def test_kfac_jacobian_mnist():
    u.seed_random(1)

    data_width = 3
    d = [data_width**2, 8, 10]
    model: u.SimpleMLP = u.SimpleMLP(d, nonlin=False)
    autograd_lib.register(model)

    batch_size = 4
    stats_steps = 2
    n = batch_size * stats_steps

    dataset = u.TinyMNIST(dataset_size=n,
                          data_width=data_width,
                          original_targets=True)
    trainloader = torch.utils.data.DataLoader(dataset,
                                              batch_size=batch_size,
                                              shuffle=False)
    train_iter = iter(trainloader)

    loss_fn = torch.nn.CrossEntropyLoss()

    activations = {}
    jacobians = defaultdict(lambda: AttrDefault(float))
    total_data = []

    # sum up statistics over n examples
    for train_step in range(stats_steps):
        data, targets = next(train_iter)
        total_data.append(data)

        activations = {}

        def save_activations(layer, A, _):
            activations[layer] = A
            jacobians[layer].AA += torch.einsum("ni,nj->ij", A, A)

        with autograd_lib.module_hook(save_activations):
            output = model(data)
            loss = loss_fn(output, targets)

        def compute_jacobian(layer, _, B):
            A = activations[layer]
            jacobians[layer].BB += torch.einsum("ni,nj->ij", B, B)
            jacobians[layer].diag += torch.einsum("ni,nj->ij", B * B, A * A)

        with autograd_lib.module_hook(compute_jacobian):
            autograd_lib.backward_jacobian(output)

    for layer in model.layers:
        jacobian0 = jacobians[layer]
        jacobian_full = torch.einsum('kl,ij->kilj', jacobian0.BB / n,
                                     jacobian0.AA / n)
        jacobian_diag = jacobian0.diag / n

        J = u.jacobian(model(torch.cat(total_data)), layer.weight)
        J_autograd = torch.einsum('noij,nokl->ijkl', J, J) / n
        u.check_equal(jacobian_full, J_autograd)

        u.check_equal(jacobian_diag, torch.einsum('ikik->ik', J_autograd))
def test_full_hessian_xent_mnist_multilayer():
    """Test regular and diagonal hessian computation."""
    u.seed_random(1)

    data_width = 3
    batch_size = 2
    d = [data_width**2, 6, 10]
    o = d[-1]
    n = batch_size
    train_steps = 1

    model: u.SimpleModel = u.SimpleFullyConnected2(d, nonlin=False, bias=True)
    autograd_lib.register(model)
    dataset = u.TinyMNIST(dataset_size=batch_size,
                          data_width=data_width,
                          original_targets=True)
    trainloader = torch.utils.data.DataLoader(dataset,
                                              batch_size=batch_size,
                                              shuffle=False)
    train_iter = iter(trainloader)

    loss_fn = torch.nn.CrossEntropyLoss()

    hess = defaultdict(float)
    hess_diag = defaultdict(float)
    for train_step in range(train_steps):
        data, targets = next(train_iter)

        activations = {}

        def save_activations(layer, a, _):
            activations[layer] = a

        with autograd_lib.module_hook(save_activations):
            output = model(data)
            loss = loss_fn(output, targets)

        def compute_hess(layer, _, B):
            A = activations[layer]
            BA = torch.einsum("nl,ni->nli", B, A)
            hess[layer] += torch.einsum('nli,nkj->likj', BA, BA)
            hess_diag[layer] += torch.einsum("ni,nj->ij", B * B, A * A)

        with autograd_lib.module_hook(compute_hess):
            autograd_lib.backward_hessian(output,
                                          loss='CrossEntropy',
                                          retain_graph=True)

        # compute Hessian through autograd
        H_autograd = u.hessian(loss, model.layers[0].weight)
        u.check_close(hess[model.layers[0]] / batch_size, H_autograd)
        diag_autograd = torch.einsum('lili->li', H_autograd)
        u.check_close(diag_autograd, hess_diag[model.layers[0]] / batch_size)

        H_autograd = u.hessian(loss, model.layers[1].weight)
        u.check_close(hess[model.layers[1]] / batch_size, H_autograd)
        diag_autograd = torch.einsum('lili->li', H_autograd)
        u.check_close(diag_autograd, hess_diag[model.layers[1]] / batch_size)
def test_kfac_fisher_mnist():
    u.seed_random(1)

    data_width = 3
    d = [data_width**2, 8, 10]
    model: u.SimpleMLP = u.SimpleMLP(d, nonlin=False)
    autograd_lib.register(model)

    batch_size = 4
    stats_steps = 2
    n = batch_size * stats_steps

    dataset = u.TinyMNIST(dataset_size=n,
                          data_width=data_width,
                          original_targets=True)
    trainloader = torch.utils.data.DataLoader(dataset,
                                              batch_size=batch_size,
                                              shuffle=False)
    train_iter = iter(trainloader)

    loss_fn = torch.nn.CrossEntropyLoss()

    activations = {}
    fishers = defaultdict(lambda: AttrDefault(float))
    total_data = []

    # sum up statistics over n examples
    for train_step in range(stats_steps):
        data, targets = next(train_iter)
        total_data.append(data)

        activations = {}

        def save_activations(layer, A, _):
            activations[layer] = A
            fishers[layer].AA += torch.einsum("ni,nj->ij", A, A)

        with autograd_lib.module_hook(save_activations):
            output = model(data)
            loss = loss_fn(output, targets) * len(
                data)  # remove data normalization

        def compute_fisher(layer, _, B):
            A = activations[layer]
            fishers[layer].BB += torch.einsum("ni,nj->ij", B, B)
            fishers[layer].diag += torch.einsum("ni,nj->ij", B * B, A * A)

        with autograd_lib.module_hook(compute_fisher):
            autograd_lib.backward_jacobian(output)

    for layer in model.layers:
        fisher0 = fishers[layer]
        fisher_full = torch.einsum('kl,ij->kilj', fisher0.BB / n,
                                   fisher0.AA / n)
        fisher_diag = fisher0.diag / n

        u.check_equal(torch.einsum('ikik->ik', fisher_full), fisher_diag)
Beispiel #4
0
def test_kron_mnist():
    u.seed_random(1)

    data_width = 3
    batch_size = 3
    d = [data_width**2, 10]
    o = d[-1]
    n = batch_size
    train_steps = 1

    # torch.set_default_dtype(torch.float64)

    model: u.SimpleModel2 = u.SimpleFullyConnected2(d, nonlin=False, bias=True)
    autograd_lib.add_hooks(model)

    dataset = u.TinyMNIST(dataset_size=batch_size, data_width=data_width, original_targets=True)
    trainloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False)
    train_iter = iter(trainloader)

    loss_fn = torch.nn.CrossEntropyLoss()

    gl.token_count = 0
    for train_step in range(train_steps):
        data, targets = next(train_iter)

        # get gradient values
        u.clear_backprops(model)
        autograd_lib.enable_hooks()
        output = model(data)
        autograd_lib.backprop_hess(output, hess_type='CrossEntropy')

        i = 0
        layer = model.layers[i]
        autograd_lib.compute_hess(model, method='kron')
        autograd_lib.compute_hess(model)
        autograd_lib.disable_hooks()

        # direct Hessian computation
        H = layer.weight.hess
        H_bias = layer.bias.hess

        # factored Hessian computation
        H2 = layer.weight.hess_factored
        H2_bias = layer.bias.hess_factored
        H2, H2_bias = u.expand_hess(H2, H2_bias)

        # autograd Hessian computation
        loss = loss_fn(output, targets) # TODO: change to d[i+1]*d[i]
        H_autograd = u.hessian(loss, layer.weight).reshape(d[i] * d[i + 1], d[i] * d[i + 1])
        H_bias_autograd = u.hessian(loss, layer.bias)

        # compare direct against autograd
        u.check_close(H, H_autograd)
        u.check_close(H_bias, H_bias_autograd)

        approx_error = u.symsqrt_dist(H, H2)
        assert approx_error < 1e-2, approx_error
def _test_kfac_hessian_xent_mnist():
    u.seed_random(1)

    data_width = 3
    batch_size = 2
    d = [data_width**2, 10]
    o = d[-1]
    n = batch_size
    train_steps = 1

    model: u.SimpleModel = u.SimpleFullyConnected2(d, nonlin=False, bias=True)
    autograd_lib.register(model)
    dataset = u.TinyMNIST(dataset_size=batch_size,
                          data_width=data_width,
                          original_targets=True)
    trainloader = torch.utils.data.DataLoader(dataset,
                                              batch_size=batch_size,
                                              shuffle=False)
    train_iter = iter(trainloader)

    loss_fn = torch.nn.CrossEntropyLoss()

    activations = {}
    hess = defaultdict(lambda: AttrDefault(float))
    for train_step in range(train_steps):
        data, targets = next(train_iter)

        activations = {}

        def save_activations(layer, a, _):
            activations[layer] = a

        with autograd_lib.module_hook(save_activations):
            output = model(data)
            loss = loss_fn(output, targets)

        def compute_hess(layer, _, B):
            A = activations[layer]
            hess[layer].AA += torch.einsum("ni,nj->ij", A, A)
            hess[layer].BB += torch.einsum("ni,nj->ij", B, B)

        with autograd_lib.module_hook(compute_hess):
            autograd_lib.backward_hessian(output,
                                          loss='CrossEntropy',
                                          retain_graph=True)

        hess_factored = hess[model.layers[0]]
        hess0 = torch.einsum('kl,ij->kilj', hess_factored.BB / n,
                             hess_factored.AA / o)  # hess for sum loss
        hess0 /= n  # hess for mean loss

