Beispiel #1
0
def uniformCostSearch(problem):
    """Search the node of least total cost first."""
    "*** YOUR CODE HERE ***"
    # print ("Start's successors:", problem.getSuccessors(problem.getStartState()))

    fringe = util.PriorityQueue()
    fringe.push((problem.getStartState(), [], 0), 0)
    alreadyTraversed = []

    while not fringe.isEmpty():

        xy, direction, traveled = fringe.pop()

        if xy not in alreadyTraversed:
            alreadyTraversed.append(xy)

            if problem.isGoalState(xy):
                return direction

            for child, next, cost in problem.getSuccessors(xy):
                fringe.push((child, direction + [next], traveled + cost),
                            traveled + cost)

    util.raiseNotDefined()
Beispiel #2
0
def uniformCostSearch(problem):
    """Search the node of least total cost first."""
    "*** YOUR CODE HERE ***"
    #util.raiseNotDefined()
    visited = set()
    p_queue = util.PriorityQueue()
    p_queue.push((problem.getStartState(), []), 0)

    while not p_queue.isEmpty():
        state, actions = p_queue.pop()

        if state in visited:
            continue

        visited.add(state)

        if problem.isGoalState(state):
            return actions

        for successor, action, stepCost in problem.getSuccessors(state):
            if successor not in visited:
                p_queue.push(
                    (successor, actions + [action]),
                    stepCost + problem.getCostOfActions(actions))
Beispiel #3
0
def aStarSearch(problem, heuristic=nullHeuristic):
    """Search the node that has the lowest combined cost and heuristic first."""
    "*** YOUR CODE HERE IF YOU WANT TO PRACTICE ***"
    fringe = util.PriorityQueue()
    explored = set()
    best_g = dict()
    initial_state = problem.getStartState()
    start_node = (initial_state, [], 0)
    priority = heuristic(initial_state, problem)
    fringe.push(start_node, priority)
    while not fringe.isEmpty():
        curr_state, actions, acc_cost = fringe.pop()
        if curr_state not in explored or acc_cost < best_g[curr_state]:
            explored.add(curr_state)
            best_g[curr_state] = acc_cost
            if problem.isGoalState(curr_state):
                return actions
            for successor in problem.getSuccessors(curr_state):
                next_state, action, cost = successor
                new_cost = acc_cost + cost
                new_actions = actions + [action]
                new_priority = problem.getCostOfActions(new_actions) + heuristic(next_state, problem)
                fringe.update((next_state, new_actions, new_cost), new_priority)
    return None
Beispiel #4
0
def aStarSearch(problem, heuristic=nullHeuristic):
    "Search the node that has the lowest combined cost and heuristic first."
    "*** YOUR CODE HERE ***"
    frontier = util.PriorityQueue()
    currentCoordinate = problem.getStartState()
    currentMovesArray = []
    currentHeuristic = heuristic(problem.getStartState(), problem)
    visited = [problem.getStartState()]

    while problem.isGoalState(currentCoordinate) != True:
        if frontier.length() % 1000 == 0:
            print frontier.length()
        for coordinate, direction, cost in problem.getSuccessors(
                currentCoordinate):
            if not coordinate in visited:
                frontier.push(
                    (coordinate, currentMovesArray + [direction]),
                    problem.getCostOfActions(currentMovesArray + [direction]) +
                    heuristic(currentCoordinate, problem))
                visited = visited + [coordinate]
        if frontier.isEmpty():
            return []
        currentCoordinate, currentMovesArray = frontier.pop()
    return currentMovesArray
def aStarSearch(problem, heuristic=nullHeuristic):
    """Search the node that has the lowest combined cost and heuristic first."""
    # create a list called explored to store explored state
    # create a list called result to store the action
    # create a priority queue called priQueue to store the state and the result
    explored = []
    result = []
    priQueue = util.PriorityQueue()
    # find the start state from the problem
    start = problem.getStartState()
    # push the distance, start state and result with priority of 0 into the priority queue
    priQueue.push((0, start, result), 0)
    # store the start state into the explored
    explored.append(start)
    while(priQueue.isEmpty() == False):
        # pop the distance between start state and current state(called distance), current state, and result
        distance, start, result = priQueue.pop()
        # if the current state is the goal state then return the result
        if(problem.isGoalState(start) == True):
            return result
        # otherwise, find the successors of the current state
        successor = problem.getSuccessors(start)
        for success in successor:
            # if the successor of the current state does not find in the explored, then add the successor of the current state into the explored
            # add the action cost of the successor in the distance and add the action of the successor in the result
            # set the priority as the sum of new distance and the result of heuristic(successor state, problem)
            # update the new distance, successor state and new result with the new priority in the priority queue
            if(explored.count(success[0]) == 0):
                explored.append(success[0])
                priQueue.update((distance + success[2], success[0], result + [success[1]]), distance + success[2] + heuristic(success[0],problem))
            # if the successor state is the goal state, then add the action cost of the successor in the distance and add the action of the successor in the result
            # se the priority as the sum of new distance and the result of heuristic(successor state, problem)
            # update the new distance, successor state and new result with the new priority in the priority queue
            if(problem.isGoalState(success[0]) == True):
                priQueue.update((distance + success[2], success[0], result + [success[1]]), distance + success[2] + heuristic(success[0],problem))
    util.raiseNotDefined()
Beispiel #6
0
def aStarSearch(problem, heuristic=nullHeuristic):
    """Search the node that has the lowest combined cost and heuristic first."""
    "*** YOUR CODE HERE ***"
    heap = util.PriorityQueue()
    cur_cost, actions = {}, {}
    rootNode = problem.getStartState()
    cur_cost[rootNode] = 0
    actions[rootNode] = ()
    heap.push(rootNode, 0)

