl(ob_no, oldac_dist)
        if kl > desired_kl * 2:
            logger.log("kl too high")
            tf.assign(stepsize, tf.maximum(min_stepsize,
                                           stepsize / 1.5)).eval()
        elif kl < desired_kl / 2:
            logger.log("kl too low")
            tf.assign(stepsize, tf.minimum(max_stepsize,
                                           stepsize * 1.5)).eval()
        else:
            logger.log("kl just right!")

        logger.record_tabular(
            "EpRewMean", np.mean([path["reward"].sum() for path in paths]))
        logger.record_tabular(
            "EpRewSEM",
            np.std([
                path["reward"].sum() / np.sqrt(len(paths)) for path in paths
            ]))
        logger.record_tabular("EpLenMean",
                              np.mean([pathlength(path) for path in paths]))
        logger.record_tabular("KL", kl)
        if callback:
            callback()
        logger.dump_tabular()
        i += 1
Beispiel #7
0
    def train(self, env):
        # Memory
        memory = ReplayBuffer(capacity=self.replay_size)

        # Training Loop
        total_numsteps = 0
        updates = 0

        for i_episode in itertools.count(1):
            episode_reward = 0
            episode_steps = 0
            done = False
            state = env.reset()

            while not done:
                if total_numsteps < self.start_steps:
                    action = env.action_space.sample()  # Sample random action
                else:
                    # Sample action from policy
                    action = self.select_action(state)

                if len(memory) > self.batch_size:
                    # Number of updates per step in environment
                    for i in range(self.updates_per_step):
                        # Update parameters of all the networks
                        q1_loss, q2_loss, policy_loss, alpha_loss = self.update_parameters(
                            memory, self.batch_size, updates)
                        updates += 1

                next_state, reward, done, _ = env.step(action)  # Step
                episode_steps += 1
                total_numsteps += 1
                episode_reward += reward

                if self.render:
                    env.render()

                # Ignore the "done" signal if it comes from hitting the time horizon.
                # (https://github.com/openai/spinningup/blob/master/spinup/algos/sac/sac.py)
                done = 0 if episode_steps == env._max_episode_steps else done

                memory.push(state, action, reward, next_state,
                            done)  # Append transition to memory

                state = next_state

            logger.info('UPDATE')
            logger.record_tabular('q1_loss', q1_loss)
            logger.record_tabular('q2_loss', q2_loss)
            logger.record_tabular('policy_loss', policy_loss)
            logger.record_tabular('alpha_loss', alpha_loss)
            logger.dump_tabular()

            logger.info('STATUS')
            logger.record_tabular('i_episode', i_episode)
            logger.record_tabular('episode_steps', episode_steps)
            logger.record_tabular('total_numsteps', total_numsteps)
            logger.record_tabular('episode_reward', episode_reward)
            logger.dump_tabular()

            if i_episode % 100 == 0:
                logger.info('SAVE')
                self.save_model('../saved/sac')

            if total_numsteps > self.num_steps:
                return
Beispiel #8
0
    def train(self, envs):

        self.training_step = 0
        best_reward = torch.zeros((1,), device=self.device)
        eplen = torch.zeros((1,), device=self.device, dtype=torch.int32)
        visited_rooms = set()

        rollout_idx = 0
        state = np.transpose(envs.reset(), (0, 3, 1, 2))

        # rollout
        while rollout_idx < self.num_rollouts:
            # sync model
            distributed_util.sync_model(self.actor_critic)

            states = np.zeros(
                (self.num_steps, self.num_envs, 1, 84, 84), np.float32)
            actions = np.zeros((self.num_steps, self.num_envs), np.int32)
            action_log_probs = np.zeros(
                (self.num_steps, self.num_envs), np.float32)
            rewards = np.zeros((self.num_steps, self.num_envs), np.float32)
            next_states = np.zeros(
                (self.num_steps, self.num_envs, 1, 84, 84), np.float32)
            dones = np.zeros((self.num_steps, self.num_envs), np.int32)

            current_best_reward = torch.zeros((1,), device=self.device)
            hidden = None

            for t in range(self.num_steps):
                action, action_log_prob, hidden = self.select_action(
                    state, hidden)
                next_state, reward, done, info = envs.step(action)
                # TensorFlow format to PyTorch
                next_state = np.transpose(next_state, (0, 3, 1, 2))

                # transitions
                states[t, ...] = state
                actions[t, ...] = action
                action_log_probs[t, ...] = action_log_prob
                rewards[t, ...] = reward
                next_states[t, ...] = next_state
                dones[t, ...] = done

                if self.render:
                    envs.render(0)
                state = next_state

                # done
                for i, dne in enumerate(done):
                    if dne:
                        epinfo = info[i]['episode']
                        if 'visited_rooms' in epinfo:
                            visited_rooms |= epinfo['visited_rooms']

                        best_reward[0] = max(epinfo['r'], best_reward[0])
                        current_best_reward[0] = max(
                            epinfo['r'], current_best_reward[0])
                        eplen[0] += epinfo['l']

            # logger
            dist.all_reduce(best_reward, op=dist.ReduceOp.MAX)
            dist.all_reduce(current_best_reward, op=dist.ReduceOp.MAX)
            # TODO: sync visited_rooms

            if self.rank == 0:
                logger.info('GAME STATUS')
                logger.record_tabular('rollout_idx', rollout_idx)
                logger.record_tabular('visited_rooms',
                                      str(len(visited_rooms)) + ', ' + str(visited_rooms))
                logger.record_tabular('best_reward', best_reward.item())
                logger.record_tabular(
                    'current_best_reward', current_best_reward.item())
                logger.record_tabular(
                    'eplen', eplen.item() * dist.get_world_size())
                logger.dump_tabular()

            # train neural networks
            self.update_parameters(states, actions, action_log_probs,
                                   rewards, next_states, dones)
            rollout_idx += 1