        # compute Hessian through autograd
        H_autograd = u.hessian(loss, model.layers[0].weight)
        rel_error = torch.norm(
            (hess0 - H_autograd).flatten()) / torch.norm(H_autograd.flatten())
        assert rel_error < 0.01  # 0.0057
Beispiel #6
0
def _test_refactored_stats():
    gl.project_name = 'test'
    gl.logdir_base = '/tmp/runs'
    run_name = 'test_hessian_multibatch'
    u.setup_logdir_and_event_writer(run_name=run_name)

    loss_type = 'CrossEntropy'
    data_width = 2
    n = 4
    d1 = data_width ** 2
    o = 10
    d = [d1, o]

    model = u.SimpleFullyConnected2(d, bias=False, nonlin=False)
    model = model.to(gl.device)

    dataset = u.TinyMNIST(data_width=data_width, dataset_size=n, loss_type=loss_type)
    stats_loader = torch.utils.data.DataLoader(dataset, batch_size=n, shuffle=False)
    stats_iter = u.infinite_iter(stats_loader)

    if loss_type == 'LeastSquares':
        loss_fn = u.least_squares
    else:  # loss_type == 'CrossEntropy':
        loss_fn = nn.CrossEntropyLoss()

    autograd_lib.add_hooks(model)
    gl.reset_global_step()
    last_outer = 0

    stats_iter = u.infinite_iter(stats_loader)
    stats_data, stats_targets = next(stats_iter)
    data, targets = stats_data, stats_targets

    covG = autograd_lib.layer_cov_dict()
    covH = autograd_lib.layer_cov_dict()
    covJ = autograd_lib.layer_cov_dict()

    autograd_lib.register(model)

    A = {}
    with autograd_lib.save_activations(A):
        output = model(data)
        loss = loss_fn(output, targets)

    Acov = autograd_lib.ModuleDict(autograd_lib.SecondOrder)
    for layer, activations in A.items():
        Acov[layer].accumulate(activations)

    autograd_lib.set_default_activations(A)   # set activations to use by default when constructing cov matrices
    autograd_lib.set_default_Acov(Acov)

    # saves backprop covariances
    autograd_lib.backward_accum(loss, 1, covG)
    autograd_lib.backward_accum(output, autograd_lib.xent_bwd, covH)
    autograd_lib.backward_accum(output, autograd_lib.identity_bwd, covJ)
Beispiel #7
0
def test_cross_entropy_hessian_mnist():
    u.seed_random(1)

    data_width = 3
    batch_size = 2
    d = [data_width**2, 10]
    o = d[-1]
    n = batch_size
    train_steps = 1

    model: u.SimpleModel = u.SimpleFullyConnected(d, nonlin=False, bias=True)

    dataset = u.TinyMNIST(dataset_size=batch_size, data_width=data_width, original_targets=True)
    trainloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False)
    train_iter = iter(trainloader)

    loss_fn = torch.nn.CrossEntropyLoss()
    loss_hessian = u.HessianExactCrossEntropyLoss()

    gl.token_count = 0
    for train_step in range(train_steps):
        data, targets = next(train_iter)

        # get gradient values
        u.clear_backprops(model)
        model.skip_forward_hooks = False
        model.skip_backward_hooks = False
        output = model(data)
        for bval in loss_hessian(output):
            output.backward(bval, retain_graph=True)
        i = 0
        layer = model.layers[i]
        H, Hbias = u.hessian_from_backprops(layer.activations,
                                            layer.backprops_list,
                                            bias=True)
        model.skip_forward_hooks = True
        model.skip_backward_hooks = True

        # compute Hessian through autograd
        model.zero_grad()
        output = model(data)
        loss = loss_fn(output, targets)
        H_autograd = u.hessian(loss, layer.weight).reshape(d[i] * d[i + 1], d[i] * d[i + 1])
        u.check_close(H, H_autograd)

        Hbias_autograd = u.hessian(loss, layer.bias)
        u.check_close(Hbias, Hbias_autograd)
Beispiel #8
0
def test_autoencoder_newton():
    """Use Newton's method to train autoencoder."""

    image_size = 3
    batch_size = 64
    dataset = u.TinyMNIST(data_width=image_size, targets_width=image_size,
                          dataset_size=batch_size)
    trainloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False)

    d = image_size ** 2  # hidden layer size
    u.seed_random(1)
    model: u.SimpleModel = u.SimpleFullyConnected([d, d])
    model.disable_hooks()

    optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9)

    def loss_fn(data, targets):
        err = data - targets.view(-1, data.shape[1])
        assert len(data) == batch_size
        return torch.sum(err * err) / 2 / len(data)

    for i in range(10):
        data, targets = next(iter(trainloader))
        optimizer.zero_grad()
        loss = loss_fn(model(data), targets)
        if i > 0:
            assert loss < 1e-9

        loss.backward()
        W = model.layers[0].weight
        grad = u.tvec(W.grad)

        loss = loss_fn(model(data), targets)
        H = u.hessian(loss, W)

        #  for col-major: H = H.transpose(0, 1).transpose(2, 3).reshape(d**2, d**2)
        H = H.reshape(d ** 2, d ** 2)

        #  For col-major: W1 = u.unvec(u.vec(W) - u.pinv(H) @ grad, d)
        # W1 = u.untvec(u.tvec(W) - grad @ u.pinv(H), d)
        W1 = u.untvec(u.tvec(W) - grad @ H.pinverse(), d)
        W.data.copy_(W1)
Beispiel #9
0
def test_autoencoder_minimize():
    """Minimize autoencoder for a few steps."""
    u.seed_random(1)
    torch.set_default_dtype(torch.float32)
    data_width = 4
    targets_width = 2

    batch_size = 64
    dataset = u.TinyMNIST(data_width=data_width, targets_width=targets_width,
                          dataset_size=batch_size)
    trainloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False)

    d1 = data_width ** 2
    d2 = 10
    d3 = targets_width ** 2
    model: u.SimpleModel = u.SimpleFullyConnected([d1, d2, d3], nonlin=True)
    model.disable_hooks()

    optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9)

    def loss_fn(data, targets):
        err = data - targets.view(-1, data.shape[1])
        assert len(data) == batch_size
        return torch.sum(err * err) / 2 / len(data)

    loss = 0
    for i in range(10):
        data, targets = next(iter(trainloader))
        optimizer.zero_grad()
        loss = loss_fn(model(data), targets)
        if i == 0:
            assert loss > 0.054
            pass
        loss.backward()
        optimizer.step()

    assert loss < 0.0398
Beispiel #10
0
def main():
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs', type=int, default=10, metavar='N',
                        help='number of epochs to train (default: 10)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                        help='how many batches to wait before logging training status')
    parser.add_argument('--save-model', action='store_true', default=False,
                        help='For Saving the current Model')

    parser.add_argument('--wandb', type=int, default=0, help='log to weights and biases')
    parser.add_argument('--autograd_check', type=int, default=0, help='autograd correctness checks')
    parser.add_argument('--logdir', type=str, default='/tmp/runs/curv_train_tiny/run')

    parser.add_argument('--nonlin', type=int, default=1, help="whether to add ReLU nonlinearity between layers")
    parser.add_argument('--bias', type=int, default=1, help="whether to add bias between layers")

    parser.add_argument('--layer', type=int, default=-1, help="restrict updates to this layer")
    parser.add_argument('--data_width', type=int, default=28)
    parser.add_argument('--targets_width', type=int, default=28)
    parser.add_argument('--hess_samples', type=int, default=1,
                        help='number of samples when sub-sampling outputs, 0 for exact hessian')
    parser.add_argument('--hess_kfac', type=int, default=0, help='whether to use KFAC approximation for hessian')
    parser.add_argument('--compute_rho', type=int, default=0, help='use expensive method to compute rho')
    parser.add_argument('--skip_stats', type=int, default=0, help='skip all stats collection')

    parser.add_argument('--dataset_size', type=int, default=60000)
    parser.add_argument('--train_steps', type=int, default=100, help="this many train steps between stat collection")
    parser.add_argument('--stats_steps', type=int, default=1000000, help="total number of curvature stats collections")

    parser.add_argument('--full_batch', type=int, default=0, help='do stats on the whole dataset')
    parser.add_argument('--lr', type=float, default=1e-3)
    parser.add_argument('--weight_decay', type=float, default=0)
    parser.add_argument('--momentum', type=float, default=0.9)
    parser.add_argument('--dropout', type=int, default=0)
    parser.add_argument('--swa', type=int, default=0)
    parser.add_argument('--lmb', type=float, default=1e-3)

    parser.add_argument('--train_batch_size', type=int, default=64)
    parser.add_argument('--stats_batch_size', type=int, default=10000)
    parser.add_argument('--stats_num_batches', type=int, default=1)
    parser.add_argument('--run_name', type=str, default='noname')
    parser.add_argument('--launch_blocking', type=int, default=0)
    parser.add_argument('--sampled', type=int, default=0)
    parser.add_argument('--curv', type=str, default='kfac',
                        help='decomposition to use for curvature estimates: zero_order, kfac, isserlis or full')
    parser.add_argument('--log_spectra', type=int, default=0)

    u.seed_random(1)
    gl.args = parser.parse_args()
    args = gl.args
    u.seed_random(1)

    gl.project_name = 'train_ciresan'
    u.setup_logdir_and_event_writer(args.run_name)
    print(f"Logging to {gl.logdir}")

    d1 = 28 * 28
    d = [784, 2500, 2000, 1500, 1000, 500, 10]