    while not heap.isEmpty():
        node = heap.pop()
        if problem.isGoalState(node):
            return list(actions[node])

        successors = problem.getSuccessors(node)

        for i in successors:
            if not (i[0] in cur_cost
                    and i[2] + cur_cost[node] > cur_cost[i[0]]):
                cur_cost[i[0]] = i[2] + cur_cost[node]
                heap.update(i[0], cur_cost[i[0]] + heuristic(i[0], problem))
                actions[i[0]] = actions[node] + (
                    i[1], )  #storing in tuple saves memory
Beispiel #7
0
def a_star_search(problem, heuristic=null_heuristic):
    """Search the node that has the lowest combined cost and heuristic first."""
    """
    start is the start state from problem, exploredState is an array of the state being explored
    fringe is priority queue in uniform cost search, fringe adds the tuple of the start state and an array, and
    the heuristic from null_heuristic
    """
    start = problem.get_start_state()
    exploredState = []
    fringe = util.PriorityQueue()
    fringeTuple = (start, [])
    fringe.push(fringeTuple, null_heuristic(start, problem))
    astarCost = 0
    """
    Main Loop checks if fringe is not empty then checks if goal state, if goal state then actions
    are returned otherwise get the successors of the current state then check if the coordinates are
    within the exploredState and then add the coordinates to the exploredState array and add the actions
    to get to that coordinate state, also adds the heuristic but it is using null heuristic
    """
    while not fringe.is_empty():
        state, actions = fringe.pop()
        if problem.is_goal_state(state):
            return actions
        if state not in exploredState:
            successors = problem.get_successors(state)
            for successor in successors:
                coordinates = successor[0]
                if coordinates not in exploredState:
                    directions = successor[1]
                    astarActions = actions + [directions]
                    astarCost = problem.get_cost_of_actions(
                        astarActions) + heuristic(coordinates, problem)
                    fringe.push((coordinates, actions + [directions]),
                                astarCost)
        exploredState.append(state)
    return actions
Beispiel #8
0
 def aStarSearch(self, goals):
     init_state = self.getCurrentObservation().getAgentState(
         self.index).getPosition()
     for goal in goals:
         init_node = model.make_root_node(init_state)
         frontier = util.PriorityQueue()
         frontier.push(init_node, 0)
         explored_set = []
         while not frontier.isEmpty():
             node = frontier.pop()
             if node["position"] not in explored_set:
                 explored_set.append(node["position"])
                 if goal == node["position"]:
                     if node["action"] == None:
                         continue
                     return model.make_actions(node)[0]
                 for successor in self.getSuccessor(node["position"]):
                     #succ_actions = StateModel.make_actions()
                     succ_node = model.make_succ_node(
                         node, successor[0], successor[1])
                     actions = model.make_actions(succ_node)
                     g = len(actions)
                     h = manhattanHeuristic(succ_node["position"], goal)
                     f = g + h
                     frontier.update(succ_node, f)
     #if no action has returned(dead end)
     if len(goals) != 0:
         succ = []
         act = []
         succ = self.getSuccessor(init_state)
         print "position", init_state
         act = [a[1] for a in succ]
         print "act", act
         if len(act) > 0:
             return random.choice(act)
     return 'Stop'
Beispiel #9
0
    def minimax(self, gameState, maxi, depth):
        if self.isTerminal(gameState) or depth == 0:
            return (self.evaluationFunctionMinimax(gameState), Directions.STOP)