    # number of samples per datapoint. Used to normalize kfac
    model = u.SimpleFullyConnected2(d, nonlin=args.nonlin, bias=args.bias, dropout=args.dropout)
    model = model.to(gl.device)
    autograd_lib.register(model)

    assert args.dataset_size >= args.stats_batch_size
    optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
    dataset = u.TinyMNIST(data_width=args.data_width, targets_width=args.targets_width, original_targets=True,
                          dataset_size=args.dataset_size)
    train_loader = torch.utils.data.DataLoader(dataset, batch_size=args.train_batch_size, shuffle=True, drop_last=True)
    train_iter = u.infinite_iter(train_loader)

    assert not args.full_batch, "fixme: validation still uses stats_iter"
    if not args.full_batch:
        stats_loader = torch.utils.data.DataLoader(dataset, batch_size=args.stats_batch_size, shuffle=True,
                                                   drop_last=True)
        stats_iter = u.infinite_iter(stats_loader)
    else:
        stats_iter = None

    test_dataset = u.TinyMNIST(data_width=args.data_width, targets_width=args.targets_width, train=False,
                               original_targets=True,
                               dataset_size=args.dataset_size)
    test_eval_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.stats_batch_size, shuffle=False,
                                                   drop_last=False)
    train_eval_loader = torch.utils.data.DataLoader(dataset, batch_size=args.stats_batch_size, shuffle=False,
                                                    drop_last=False)

    loss_fn = torch.nn.CrossEntropyLoss()
    autograd_lib.add_hooks(model)
    autograd_lib.disable_hooks()

    gl.token_count = 0
    last_outer = 0

    for step in range(args.stats_steps):
        epoch = gl.token_count // 60000
        lr = optimizer.param_groups[0]['lr']
        print('token_count', gl.token_count)
        if last_outer:
            u.log_scalars({"time/outer": 1000 * (time.perf_counter() - last_outer)})
            print(f'time: {time.perf_counter() - last_outer:.2f}')
        last_outer = time.perf_counter()

        with u.timeit("validate"):
            val_accuracy, val_loss = validate(model, test_eval_loader, f'test (epoch {epoch})')
            train_accuracy, train_loss = validate(model, train_eval_loader, f'train (epoch {epoch})')

        # save log
        metrics = {'epoch': epoch, 'val_accuracy': val_accuracy, 'val_loss': val_loss,
                   'train_loss': train_loss, 'train_accuracy': train_accuracy,
                   'lr': optimizer.param_groups[0]['lr'],
                   'momentum': optimizer.param_groups[0].get('momentum', 0)}
        u.log_scalars(metrics)

        def mom_update(buffer, val):
            buffer *= 0.9
            buffer += val * 0.1

        if not args.skip_stats:
            # number of samples passed through
            n = args.stats_batch_size * args.stats_num_batches

            # quanti
            forward_stats = defaultdict(lambda: AttrDefault(float))

            hessians = defaultdict(lambda: AttrDefault(float))
            jacobians = defaultdict(lambda: AttrDefault(float))
            fishers = defaultdict(lambda: AttrDefault(float))  # empirical fisher/gradient
            quad_fishers = defaultdict(lambda: AttrDefault(float))  # gradient statistics that depend on fisher (4th order moments)
            train_regrets = defaultdict(list)
            test_regrets1 = defaultdict(list)
            test_regrets2 = defaultdict(list)
            train_regrets_opt = defaultdict(list)
            test_regrets_opt = defaultdict(list)
            cosines = defaultdict(list)
            dot_products = defaultdict(list)
            hessians_histograms = defaultdict(lambda: AttrDefault(u.MyList))
            jacobians_histograms = defaultdict(lambda: AttrDefault(u.MyList))
            fishers_histograms = defaultdict(lambda: AttrDefault(u.MyList))
            quad_fishers_histograms = defaultdict(lambda: AttrDefault(u.MyList))

            current = None
            current_histograms = None

            for i in range(args.stats_num_batches):
                activations = {}
                backprops = {}

                def save_activations(layer, A, _):
                    activations[layer] = A
                    forward_stats[layer].AA += torch.einsum("ni,nj->ij", A, A)

                print('forward')
                with u.timeit("stats_forward"):
                    with autograd_lib.module_hook(save_activations):
                        data, targets = next(stats_iter)
                        output = model(data)
                        loss = loss_fn(output, targets) * len(output)

                def compute_stats(layer, _, B):
                    A = activations[layer]
                    if current == fishers:
                        backprops[layer] = B

                    # about 27ms per layer
                    with u.timeit('compute_stats'):
                        current[layer].BB += torch.einsum("ni,nj->ij", B, B)  # TODO(y): index consistency
                        current[layer].diag += torch.einsum("ni,nj->ij", B * B, A * A)
                        current[layer].BA += torch.einsum("ni,nj->ij", B, A)
                        current[layer].a += torch.einsum("ni->i", A)
                        current[layer].b += torch.einsum("nk->k", B)
                        current[layer].norm2 += ((A * A).sum(dim=1) * (B * B).sum(dim=1)).sum()

                        # compute curvatures in direction of all gradiennts
                        if current is fishers:
                            assert args.stats_num_batches == 1, "not tested on more than one stats step, currently reusing aggregated moments"
                            hess = hessians[layer]
                            jac = jacobians[layer]
                            Bh, Ah = B @ hess.BB / n, A @ forward_stats[layer].AA / n
                            Bj, Aj = B @ jac.BB / n, A @ forward_stats[layer].AA / n
                            norms = ((A * A).sum(dim=1) * (B * B).sum(dim=1))

                            current[layer].min_norm2 = min(norms)
                            current[layer].median_norm2 = torch.median(norms)
                            current[layer].max_norm2 = max(norms)

                            norms2_hess = ((Ah * A).sum(dim=1) * (Bh * B).sum(dim=1))
                            norms2_jac = ((Aj * A).sum(dim=1) * (Bj * B).sum(dim=1))

                            current[layer].norm += norms.sum()
                            current_histograms[layer].norms.extend(torch.sqrt(norms))
                            current[layer].curv_hess += (skip_nans(norms2_hess / norms)).sum()
                            current_histograms[layer].curv_hess.extend(skip_nans(norms2_hess / norms))
                            current[layer].curv_hess_max += (skip_nans(norms2_hess / norms)).max()
                            current[layer].curv_hess_median += (skip_nans(norms2_hess / norms)).median()

                            current_histograms[layer].curv_jac.extend(skip_nans(norms2_jac / norms))
                            current[layer].curv_jac += (skip_nans(norms2_jac / norms)).sum()
                            current[layer].curv_jac_max += (skip_nans(norms2_jac / norms)).max()
                            current[layer].curv_jac_median += (skip_nans(norms2_jac / norms)).median()

                            current[layer].a_sparsity += torch.sum(A <= 0).float() / A.numel()
                            current[layer].b_sparsity += torch.sum(B <= 0).float() / B.numel()

                            current[layer].mean_activation += torch.mean(A)
                            current[layer].mean_activation2 += torch.mean(A*A)
                            current[layer].mean_backprop = torch.mean(B)
                            current[layer].mean_backprop2 = torch.mean(B*B)

                            current[layer].norms_hess += torch.sqrt(norms2_hess).sum()
                            current_histograms[layer].norms_hess.extend(torch.sqrt(norms2_hess))
                            current[layer].norms_jac += norms2_jac.sum()
                            current_histograms[layer].norms_jac.extend(torch.sqrt(norms2_jac))

                            normalized_moments = copy.copy(hessians[layer])
                            normalized_moments.AA = forward_stats[layer].AA
                            normalized_moments = u.divide_attributes(normalized_moments, n)

                            train_regrets_ = autograd_lib.offset_losses(A, B, alpha=lr, offset=0, m=normalized_moments,
                                                                        approx=args.curv)
                            test_regrets1_ = autograd_lib.offset_losses(A, B, alpha=lr, offset=1, m=normalized_moments,
                                                                        approx=args.curv)
                            test_regrets2_ = autograd_lib.offset_losses(A, B, alpha=lr, offset=2, m=normalized_moments,
                                                                        approx=args.curv)
                            test_regrets_opt_ = autograd_lib.offset_losses(A, B, alpha=None, offset=2,
                                                                           m=normalized_moments, approx=args.curv)
                            train_regrets_opt_ = autograd_lib.offset_losses(A, B, alpha=None, offset=0,
                                                                            m=normalized_moments, approx=args.curv)
                            cosines_ = autograd_lib.offset_cosines(A, B)
                            train_regrets[layer].extend(train_regrets_)
                            test_regrets1[layer].extend(test_regrets1_)
                            test_regrets2[layer].extend(test_regrets2_)
                            train_regrets_opt[layer].extend(train_regrets_opt_)
                            test_regrets_opt[layer].extend(test_regrets_opt_)
                            cosines[layer].extend(cosines_)
                            dot_products[layer].extend(autograd_lib.offset_dotprod(A, B))

                        # statistics of the form g.Sigma.g
                        elif current == quad_fishers:
                            hess = hessians[layer]
                            sigma = fishers[layer]
                            jac = jacobians[layer]
                            Bs, As = B @ sigma.BB / n, A @ forward_stats[layer].AA / n
                            Bh, Ah = B @ hess.BB / n, A @ forward_stats[layer].AA / n
                            Bj, Aj = B @ jac.BB / n, A @ forward_stats[layer].AA / n

                            norms = ((A * A).sum(dim=1) * (B * B).sum(dim=1))
                            norms2_hess = ((Ah * A).sum(dim=1) * (Bh * B).sum(dim=1))
                            norms2_jac = ((Aj * A).sum(dim=1) * (Bj * B).sum(dim=1))
                            norms_sigma = ((As * A).sum(dim=1) * (Bs * B).sum(dim=1))

                            current[layer].norm += norms.sum()  # TODO(y) remove, redundant with norm2 above
                            current[layer].curv_sigma += (skip_nans(norms_sigma / norms)).sum()
                            current[layer].curv_sigma_max = skip_nans(norms_sigma / norms).max()
                            current[layer].curv_sigma_median = skip_nans(norms_sigma / norms).median()
                            current[layer].curv_hess += skip_nans(norms2_hess / norms).sum()
                            current[layer].curv_hess_max += skip_nans(norms2_hess / norms).max()
                            current[layer].lyap_hess_mean += skip_nans(norms_sigma / norms2_hess).mean()
                            current[layer].lyap_hess_max = max(skip_nans(norms_sigma/norms2_hess))
                            current[layer].lyap_jac_mean += skip_nans(norms_sigma / norms2_jac).mean()
                            current[layer].lyap_jac_max = max(skip_nans(norms_sigma/norms2_jac))

                print('backward')
                with u.timeit("backprop_H"):
                    with autograd_lib.module_hook(compute_stats):
                        current = hessians
                        current_histograms = hessians_histograms
                        autograd_lib.backward_hessian(output, loss='CrossEntropy', sampled=args.sampled,
                                                      retain_graph=True)  # 600 ms
                        current = jacobians
                        current_histograms = jacobians_histograms
                        autograd_lib.backward_jacobian(output, sampled=args.sampled, retain_graph=True)  # 600 ms
                        current = fishers
                        current_histograms = fishers_histograms
                        model.zero_grad()
                        loss.backward(retain_graph=True)  # 60 ms
                        current = quad_fishers
                        current_histograms = quad_fishers_histograms
                        model.zero_grad()
                        loss.backward()  # 60 ms

            print('summarize')
            for (i, layer) in enumerate(model.layers):
                stats_dict = {'hessian': hessians, 'jacobian': jacobians, 'fisher': fishers}

                # evaluate stats from
                # https://app.wandb.ai/yaroslavvb/train_ciresan/runs/425pu650?workspace=user-yaroslavvb
                for stats_name in stats_dict:
                    s = AttrDict()
                    stats = stats_dict[stats_name][layer]

                    for key in forward_stats[layer]:
                        # print(f'copying {key} in {stats_name}, {layer}')
                        try:
                            assert stats[key] == float()
                        except:
                            f"Trying to overwrite {key} in {stats_name}, {layer}"
                        stats[key] = forward_stats[layer][key]

                    diag: torch.Tensor = stats.diag / n

                    # jacobian:
                    # curv in direction of gradient goes down to roughly 0.3-1
                    # maximum curvature goes up to 1000-2000
                    #
                    # Hessian:
                    # max curv goes down to 1, in direction of gradient 0.0001

                    s.diag_l2 = torch.max(diag)  # 40 - 3000 smaller than kfac l2 for jac
                    s.diag_fro = torch.norm(
                        diag)  # jacobian grows to 0.5-1.5, rest falls, layer-5 has phase transition, layer-4 also
                    s.diag_trace = diag.sum()  # jacobian grows 0-1000 (first), 0-150 (last). Almost same as kfac_trace (771 vs 810 kfac). Jacobian has up/down phase transition
                    s.diag_average = diag.mean()

                    # normalize for mean loss
                    BB = stats.BB / n
                    AA = stats.AA / n
                    # A_evals, _ = torch.symeig(AA)   # averaging 120ms per hit, 90 hits
                    # B_evals, _ = torch.symeig(BB)

                    # s.kfac_l2 = torch.max(A_evals) * torch.max(B_evals)    # 60x larger than diag_l2. layer0/hess has down/up phase transition. layer5/jacobian has up/down phase transition
                    s.kfac_trace = torch.trace(AA) * torch.trace(BB)  # 0/hess down/up tr, 5/jac sharp phase transition
                    s.kfac_fro = torch.norm(stats.AA) * torch.norm(
                        stats.BB)  # 0/hess has down/up tr, 5/jac up/down transition
                    # s.kfac_erank = s.kfac_trace / s.kfac_l2   # first layer has 25, rest 15, all layers go down except last, last noisy
                    # s.kfac_erank_fro = s.kfac_trace / s.kfac_fro / max(stats.BA.shape)

                    s.diversity = (stats.norm2 / n) / u.norm_squared(
                        stats.BA / n)  # gradient diversity. Goes up 3x. Bottom layer has most diversity. Jacobian diversity much less noisy than everythingelse

                    # discrepancy of KFAC based on exact values of diagonal approximation
                    # average difference normalized by average diagonal magnitude
                    diag_kfac = torch.einsum('ll,ii->li', BB, AA)
                    s.kfac_error = (torch.abs(diag_kfac - diag)).mean() / torch.mean(diag.abs())
                    u.log_scalars(u.nest_stats(f'layer-{i}/{stats_name}', s))

                # openai batch size stat
                s = AttrDict()
                hess = hessians[layer]
                jac = jacobians[layer]
                fish = fishers[layer]
                quad_fish = quad_fishers[layer]

                # the following check passes, but is expensive
                # if args.stats_num_batches == 1:
                #    u.check_close(fisher[layer].BA, layer.weight.grad)

                def trsum(A, B):
                    return (A * B).sum()  # computes tr(AB')

                grad = fishers[layer].BA / n
                s.grad_fro = torch.norm(grad)

                # get norms
                s.lyap_hess_max = quad_fish.lyap_hess_max
                s.lyap_hess_ave = quad_fish.lyap_hess_sum / n
                s.lyap_jac_max = quad_fish.lyap_jac_max
                s.lyap_jac_ave = quad_fish.lyap_jac_sum / n
                s.hess_trace = hess.diag.sum() / n
                s.jac_trace = jac.diag.sum() / n

                # Version 1 of Jain stochastic rates, use Hessian for curvature
                b = args.train_batch_size

                s.hess_curv = trsum((hess.BB / n) @ grad @ (hess.AA / n), grad) / trsum(grad, grad)
                s.jac_curv = trsum((jac.BB / n) @ grad @ (jac.AA / n), grad) / trsum(grad, grad)

                # compute gradient noise statistics
                # fish.BB has /n factor twice, hence don't need extra /n on fish.AA
                # after sampling, hess_noise,jac_noise became 100x smaller, but normalized is unaffected
                s.hess_noise = (trsum(hess.AA / n, fish.AA / n) * trsum(hess.BB / n, fish.BB / n))
                s.jac_noise = (trsum(jac.AA / n, fish.AA / n) * trsum(jac.BB / n, fish.BB / n))
                s.hess_noise_centered = s.hess_noise - trsum(hess.BB / n @ grad, grad @ hess.AA / n)
                s.jac_noise_centered = s.jac_noise - trsum(jac.BB / n @ grad, grad @ jac.AA / n)
                s.openai_gradient_noise = (fish.norms_hess / n) / trsum(hess.BB / n @ grad, grad @ hess.AA / n)

                s.mean_norm = torch.sqrt(fish.norm2) / n
                s.min_norm = torch.sqrt(fish.min_norm2)
                s.median_norm = torch.sqrt(fish.median_norm2)
                s.max_norm = torch.sqrt(fish.max_norm2)
                s.enorms = u.norm_squared(grad)
                s.a_sparsity = fish.a_sparsity
                s.b_sparsity = fish.b_sparsity
                s.mean_activation = fish.mean_activation
                s.msr_activation = torch.sqrt(fish.mean_activation2)
                s.mean_backprop = fish.mean_backprop
                s.msr_backprop = torch.sqrt(fish.mean_backprop2)

                s.norms_centered = fish.norm2 / n - u.norm_squared(grad)
                s.norms_hess = fish.norms_hess / n
                s.norms_jac = fish.norms_jac / n

                s.hess_curv_grad = fish.curv_hess / n  # phase transition, hits minimum loss in layer 1, then starts going up. Other layers take longer to reach minimum. Decreases with depth.
                s.hess_curv_grad_max = fish.curv_hess_max   # phase transition, hits minimum loss in layer 1, then starts going up. Other layers take longer to reach minimum. Decreases with depth.
                s.hess_curv_grad_median = fish.curv_hess_median   # phase transition, hits minimum loss in layer 1, then starts going up. Other layers take longer to reach minimum. Decreases with depth.
                s.sigma_curv_grad = quad_fish.curv_sigma / n
                s.sigma_curv_grad_max = quad_fish.curv_sigma_max
                s.sigma_curv_grad_median = quad_fish.curv_sigma_median
                s.band_bottou = 0.5 * lr * s.sigma_curv_grad / s.hess_curv_grad
                s.band_bottou_stoch = 0.5 * lr * quad_fish.curv_ratio / n
                s.band_yaida = 0.25 * lr * s.mean_norm**2
                s.band_yaida_centered = 0.25 * lr * s.norms_centered

                s.jac_curv_grad = fish.curv_jac / n  # this one has much lower variance than jac_curv. Reaches peak at 10k steps, also kfac error reaches peak there. Decreases with depth except for last layer.
                s.jac_curv_grad_max = fish.curv_jac_max  # this one has much lower variance than jac_curv. Reaches peak at 10k steps, also kfac error reaches peak there. Decreases with depth except for last layer.
                s.jac_curv_grad_median = fish.curv_jac_median  # this one has much lower variance than jac_curv. Reaches peak at 10k steps, also kfac error reaches peak there. Decreases with depth except for last layer.