        childeren = util.PriorityQueue()
        if maxi:
            actions = gameState.getLegalActions(0)
            for a in actions:
                succsorGamestate = gameState.generateSuccessor(0, a)
                child = self.minimax(succsorGamestate, not maxi, depth - 1)
                childeren.push((child[0], a), -child[0])
        if not maxi:
            actionslists = []
            for i in range(gameState.getNumAgents() - 1):
                actionsghost = []
                for a in gameState.getLegalActions(i + 1):
                    actionsghost.append((a, i + 1))
                actionslists.append(actionsghost)
            actions = self.getSenarios(actionslists)
            for a in actions:
                succsorGamestate = self.getSuccessor(gameState, a)
                child = self.minimax(succsorGamestate, not maxi, depth)
                childeren.push((child[0], a), child[0])
        return childeren.pop()
Beispiel #10
0
def uniformCostSearch(problem):
    """Search the node of least total cost first."""
    "*** YOUR CODE HERE ***"

    openList = util.PriorityQueue()
    closedList = []

    currentState = problem.getStartState()
    pathUntilNow = []
    currentNode = (currentState, pathUntilNow, 0)

    openList.push(currentNode, 0)

    while not openList.isEmpty():
        currentNode = openList.pop()
        currentState = currentNode[0]
        pathUntilNow = currentNode[1]
        pathCost = currentNode[2]

        if currentState in closedList:
            continue

        if problem.isGoalState(currentState):
            return pathUntilNow

        closedList.append(currentState)

        successors = problem.getSuccessors(currentState)

        for nextState, nextAction, nextActionCost in successors:
            nextNode = (nextState, pathUntilNow + [nextAction],
                        pathCost + nextActionCost)
            openList.update(nextNode, pathCost + nextActionCost)

    return []
    util.raiseNotDefined()
def uniformCostSearch(problem):
    """Search the node of least total cost first."""
    start_state = problem.getStartState()
    visited_node = {start_state: []}
    UCS_pq = util.PriorityQueue()
    UCS_pq.push(start_state, 0)

    while not UCS_pq.isEmpty():
        expand_node = UCS_pq.pop(
        )  #pop and get item (not a tuple with priority)
        if (problem.isGoalState(expand_node)):
            return visited_node[expand_node]

        pre_path = visited_node[expand_node]
        successor = problem.getSuccessors(expand_node)
        for next in successor:
            if next[0] not in visited_node or problem.getCostOfActions(
                    visited_node[next[0]]) > problem.getCostOfActions(
                        pre_path + [next[1]]):
                visited_node[next[0]] = pre_path + [next[1]]
                UCS_pq.update(next[0],
                              problem.getCostOfActions(visited_node[next[0]]))

    return visited_node[expand_node]
Beispiel #12
0
def uniformCostSearch(problem):
    """Search the node of least total cost first."""
    "*** YOUR CODE HERE ***"
    # use PriorityQueue to implement UCS, PriorityQueue pop out item with lowest priority
    open = util.PriorityQueue()
    # implement node as a tuple of succ tuples
    start_state = problem.getStartState()
    node = ((start_state, None, 0), )
    open.push(node, 0)
    # seen is implemented for cycle checking
    seen = {start_state: 0}

    while not open.isEmpty():
        current_node = open.pop()
        current_state = current_node[-1][0]
        actions = []
        #get list of actions
        for state, action, cost in current_node:
            if action is not None:
                actions.append(action)

        current_cost = problem.getCostOfActions(actions)
        # cost checking for cycle checking
        if current_cost <= seen[current_state]:
            if problem.isGoalState(current_state):
                return actions

            sucessors = problem.getSuccessors(current_state)
            for succ in sucessors:
                #cycle checking
                next_cost = current_cost + succ[2]
                if (not succ[0] in seen) or (next_cost < seen[succ[0]]):
                    open.push(current_node + (succ, ), next_cost)
                    seen[succ[0]] = next_cost

    return False
Beispiel #13
0
def aStarSearch(problem, heuristic=nullHeuristic):
    # the nodes we've expanded
    visited = []

    # all nodes we could possibly expand
    frontier = util.PriorityQueue()

    # every node is added here as soon as it is created so we know when we don't need to expand it
    seenNodes = []

    # creating the starting node
    curr = Node(problem.getStartState(), None, None, 0)
    visited.append(curr)

    while problem.goalTest(curr.state) == False:
        # create a node for each possible action we could expand from our current position
        actions = problem.getActions(curr.state)
        for action in actions:
            n = Node(problem.getResult(curr.state, action), curr, action,
                     problem.getCost(curr.state, action))
            # if we haven't seen this node, calculate its f value and add/update it in the priority queue
            if n not in seenNodes:
                f = n.path_cost + heuristic(n.state, problem)
                frontier.update(n, f)
                seenNodes.append(n)
        # pop the val with the lowest f from the frontier set
        curr = frontier.pop()
        visited.append(curr)

    # trace our path back from the end using the final current node
    path = []
    while curr.parent:
        path.insert(0, curr.action)
        curr = curr.parent

    return path
def uniformCostSearch(problem):
    """Search the node of least total cost first."""
    "*** YOUR CODE HERE ***"
    # Strictly follow the sudocode in the textbook for BFS, change the data structure to priority Q
    node = problem.getStartState()
    fringe = util.PriorityQueue()
    explored = set()
    solution = []
    fringe.push((node, solution), 0)
    while not fringe.isEmpty():
        # Run out of nodes, failed to find a solution
        node, curPath = fringe.pop()
        if problem.isGoalState(node):
            return curPath
        if not node in explored:
            explored.add(node)
            nextmove = problem.getSuccessors(node)
            for onemove in nextmove:
                child, nextDir = onemove[0], onemove[1]
                if (child not in explored) or (problem.isGoalState(child)):
                    fringe.update(
                        (child, curPath + [nextDir]),
                        problem.getCostOfActions(curPath + [nextDir]))
    util.raiseNotDefined()
def uniformCostSearch(problem):
    visited = []
    pq = util.PriorityQueue(
    )  # Create a priority queue data structure called pq
    elem1 = problem.getStartState()  # Get the starting position of Pacman
    og = 0
    visited.append(
        elem1)  # Append the starting position on already traversed list
    path = []
    tpath = []

    while (problem.isGoalState(elem1) == False
           ):  # Expand all the neighbours till goal is reached
        sitr = iter(problem.getSuccessors(elem1))

        for elem in sitr:
            if (elem[0] not in visited):
                path = tpath[:]
                path.append(elem[1])
                g = elem[2] + og
                path.append(g)
                path.append(elem[0])
                pq.push(path, g)

        visited.append(elem1)

        while (
                pq.isEmpty() == False
        ):  # Extract elements from priority queue till we find unvisited node
            tpath = pq.pop()
            elem1 = tpath.pop()
            og = tpath.pop()
            if (elem1 not in visited):
                break

    return tpath
Beispiel #16
0
def aStarSearch(problem, heuristic=nullHeuristic):
    "Search the node that has the lowest combined cost and heuristic first."
    "*** YOUR CODE HERE ***"
    # exploracao: uma filha de prioridades de tuplas contendo estados e listas
    # de acoes necessarias para se alcancar um estado.
    # problem.getStartState () e o estado inicial e a lista de acoes inicial
    # e vazia (como esperado)
    exploracao = util.PriorityQueue()

    # estadosVisitados - uma lista contendo os estados visitados
    estadosVisitados = []

    # segundo cormen - enqueue s (Start State) in Q
    # a lista vazia representa as acoes necessarias para
    # se alcancar o estado inicial
    exploracao.push((problem.getStartState(), []), 0)

    while not exploracao.isEmpty():
        estadoCorrente, acoes = exploracao.pop()
        for e, a, c in problem.getSuccessors(estadoCorrente):
            if e not in estadosVisitados:
                # Quando o estado objetivo e alcancado, retorna-se as
                # acoes que o levaram a chegar ali
                if problem.isGoalState(e):
                    return acoes + [a]
                # adiciona-se o ultimo estado explorado e as acoes
                # necessarias para chegar ate ele na fila de exploracao
                # o custo no a* e dado pelo custo para se executar as acoes mais o custo
                # oriundo da heuristica
                exploracao.push((e, acoes + [a]),
                                problem.getCostOfActions(acoes + [a]) +
                                heuristic(e, problem))
                estadosVisitados.append(e)
        estadosVisitados.append(estadoCorrente)