                # OpenAI gradient noise statistics
                s.hess_noise_normalized = s.hess_noise_centered / (fish.norms_hess / n)
                s.jac_noise_normalized = s.jac_noise / (fish.norms_jac / n)

                train_regrets_, test_regrets1_, test_regrets2_, train_regrets_opt_, test_regrets_opt_, cosines_, dot_products_ = (torch.stack(r[layer]) for r in (train_regrets, test_regrets1, test_regrets2, train_regrets_opt, test_regrets_opt, cosines, dot_products))
                s.train_regret = train_regrets_.median()  # use median because outliers make it hard to see the trend
                s.test_regret1 = test_regrets1_.median()
                s.test_regret2 = test_regrets2_.median()
                s.test_regret_opt = test_regrets_opt_.median()
                s.train_regret_opt = train_regrets_opt_.median()
                s.mean_dot_product = torch.mean(dot_products_)
                s.median_dot_product = torch.median(dot_products_)
                a = [1, 2, 3]

                s.median_cosine = cosines_.median()
                s.mean_cosine = cosines_.mean()

                # get learning rates
                L1 = s.hess_curv_grad / n
                L2 = s.jac_curv_grad / n
                diversity = (fish.norm2 / n) / u.norm_squared(grad)
                robust_diversity = (fish.norm2 / n) / fish.median_norm2
                dotprod_diversity = fish.median_norm2 / s.median_dot_product
                s.lr1 = 2 / (L1 * diversity)
                s.lr2 = 2 / (L2 * diversity)
                s.lr3 = 2 / (L2 * robust_diversity)
                s.lr4 = 2 / (L2 * dotprod_diversity)

                hess_A = u.symeig_pos_evals(hess.AA / n)
                hess_B = u.symeig_pos_evals(hess.BB / n)
                fish_A = u.symeig_pos_evals(fish.AA / n)
                fish_B = u.symeig_pos_evals(fish.BB / n)
                jac_A = u.symeig_pos_evals(jac.AA / n)
                jac_B = u.symeig_pos_evals(jac.BB / n)
                u.log_scalars({f'layer-{i}/hessA_erank': erank(hess_A)})
                u.log_scalars({f'layer-{i}/hessB_erank': erank(hess_B)})
                u.log_scalars({f'layer-{i}/fishA_erank': erank(fish_A)})
                u.log_scalars({f'layer-{i}/fishB_erank': erank(fish_B)})
                u.log_scalars({f'layer-{i}/jacA_erank': erank(jac_A)})
                u.log_scalars({f'layer-{i}/jacB_erank': erank(jac_B)})
                gl.event_writer.add_histogram(f'layer-{i}/hist_hess_eig', u.outer(hess_A, hess_B).flatten(), gl.get_global_step())
                gl.event_writer.add_histogram(f'layer-{i}/hist_fish_eig', u.outer(hess_A, hess_B).flatten(), gl.get_global_step())
                gl.event_writer.add_histogram(f'layer-{i}/hist_jac_eig', u.outer(hess_A, hess_B).flatten(), gl.get_global_step())

                s.hess_l2 = max(hess_A) * max(hess_B)
                s.jac_l2 = max(jac_A) * max(jac_B)
                s.fish_l2 = max(fish_A) * max(fish_B)
                s.hess_trace = hess.diag.sum() / n

                s.jain1_sto = 1/(s.hess_trace + 2 * s.hess_l2)
                s.jain1_det = 1/s.hess_l2

                s.jain1_lr = (1 / b) * (1/s.jain1_sto) + (b - 1) / b * (1/s.jain1_det)
                s.jain1_lr = 2 / s.jain1_lr

                s.regret_ratio = (
                            train_regrets_opt_ / test_regrets_opt_).median()  # ratio between train and test regret, large means overfitting
                u.log_scalars(u.nest_stats(f'layer-{i}', s))

                # compute stats that would let you bound rho
                if i == 0:  # only compute this once, for output layer
                    hhh = hessians[model.layers[-1]].BB / n
                    fff = fishers[model.layers[-1]].BB / n
                    d = fff.shape[0]
                    L = u.lyapunov_spectral(hhh, 2 * fff, cond=1e-8)
                    L_evals = u.symeig_pos_evals(L)
                    Lcheap = fff @ u.pinv(hhh, cond=1e-8)
                    Lcheap_evals = u.eig_real(Lcheap)

                    u.log_scalars({f'mismatch/rho': d/erank(L_evals)})
                    u.log_scalars({f'mismatch/rho_cheap': d/erank(Lcheap_evals)})
                    u.log_scalars({f'mismatch/diagonalizability': erank(L_evals)/erank(Lcheap_evals)})  # 1 means diagonalizable
                    u.log_spectrum(f'mismatch/sigma', u.symeig_pos_evals(fff), loglog=False)
                    u.log_spectrum(f'mismatch/hess', u.symeig_pos_evals(hhh), loglog=False)
                    u.log_spectrum(f'mismatch/lyapunov', L_evals, loglog=True)
                    u.log_spectrum(f'mismatch/lyapunov_cheap', Lcheap_evals, loglog=True)

                gl.event_writer.add_histogram(f'layer-{i}/hist_grad_norms', u.to_numpy(fishers_histograms[layer].norms.value()), gl.get_global_step())
                gl.event_writer.add_histogram(f'layer-{i}/hist_grad_norms_hess', u.to_numpy(fishers_histograms[layer].norms_hess.value()), gl.get_global_step())
                gl.event_writer.add_histogram(f'layer-{i}/hist_curv_jac', u.to_numpy(fishers_histograms[layer].curv_jac.value()), gl.get_global_step())
                gl.event_writer.add_histogram(f'layer-{i}/hist_curv_hess', u.to_numpy(fishers_histograms[layer].curv_hess.value()), gl.get_global_step())
                gl.event_writer.add_histogram(f'layer-{i}/hist_cosines', u.to_numpy(cosines[layer]), gl.get_global_step())

                if args.log_spectra:
                    with u.timeit('spectrum'):
                        # 2/alpha
                        # s.jain1_lr = (1 / b) * s.jain1_sto + (b - 1) / b * s.jain1_det
                        # s.jain1_lr = 1 / s.jain1_lr

                        # hess.diag_trace, jac.diag_trace

                        # Version 2 of Jain stochastic rates, use Jacobian squared for curvature
                        s.jain2_sto = s.lyap_jac_max * s.jac_trace / s.lyap_jac_ave
                        s.jain2_det = s.jac_l2
                        s.jain2_lr = (1 / b) * s.jain2_sto + (b - 1) / b * s.jain2_det
                        s.jain2_lr = 1 / s.jain2_lr

                        u.log_spectrum(f'layer-{i}/hess_A', hess_A)
                        u.log_spectrum(f'layer-{i}/hess_B', hess_B)
                        u.log_spectrum(f'layer-{i}/hess_AB', u.outer(hess_A, hess_B).flatten())
                        u.log_spectrum(f'layer-{i}/jac_A', jac_A)
                        u.log_spectrum(f'layer-{i}/jac_B', jac_B)
                        u.log_spectrum(f'layer-{i}/fish_A', fish_A)
                        u.log_spectrum(f'layer-{i}/fish_B', fish_B)

                        u.log_scalars({f'layer-{i}/trace_ratio': fish_B.sum()/hess_B.sum()})

                        L = torch.eig(u.lyapunov_spectral(hess.BB, 2*fish.BB, cond=1e-8))[0]
                        L = L[:, 0]  # extract real part
                        L = L.sort()[0]
                        L = torch.flip(L, [0])

                        L_cheap = torch.eig(fish.BB @ u.pinv(hess.BB, cond=1e-8))[0]
                        L_cheap = L_cheap[:, 0]  # extract real part
                        L_cheap = L_cheap.sort()[0]
                        L_cheap = torch.flip(L_cheap, [0])

                        d = len(hess_B)
                        u.log_spectrum(f'layer-{i}/Lyap', L)
                        u.log_spectrum(f'layer-{i}/Lyap_cheap', L_cheap)

                        u.log_scalars({f'layer-{i}/dims': d})
                        u.log_scalars({f'layer-{i}/L_erank': erank(L)})
                        u.log_scalars({f'layer-{i}/L_cheap_erank': erank(L_cheap)})

                        u.log_scalars({f'layer-{i}/rho': d/erank(L)})
                        u.log_scalars({f'layer-{i}/rho_cheap': d/erank(L_cheap)})

        model.train()
        with u.timeit('train'):
            for i in range(args.train_steps):
                optimizer.zero_grad()
                data, targets = next(train_iter)
                model.zero_grad()
                output = model(data)
                loss = loss_fn(output, targets)
                loss.backward()

                optimizer.step()
                if args.weight_decay:
                    for group in optimizer.param_groups:
                        for param in group['params']:
                            param.data.mul_(1 - args.weight_decay)

                gl.token_count += data.shape[0]

    gl.event_writer.close()
Beispiel #11
0
def test_hessian():
    """Tests of Hessian computation."""
    u.seed_random(1)
    batch_size = 500

    data_width = 4
    targets_width = 4

    d1 = data_width ** 2
    d2 = 10
    d3 = targets_width ** 2
    o = d3
    N = batch_size
    d = [d1, d2, d3]

    dataset = u.TinyMNIST(data_width=data_width, targets_width=targets_width, dataset_size=batch_size)
    trainloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False)
    train_iter = iter(trainloader)
    data, targets = next(train_iter)

    def loss_fn(data, targets):
        assert len(data) == len(targets)
        err = data - targets.view(-1, data.shape[1])
        return torch.sum(err * err) / 2 / len(data)

    u.seed_random(1)
    model: u.SimpleModel = u.SimpleFullyConnected(d, nonlin=False, bias=True)