    return []
Beispiel #17
0
def uniformCostSearch(problem):
    """Search the node of least total cost first."""
    "*** YOUR CODE HERE ***"
    heap = util.PriorityQueue()
    cur_cost, actions = {}, {}
    rootNode = problem.getStartState()
    cur_cost[rootNode] = 0
    actions[rootNode] = ()
    heap.push(rootNode, 0)

    while not heap.isEmpty():
        node = heap.pop()
        if problem.isGoalState(node):
            return list(actions[node])

        successors = problem.getSuccessors(node)

        for i in successors:
            if not (i[0] in cur_cost
                    and i[2] + cur_cost[node] > cur_cost[i[0]]):
                cur_cost[i[0]] = i[2] + cur_cost[node]
                heap.update(i[0], cur_cost[i[0]])
                actions[i[0]] = actions[node] + (
                    i[1], )  #storing in tuple saves memory
Beispiel #18
0
def aStarSearch(problem, heuristic=nullHeuristic):
    "Search the node that has the lowest combined cost and heuristic first."
    "*** YOUR CODE HERE ***"
    # Queue -> PriorityQueue will result in UCS
    fringe, visited = util.PriorityQueue(), []

    # push the root with an empty list which will track the path of nodes from the root
    # cost is 0 since it is the root node
    fringe.push((problem.getStartState(), []), 0)
    while fringe:
        current_node = fringe.pop()
        current_path = current_node[1]
        # if goal is found, return its path from root
        if problem.isGoalState(current_node[0]):
            return current_path
        else:
            if current_node[0] not in visited:
                visited.append(current_node[0])
                for successor in problem.getSuccessors(current_node[0]):
                    # add a path to successors and stack them up in the fringe
                    successor_path = current_path + [successor[1]]
                    # calculates the total path cost of root node to successor node before pushing to the queue
                    # add heuristics to do aStar
                    fringe.push((successor[0], successor_path), problem.getCostOfActions(successor_path) + heuristic(successor[0], problem))
def aStarSearch(problem, heuristic=nullHeuristic):
    """Search the node that has the lowest combined cost and heuristic first."""
    trace = util.PriorityQueue()
    starting_state = problem.getStartState()
    cost = 0
    trace.push((starting_state, list(), cost), cost)
    # empty list will eventually hold the actions taken to reach current element
    # placeholder will carry on the costs

    visited_states = set()

    while not trace.isEmpty():
        curr_state, actions, cost = trace.pop()
        if curr_state not in visited_states:
            if problem.isGoalState(curr_state):
                # print "Path:: {}".format(actions)
                return actions
            successors = problem.getSuccessors(curr_state)
            for successor in successors:
                trace.push(
                    (successor[0], actions[:] + [successor[1]],
                     cost + successor[2]),
                    heuristic(successor[0], problem) + cost + successor[2])
            visited_states.add(curr_state)
Beispiel #20
0
def aStarSearch(problem, heuristic=nullHeuristic):
    """Search the node that has the lowest combined cost and heuristic first."""
    "*** YOUR CODE HERE ***"
    priorityQueue = util.PriorityQueue()
    visited = set()
    distance = {}
    startState = problem.getStartState()
    priorityQueue.push((startState, []), 0 + heuristic(startState, problem))
    distance[startState] = 0

    while not priorityQueue.isEmpty():
        currState, directions = priorityQueue.pop()
        if currState in visited:
            continue
        visited.add(currState)
        dirCost = distance[currState]
        if problem.isGoalState(currState):
            return directions
        
        successors = problem.getSuccessors(currState)
        for succ in successors:
            succState = succ[0]
            succDirection = succ[1]
            succCost = succ[2]
            if succState in distance and (distance[succState] <= dirCost + succCost):
                ''' the distance for the successor state is already accounted for and <= total cost) ''' 
                continue 
            elif succState in distance:
                ''' update the successor direction and cost in PQ '''
                priorityQueue.update((succState, directions + [succDirection]), dirCost + succCost + heuristic(succState, problem))
            else:
                ''' add in new node into PQ '''
                priorityQueue.push((succState, directions + [succDirection]), dirCost + succCost + heuristic(succState, problem))
            distance[succState] = dirCost + succCost

    util.raiseNotDefined()
Beispiel #21
0
def uniformCostSearch(problem):
    "Search the node of least total cost first. "
    "*** YOUR CODE HERE ***"
    start = problem.getStartState()
    fringe = util.PriorityQueue()
    history = [start]
    fringe.push(((start, []), []), 0)

    while not fringe.isEmpty():
        parent, path = fringe.pop()

        if problem.isGoalState(parent[0]):
            return path + [parent[1]]

        for n in problem.getSuccessors(parent[0]):

            if n[0] not in history:
                if problem.isGoalState(n[0]):
                    return path + [n[1]]
                history.append(n[0])
                fringe.push((n, path + [n[1]]),
                            problem.getCostOfActions(path + [n[1]]))

    return path
Beispiel #22
0
def aStarSearch(problem, heuristic=nullHeuristic):
  "Search the node that has the lowest combined cost and heuristic first."
  visited = []
  fringe = util.PriorityQueue()
  start = problem.getStartState()
  fringe.push((start, list()), heuristic(start, problem))

  while not fringe.isEmpty():
    state, actions = fringe.pop()

    if problem.isGoalState(state):
      return actions

    visited.append(state)

    for state, dir, cost in problem.getSuccessors(state):
      if state not in visited:
        newactions = actions + [dir]
        score = problem.getCostOfActions(newactions) + heuristic(state, problem)
        fringe.push( (state, newactions), score)

  return []

  util.raiseNotDefined()
Beispiel #23
0
def aStarSearch(problem, heuristic=nullHeuristic):
    """Search the node that has the lowest combined cost and heuristic first."""
    "*** YOUR CODE HERE ***"
    fringe=util.PriorityQueue()
    explored=set()
    startStateBlock=problem.getStartState()
    gcost=0
    hcost=manhattanHeuristic(startStateBlock,problem)
    #hcost=euclindean_distance(startStateBlock,problem)
    fcost=gcost+hcost
    fringe.push((startStateBlock,[]),fcost)
    while(not fringe.isEmpty()):
        state=fringe.pop()
        stateBlock=state[0]
        statePath=state[1].copy()
        explored.add(stateBlock)
        if (problem.isGoalState(stateBlock)):
            return statePath
        children=problem.getSuccessors(stateBlock)

        for child in children:
            actionToReachChild=child[1]
            gcost=child[2]
            hcost=manhattanHeuristic(child[0],problem)
#            hcost=euclindean_distance(child[0],problem)
            fcost=gcost+hcost
            childPath=statePath.copy()
            childPath.append(actionToReachChild)
            openList=[x[0] for x in fringe.heap if x[0]==child[0]]

            inProcess=child[0] in explored or child[0] in openList
            if (not inProcess):
                fringe.push((child[0],childPath),fcost)
            elif (child[0] in openList):
                fringe.update((child[0],childPath),fcost)
    return []
Beispiel #24
0
def aStarSearch(problem, heuristic=nullHeuristic):
    """Search the node that has the lowest combined cost and heuristic first."""
    # Use a priority queue, so the cost of actions is calculated with a provided heuristic
    fringe = util.PriorityQueue()
    # Make an empty list of explored nodes
    visited = []
    # Make an empty list of actions
    actionList = []
    # Place the starting point in the priority queue
    fringe.push((problem.getStartState(), actionList),
                heuristic(problem.getStartState(), problem))
    while fringe:
        node, actions = fringe.pop()
        if not node in visited:
            visited.append(node)
            if problem.isGoalState(node):
                return actions
            for successor in problem.getSuccessors(node):
                coordinate, direction, cost = successor
                nextActions = actions + [direction]
                nextCost = problem.getCostOfActions(nextActions) + \
                               heuristic(coordinate, problem)
                fringe.push((coordinate, nextActions), nextCost)
    return []
Beispiel #25
0
def aStarSearch(problem, heuristic=nullHeuristic):
    """Search the node that has the lowest combined cost and heuristic first."""
    "*** YOUR CODE HERE ***"
    # Queue
    border = util.PriorityQueue()
    # Visited nodes
    visitedNode = []
    # Actions
    actionsX = []
    # Starting point
    border.push((problem.getStartState(), actionsX), heuristic(problem.getStartState(), problem))
    while border:
        node, actions = border.pop()
        if not node in visitedNode:
            visitedNode.append(node)
            if problem.isGoalState(node):
                return actions
            for successor in problem.getSuccessors(node):
                coordinate, direction, cost = successor
                nextActions = actions + [direction]
                nextCost = problem.getCostOfActions(nextActions) + \
                           heuristic(coordinate, problem)
                border.push((coordinate, nextActions), nextCost)
    return []
Beispiel #26
0
def uniformCostSearch(problem):
    """Search the node of least total cost first."""
    frontier = util.PriorityQueue()
    frontier.push(makeNode(problem.getStartState()), 0)
    closed = []
    