    # backprop hessian and compare against autograd
    hessian_backprop = u.HessianExactSqrLoss()
    output = model(data)
    for bval in hessian_backprop(output):
        output.backward(bval, retain_graph=True)

    i, layer = next(enumerate(model.layers))
    A_t = layer.activations
    Bh_t = layer.backprops_list
    H, Hb = u.hessian_from_backprops(A_t, Bh_t, bias=True)

    model.disable_hooks()
    H_autograd = u.hessian(loss_fn(model(data), targets), layer.weight)
    u.check_close(H, H_autograd.reshape(d[i + 1] * d[i], d[i + 1] * d[i]),
                  rtol=1e-4, atol=1e-7)
    Hb_autograd = u.hessian(loss_fn(model(data), targets), layer.bias)
    u.check_close(Hb, Hb_autograd, rtol=1e-4, atol=1e-7)

    # check first few per-example Hessians
    Hi, Hb_i = u.per_example_hess(A_t, Bh_t, bias=True)
    u.check_close(H, Hi.mean(dim=0))
    u.check_close(Hb, Hb_i.mean(dim=0), atol=2e-6, rtol=1e-5)

    for xi in range(5):
        loss = loss_fn(model(data[xi:xi + 1, ...]), targets[xi:xi + 1])
        H_autograd = u.hessian(loss, layer.weight)
        u.check_close(Hi[xi], H_autograd.reshape(d[i + 1] * d[i], d[i + 1] * d[i]))
        Hbias_autograd = u.hessian(loss, layer.bias)
        u.check_close(Hb_i[i], Hbias_autograd)

    # get subsampled Hessian
    u.seed_random(1)
    model = u.SimpleFullyConnected(d, nonlin=False)
    hessian_backprop = u.HessianSampledSqrLoss(num_samples=1)

    output = model(data)
    for bval in hessian_backprop(output):
        output.backward(bval, retain_graph=True)
    model.disable_hooks()
    i, layer = next(enumerate(model.layers))
    H_approx1 = u.hessian_from_backprops(layer.activations, layer.backprops_list)

    # get subsampled Hessian with more samples
    u.seed_random(1)
    model = u.SimpleFullyConnected(d, nonlin=False)

    hessian_backprop = u.HessianSampledSqrLoss(num_samples=o)
    output = model(data)
    for bval in hessian_backprop(output):
        output.backward(bval, retain_graph=True)
    model.disable_hooks()
    i, layer = next(enumerate(model.layers))
    H_approx2 = u.hessian_from_backprops(layer.activations, layer.backprops_list)

    assert abs(u.l2_norm(H) / u.l2_norm(H_approx1) - 1) < 0.08, abs(u.l2_norm(H) / u.l2_norm(H_approx1) - 1)  # 0.0612
    assert abs(u.l2_norm(H) / u.l2_norm(H_approx2) - 1) < 0.03, abs(u.l2_norm(H) / u.l2_norm(H_approx2) - 1)  # 0.0239
    assert u.kl_div_cov(H_approx1, H) < 0.3, u.kl_div_cov(H_approx1, H)  # 0.222
    assert u.kl_div_cov(H_approx2, H) < 0.2, u.kl_div_cov(H_approx2, H)  # 0.1233
Beispiel #12
0
def main():
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--batch-size',
                        type=int,
                        default=64,
                        metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size',
                        type=int,
                        default=1000,
                        metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs',
                        type=int,
                        default=10,
                        metavar='N',
                        help='number of epochs to train (default: 10)')
    parser.add_argument('--no-cuda',
                        action='store_true',
                        default=False,
                        help='disables CUDA training')
    parser.add_argument('--seed',
                        type=int,
                        default=1,
                        metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument(
        '--log-interval',
        type=int,
        default=10,
        metavar='N',
        help='how many batches to wait before logging training status')
    parser.add_argument('--save-model',
                        action='store_true',
                        default=False,
                        help='For Saving the current Model')

    parser.add_argument('--wandb',
                        type=int,
                        default=1,
                        help='log to weights and biases')
    parser.add_argument('--autograd_check',
                        type=int,
                        default=0,
                        help='autograd correctness checks')
    parser.add_argument('--logdir',
                        type=str,
                        default='/tmp/runs/curv_train_tiny/run')

    parser.add_argument('--nonlin',
                        type=int,
                        default=1,
                        help="whether to add ReLU nonlinearity between layers")
    parser.add_argument('--bias',
                        type=int,
                        default=1,
                        help="whether to add bias between layers")

    parser.add_argument('--layer',
                        type=int,
                        default=-1,
                        help="restrict updates to this layer")
    parser.add_argument('--data_width', type=int, default=28)
    parser.add_argument('--targets_width', type=int, default=28)
    parser.add_argument(
        '--hess_samples',
        type=int,
        default=1,
        help='number of samples when sub-sampling outputs, 0 for exact hessian'
    )
    parser.add_argument('--hess_kfac',
                        type=int,
                        default=0,
                        help='whether to use KFAC approximation for hessian')
    parser.add_argument('--compute_rho',
                        type=int,
                        default=0,
                        help='use expensive method to compute rho')
    parser.add_argument('--skip_stats',
                        type=int,
                        default=1,
                        help='skip all stats collection')

    parser.add_argument('--dataset_size', type=int, default=60000)
    parser.add_argument('--train_steps',
                        type=int,
                        default=5,
                        help="this many train steps between stat collection")
    parser.add_argument('--stats_steps',
                        type=int,
                        default=1000000,
                        help="total number of curvature stats collections")

    parser.add_argument('--full_batch',
                        type=int,
                        default=0,
                        help='do stats on the whole dataset')
    parser.add_argument('--train_batch_size', type=int, default=64)
    parser.add_argument('--stats_batch_size', type=int, default=10000)
    parser.add_argument('--lr', type=float, default=1e-3)
    parser.add_argument('--weight_decay', type=float, default=1e-5)
    parser.add_argument('--momentum', type=float, default=0.9)
    parser.add_argument('--dropout', type=int, default=0)
    parser.add_argument('--swa', type=int, default=1)
    parser.add_argument('--lmb', type=float, default=1e-3)
    parser.add_argument('--uniform',
                        type=int,
                        default=0,
                        help="all layers same size")
    parser.add_argument('--redundancy',
                        type=int,
                        default=0,
                        help="duplicate all layers this many times")
    args = parser.parse_args()

    attemp_count = 0
    while os.path.exists(f"{args.logdir}{attemp_count:02d}"):
        attemp_count += 1
    logdir = f"{args.logdir}{attemp_count:02d}"

    run_name = os.path.basename(logdir)
    gl.event_writer = SummaryWriter(logdir)
    print(f"Logging to {run_name}")
    u.seed_random(1)

    d1 = 28 * 28
    if args.uniform:
        d = [784, 784, 784, 784, 784, 784, 10]
    else:
        d = [784, 2500, 2000, 1500, 1000, 500, 10]
    o = 10
    n = args.stats_batch_size
    if args.redundancy:
        model = u.RedundantFullyConnected2(d,
                                           nonlin=args.nonlin,
                                           bias=args.bias,
                                           dropout=args.dropout,
                                           redundancy=args.redundancy)
    else:
        model = u.SimpleFullyConnected2(d,
                                        nonlin=args.nonlin,
                                        bias=args.bias,
                                        dropout=args.dropout)
    model = model.to(gl.device)

    try:
        # os.environ['WANDB_SILENT'] = 'true'
        if args.wandb:
            wandb.init(project='train_ciresan', name=run_name)
            wandb.tensorboard.patch(tensorboardX=False)
            wandb.config['train_batch'] = args.train_batch_size
            wandb.config['stats_batch'] = args.stats_batch_size
            wandb.config['redundancy'] = args.redundancy
    except Exception as e:
        print(f"wandb crash with {e}")

    optimizer = torch.optim.SGD(model.parameters(),
                                lr=args.lr,
                                momentum=args.momentum)
    dataset = u.TinyMNIST(data_width=args.data_width,
                          targets_width=args.targets_width,
                          original_targets=True,
                          dataset_size=args.dataset_size)
    train_loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=args.train_batch_size,
        shuffle=True,
        drop_last=True)
    train_iter = u.infinite_iter(train_loader)

    assert not args.full_batch, "fixme: validation still uses stats_iter"
    if not args.full_batch:
        stats_loader = torch.utils.data.DataLoader(
            dataset,
            batch_size=args.stats_batch_size,
            shuffle=False,
            drop_last=True)
        stats_iter = u.infinite_iter(stats_loader)
    else:
        stats_iter = None

    test_dataset = u.TinyMNIST(data_width=args.data_width,
                               targets_width=args.targets_width,
                               train=False,
                               original_targets=True,
                               dataset_size=args.dataset_size)
    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=args.stats_batch_size,
                                              shuffle=False,
                                              drop_last=False)

    loss_fn = torch.nn.CrossEntropyLoss()

    gl.token_count = 0
    last_outer = 0
    for step in range(args.stats_steps):
        epoch = gl.token_count // 60000
        print(gl.token_count)
        if last_outer:
            u.log_scalars(
                {"time/outer": 1000 * (time.perf_counter() - last_outer)})
        last_outer = time.perf_counter()