    while not frontier.isEmpty():
        node = frontier.pop()

        if problem.isGoalState(node.getState()):
            return node.getPath()

        closed.append(node.getState())
        for successor in problem.getSuccessors(node.getState()):
            newnode = makeNode(successor[0], node, successor)
            
            if newnode.getState() not in closed and not heapContains(frontier.heap, newnode):
                frontier.push(newnode, newnode.getCost())
            else:
                if heapContainsHigherCost(frontier.heap, newnode):
                    frontier.update(newnode, newnode.getCost())

    print "Deu ruim no uniform cost search"
    return []
def uniformCostSearch(problem):
    """Search the node of least total cost first."""
    "*** YOUR CODE HERE ***"
    
    # the code will be the same as the above searches, with the addition of using a 
    # priority queue and adding a cost to each state
    fringe = util.PriorityQueue()
    fringe.push([problem.getStartState(), 0, []], 0)
    explored = []

    while not (fringe.isEmpty()):
        [state, cost, path] = fringe.pop()

        if (problem.isGoalState(state)):
            return path

        if not state in explored:
            explored.append(state)

            for child_state, child_action, child_cost in problem.getSuccessors(state):
                new_cost = cost + child_cost
                new_path = path + [child_action]

                fringe.push([child_state, new_cost, new_path], new_cost)
Beispiel #28
0
def uniformCostSearch(problem):
    """Search the node of least total cost first."""
    state = problem.getStartState()
    frontier = util.PriorityQueue()
    start_node = Node(state, None, None)
    frontier.push(start_node, 0)
    visited = []  #log state
    while not frontier.isEmpty():
        node = frontier.pop()
        if node.getNState() in visited:
            continue
        visited.append(node.getNState())
        if problem.isGoalState(node.getNState()):
            actions = []
            while node.getNAction() is not None:
                actions.append(node.getNAction())
                node = node.getPreNode()
            actions.reverse()
            return actions
        successorList = problem.getSuccessors(node.getNState())
        for successor in successorList:
            n = Node(successor[0], successor[1], node,
                     node.getCost() + successor[2])
            frontier.push(n, n.getCost())
Beispiel #29
0
def aStarSearch(problem, heuristic=nullHeuristic):
    '''
	Pay clos attention to util.py- specifically, args you pass to member functions. 

	Key Point: If a node is already present in the queue with higher path cost, 
	you'll update its cost (Similar to pseudocode in figure 3.14 of your textbook.). Be careful, 
	autograder cannot catch this bug.

	'''
    startnode = problem.getStartState()
    #print(startnode)
    if problem.isGoalState(startnode):
        return []

    myqueue = util.PriorityQueue()
    visited = []
    myqueue.push((startnode, [], 0), heuristic(startnode, problem))

    while not myqueue.isEmpty():
        # (currentnode, actions, pcost)
        item = myqueue.pop()
        #print(item[0][0])
        if item[0][0] not in visited:
            visited.append(item[0][0])

            if problem.isGoalState(item[0][0]):
                return item[0][1]

            #print("here")
            for data in problem.getSuccessors(item[0][0]):

                new = item[0][1] + [data[1]]
                priority = item[1] + data[2]

                myqueue.push((data[0], new, priority),
                             priority + heuristic(data[0], problem))
Beispiel #30
0
def uniformCostSearch(problem):
    """Search the node of least total cost first."""

    discovered = set()
    root = ((problem.getStartState(), []))

    pQueue = util.PriorityQueue()
    pQueue.push(root, 0)

    while not pQueue.isEmpty():
        state, directions = pQueue.pop()

        if state not in discovered:
            discovered.add(state)

            if problem.isGoalState(state):
                return directions

            for successor, action, stepCost in problem.getSuccessors(state):
                if successor not in discovered:
                    #print(successor)
                    #print(actions)
                    getCost = stepCost + problem.getCostOfActions(directions)
                    pQueue.push((successor, directions + [action]), (getCost))