        # compute validation loss
        model.eval()
        if args.swa:
            with u.timeit('swa'):
                base_opt = torch.optim.SGD(model.parameters(),
                                           lr=args.lr,
                                           momentum=args.momentum)
                opt = torchcontrib.optim.SWA(base_opt,
                                             swa_start=0,
                                             swa_freq=1,
                                             swa_lr=args.lr)
                for _ in range(100):
                    optimizer.zero_grad()
                    data, targets = next(train_iter)
                    model.zero_grad()
                    output = model(data)
                    loss = loss_fn(output, targets)
                    loss.backward()
                    opt.step()
                opt.swap_swa_sgd()

        with u.timeit("validate"):
            val_accuracy, val_loss = validate(model, test_loader,
                                              f'test (epoch {epoch})')
            train_accuracy, train_loss = validate(model, stats_loader,
                                                  f'train (epoch {epoch})')

        # save log
        metrics = {
            'epoch': epoch,
            'val_accuracy': val_accuracy,
            'val_loss': val_loss,
            'train_loss': train_loss,
            'train_accuracy': train_accuracy,
            'lr': optimizer.param_groups[0]['lr'],
            'momentum': optimizer.param_groups[0].get('momentum', 0)
        }
        u.log_scalars(metrics)

        # compute stats
        if args.full_batch:
            data, targets = dataset.data, dataset.targets
        else:
            data, targets = next(stats_iter)

        model.skip_forward_hooks = False
        model.skip_backward_hooks = False

        # get gradient values
        with u.timeit("backprop_g"):
            gl.backward_idx = 0
            u.clear_backprops(model)
            output = model(data)
            loss = loss_fn(output, targets)
            loss.backward(retain_graph=True)
        u.log_scalar(loss=loss.item())

        # get Hessian values
        hessian_activations = []
        hessian_backprops = []
        hessians = []  # list of Hessians in Kronecker form

        model.skip_forward_hooks = True
        for (i, layer) in enumerate(model.layers):
            if args.skip_stats:
                continue

            s = AttrDefault(str, {})  # dictionary-like object for layer stats

            #############################
            # Gradient stats
            #############################
            A_t = layer.activations
            assert A_t.shape == (n, d[i])

            # add factor of n because backprop takes loss averaged over batch, while we need per-example loss
            B_t = layer.backprops[0] * n
            assert B_t.shape == (n, d[i + 1])

            G = (B_t, A_t)
            #    g = G.sum(dim=0, keepdim=True) / n  # average gradient
            g = u.kron_sum(G) / n
            assert g.shape == (1, d[i] * d[i + 1])

            s.sparsity = torch.sum(layer.output <= 0) / layer.output.numel()
            s.mean_activation = torch.mean(A_t)
            s.mean_backprop = torch.mean(B_t)

            # empirical Fisher
            with u.timeit(f'sigma-{i}'):
                # efisher = u.kron_cov(G)  # G.t() @ G / n
                sigma = u.kron_sigma(G, g)  #  efisher - g.t() @ g
                s.sigma_l2 = u.kron_sym_l2_norm(sigma)
                s.sigma_erank = u.kron_trace(
                    sigma) / s.sigma_l2  # torch.trace(sigma)/s.sigma_l2

            #############################
            # Hessian stats
            #############################

            # this is a pair of left/right Kronecker fctors
            H = hessians[i]

            with u.timeit(f"invH-{i}"):
                invH = u.kron_inverse(H)

            with u.timeit(f"H_l2-{i}"):
                s.H_l2 = u.kron_sym_l2_norm(H)
                s.iH_l2 = u.kron_sym_l2_norm(invH)

            with u.timeit(f"norms-{i}"):
                s.H_fro = u.kron_fro_norm(H)
                s.invH_fro = u.kron_fro_norm(invH)
                s.grad_fro = u.kron_fro_norm(g)  # g.flatten().norm()
                s.param_fro = layer.weight.data.flatten().norm()

            u.kron_nan_check(H)

            with u.timeit(f"pinvH-{i}"):
                pinvH = u.kron_pinv(H)

            def kron_curv_direction(dd: torch.Tensor):
                """Curvature in direction dd, using factored form"""
                # dd @ H @ dd.t(), computed by kron_quadratic_form(H, dd)
                return u.to_python_scalar(
                    u.kron_quadratic_form(H, dd) / (dd.flatten().norm()**2))

            def kron_loss_direction(dd: torch.Tensor, eps):
                """loss improvement if we take step eps in direction dd"""

                # kron_matmul(dd, g) = dd @ g.t()
                return u.to_python_scalar(eps * (u.kron_matmul(dd, g)) -
                                          0.5 * eps**2 *
                                          u.kron_quadratic_form(H, dd))

            with u.timeit(f'curv-{i}'):
                s.grad_curv = kron_curv_direction(g)
                s.step_openai = 1 / s.grad_curv if s.grad_curv else 999
                s.step_max = 2 / s.H_l2
                s.step_min = torch.tensor(2) / u.kron_trace(H)

                s.regret_gradient = kron_loss_direction(g, s.step_openai)

            with u.timeit(f"batch-{i}"):
                # torch.trace(H @ sigma)                         # (g @ H @ g.t())
                s.batch_openai = u.kron_trace_matmul(
                    H, sigma) / u.kron_quadratic_form(H, g)
                s.diversity = torch.norm(G, "fro")**2 / torch.norm(g)**2

                # torch.trace(H)
                s.H_erank = u.kron_trace(H) / s.H_l2
                s.batch_jain_simple = 1 + s.H_erank

            u.log_scalars(u.nest_stats(layer.name, s))

        # gradient steps
        model.train()
        last_inner = 0
        for i in range(args.train_steps):
            if last_inner:
                u.log_scalars(
                    {"time/inner": 1000 * (time.perf_counter() - last_inner)})
            last_inner = time.perf_counter()

            optimizer.zero_grad()
            data, targets = next(train_iter)
            model.zero_grad()
            output = model(data)
            loss = loss_fn(output, targets)
            loss.backward()

            optimizer.step()
            if args.weight_decay:
                for group in optimizer.param_groups:
                    for param in group['params']:
                        param.data.mul_(1 - args.weight_decay)

            gl.token_count += data.shape[0]

    gl.event_writer.close()
Beispiel #13
0
def test_main_autograd():
    u.seed_random(1)
    log_wandb = False
    autograd_check = True
    use_double = False

    logdir = u.get_unique_logdir('/tmp/autoencoder_test/run')

    run_name = os.path.basename(logdir)
    gl.event_writer = SummaryWriter(logdir)

    batch_size = 5

    try:
        if log_wandb:
            wandb.init(project='test-autograd_test', name=run_name)
            wandb.tensorboard.patch(tensorboardX=False)
            wandb.config['batch'] = batch_size
    except Exception as e:
        print(f"wandb crash with {e}")

    data_width = 4
    targets_width = 2

    d1 = data_width ** 2
    d2 = 10
    d3 = targets_width ** 2
    o = d3
    n = batch_size
    d = [d1, d2, d3]
    model: u.SimpleModel = u.SimpleFullyConnected(d, nonlin=True, bias=True)
    if use_double:
        model = model.double()
    train_steps = 3

    dataset = u.TinyMNIST(data_width=data_width, targets_width=targets_width,
                          dataset_size=batch_size * train_steps)
    trainloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False)
    train_iter = iter(trainloader)

    def loss_fn(data, targets):
        err = data - targets.view(-1, data.shape[1])
        assert len(data) == batch_size
        return torch.sum(err * err) / 2 / len(data)

    loss_hessian = u.HessianExactSqrLoss()

    gl.token_count = 0
    for train_step in range(train_steps):
        data, targets = next(train_iter)
        if use_double:
            data, targets = data.double(), targets.double()

        # get gradient values
        model.skip_backward_hooks = False
        model.skip_forward_hooks = False
        u.clear_backprops(model)
        output = model(data)
        loss = loss_fn(output, targets)
        loss.backward(retain_graph=True)
        model.skip_forward_hooks = True

        output = model(data)
        for bval in loss_hessian(output):
            if use_double:
                bval = bval.double()
            output.backward(bval, retain_graph=True)

        model.skip_backward_hooks = True

        for (i, layer) in enumerate(model.layers):

            #############################
            # Gradient stats
            #############################
            A_t = layer.activations
            assert A_t.shape == (n, d[i])

            # add factor of n because backprop takes loss averaged over batch, while we need per-example loss
            B_t = layer.backprops_list[0] * n
            assert B_t.shape == (n, d[i + 1])

            # per example gradients
            G = u.khatri_rao_t(B_t, A_t)
            assert G.shape == (n, d[i+1] * d[i])
            Gbias = B_t
            assert Gbias.shape == (n, d[i + 1])

            # average gradient
            g = G.sum(dim=0, keepdim=True) / n
            gb = Gbias.sum(dim=0, keepdim=True) / n
            assert g.shape == (1, d[i] * d[i + 1])
            assert gb.shape == (1, d[i + 1])

            if autograd_check:
                u.check_close(B_t.t() @ A_t / n, layer.weight.saved_grad)
                u.check_close(g.reshape(d[i + 1], d[i]), layer.weight.saved_grad)
                u.check_close(torch.einsum('nj->j', B_t) / n, layer.bias.saved_grad)
                u.check_close(torch.mean(B_t, dim=0), layer.bias.saved_grad)
                u.check_close(torch.einsum('ni,nj->ij', B_t, A_t)/n, layer.weight.saved_grad)

            # empirical Fisher
            efisher = G.t() @ G / n
            _sigma = efisher - g.t() @ g

            #############################
            # Hessian stats
            #############################
            A_t = layer.activations
            Bh_t = [layer.backprops_list[out_idx + 1] for out_idx in range(o)]
            Amat_t = torch.cat([A_t] * o, dim=0)  # todo: can instead replace with a khatri-rao loop
            Bmat_t = torch.cat(Bh_t, dim=0)
            Amat_t2 = torch.stack([A_t]*o, dim=0)  # o, n, in_dim
            Bmat_t2 = torch.stack(Bh_t, dim=0)  # o, n, out_dim

            assert Amat_t.shape == (n * o, d[i])
            assert Bmat_t.shape == (n * o, d[i + 1])

            Jb = u.khatri_rao_t(Bmat_t, Amat_t)  # batch output Jacobian
            H = Jb.t() @ Jb / n
            Jb2 = torch.einsum('oni,onj->onij', Bmat_t2, Amat_t2)
            u.check_close(H.reshape(d[i+1], d[i], d[i+1], d[i]), torch.einsum('onij,onkl->ijkl', Jb2, Jb2)/n)

            Hbias = Bmat_t.t() @ Bmat_t / n
            u.check_close(Hbias, torch.einsum('ni,nj->ij', Bmat_t, Bmat_t) / n)

            if autograd_check:
                model.zero_grad()
                output = model(data)
                loss = loss_fn(output, targets)
                H_autograd = u.hessian(loss, layer.weight)
                Hbias_autograd = u.hessian(loss, layer.bias)
                u.check_close(H, H_autograd.reshape(d[i+1] * d[i], d[i+1] * d[i]))
                u.check_close(Hbias, Hbias_autograd)
Beispiel #14
0
def test_grad_norms():
    """Test computing gradient norms using various methods."""

    u.seed_random(1)
    # torch.set_default_dtype(torch.float64)

    data_width = 3
    batch_size = 2
    d = [data_width**2, 6, 10]
    o = d[-1]
    stats_steps = 2
    num_samples = batch_size * stats_steps  # number of samples used in computation of curvature stats

    model: u.SimpleModel = u.SimpleMLP(d, nonlin=True, bias=True)
    loss_fn = torch.nn.CrossEntropyLoss()
    autograd_lib.register(model)

    dataset = u.TinyMNIST(dataset_size=num_samples,
                          data_width=data_width,
                          original_targets=True)
    stats_loader = torch.utils.data.DataLoader(dataset,
                                               batch_size=batch_size,
                                               shuffle=False)
    stats_iter = iter(stats_loader)

    moments = defaultdict(lambda: AttrDefault(float))
    norms = defaultdict(lambda: AttrDefault(MyList))
    data_batches = []
    targets_batches = []
    for stats_step in range(stats_steps):
        data, targets = next(stats_iter)
        data_batches.append(data)
        targets_batches.append(targets)

        activations = {}

        def forward_aggregate(layer, A, _):
            activations[layer] = A
            moments[layer].AA += torch.einsum('ni,nj->ij', A, A)
            moments[layer].a += torch.einsum("ni->i", A)

        with autograd_lib.module_hook(forward_aggregate):
            output = model(data)
            loss_fn(output, targets)

        def backward_aggregate(layer, _, B):
            A = activations[layer]
            moments[layer].b += torch.einsum("nk->k", B)
            moments[layer].BA += torch.einsum("nl,ni->li", B, A)
            moments[layer].BB += torch.einsum("nk,nl->kl", B, B)
            moments[layer].BABA += torch.einsum('nl,ni,nk,nj->likj', B, A, B,
                                                A)

        with autograd_lib.module_hook(backward_aggregate):
            autograd_lib.backward_hessian(output,
                                          loss='CrossEntropy',
                                          retain_graph=True)

    # compare against results using autograd
    data = torch.cat(data_batches)
    targets = torch.cat(targets_batches)

    with autograd_lib.save_activations2() as activations:
        loss = loss_fn(model(data), targets)

    def normalize_moments(d, n):
        result = AttrDict()
        for val in d:
            if type(d[val]) == torch.Tensor:
                result[val] = d[val] / n
        return result

    def compute_norms(layer, _, B):
        A = activations[layer]
        for kind in ('zero_order', 'kfac', 'isserlis', 'full'):
            normalized_moments = normalize_moments(moments[layer], num_samples)
            norms_list = getattr(norms[layer], kind)
            norms_list.extend(
                autograd_lib.grad_norms(A, B, normalized_moments, approx=kind))

    with autograd_lib.module_hook(compute_norms):
        model.zero_grad()
        (len(data) * loss).backward(retain_graph=True)

        print(norms[model.layers[0]].zero_order.value())

    for layer in model.layers:
        output = model(data)
        losses = torch.stack([
            loss_fn(output[i:i + 1], targets[i:i + 1])
            for i in range(len(data))
        ])
        grads = u.jacobian(losses, layer.weight)
        grad_norms = torch.einsum('nij,nij->n', grads, grads)
        u.check_close(grad_norms, norms[layer].zero_order)

        # test gradient norms with custom metric
        kfac_norms, isserlis_norms, full_norms = [
            u.to_pytorch(getattr(norms[layer], k))
            for k in ('kfac', 'isserlis', 'full')
        ]
        error_kfac = max(abs(kfac_norms - full_norms))
        error_isserlis = max(abs(isserlis_norms - full_norms))
        assert error_isserlis < 1e-4
        assert error_kfac < 1e-4
Beispiel #15
0
def main():

    u.seed_random(1)
    logdir = u.create_local_logdir(args.logdir)
    run_name = os.path.basename(logdir)
    gl.event_writer = SummaryWriter(logdir)
    print(f"Logging to {run_name}")

    d1 = args.data_width ** 2
    assert args.data_width == args.targets_width
    o = d1
    n = args.stats_batch_size
    d = [d1, 30, 30, 30, 20, 30, 30, 30, d1]

    # small values for debugging
    # loss_type = 'LeastSquares'
    loss_type = 'CrossEntropy'

    args.wandb = 0
    args.stats_steps = 10
    args.train_steps = 10
    args.stats_batch_size = 10
    args.data_width = 2
    args.targets_width = 2
    args.nonlin = False
    d1 = args.data_width ** 2
    d2 = 2
    d3 = args.targets_width ** 2

    if loss_type == 'CrossEntropy':
        d3 = 10
    o = d3
    n = args.stats_batch_size
    d = [d1, d2, d3]
    dsize = max(args.train_batch_size, args.stats_batch_size)+1

    model = u.SimpleFullyConnected2(d, bias=True, nonlin=args.nonlin)
    model = model.to(gl.device)

    try:
        # os.environ['WANDB_SILENT'] = 'true'
        if args.wandb:
            wandb.init(project='curv_train_tiny', name=run_name)
            wandb.tensorboard.patch(tensorboardX=False)
            wandb.config['train_batch'] = args.train_batch_size
            wandb.config['stats_batch'] = args.stats_batch_size
            wandb.config['method'] = args.method
            wandb.config['n'] = n
    except Exception as e:
        print(f"wandb crash with {e}")

    #optimizer = torch.optim.SGD(model.parameters(), lr=0.03, momentum=0.9)
    optimizer = torch.optim.Adam(model.parameters(), lr=0.03)  # make 10x smaller for least-squares loss
    dataset = u.TinyMNIST(data_width=args.data_width, targets_width=args.targets_width, dataset_size=dsize, original_targets=True)

    train_loader = torch.utils.data.DataLoader(dataset, batch_size=args.train_batch_size, shuffle=False, drop_last=True)
    train_iter = u.infinite_iter(train_loader)

    stats_iter = None
    if not args.full_batch:
        stats_loader = torch.utils.data.DataLoader(dataset, batch_size=args.stats_batch_size, shuffle=False, drop_last=True)
        stats_iter = u.infinite_iter(stats_loader)

    test_dataset = u.TinyMNIST(data_width=args.data_width, targets_width=args.targets_width, train=False, dataset_size=dsize, original_targets=True)
    test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.train_batch_size, shuffle=False, drop_last=True)
    test_iter = u.infinite_iter(test_loader)

    if loss_type == 'LeastSquares':
        loss_fn = u.least_squares
    elif loss_type == 'CrossEntropy':
        loss_fn = nn.CrossEntropyLoss()

    autograd_lib.add_hooks(model)
    gl.token_count = 0
    last_outer = 0
    val_losses = []
    for step in range(args.stats_steps):
        if last_outer:
            u.log_scalars({"time/outer": 1000*(time.perf_counter() - last_outer)})
        last_outer = time.perf_counter()

        with u.timeit("val_loss"):
            test_data, test_targets = next(test_iter)
            test_output = model(test_data)
            val_loss = loss_fn(test_output, test_targets)
            print("val_loss", val_loss.item())
            val_losses.append(val_loss.item())
            u.log_scalar(val_loss=val_loss.item())

        # compute stats
        if args.full_batch:
            data, targets = dataset.data, dataset.targets
        else:
            data, targets = next(stats_iter)

        # Capture Hessian and gradient stats
        autograd_lib.enable_hooks()
        autograd_lib.clear_backprops(model)
        autograd_lib.clear_hess_backprops(model)
        with u.timeit("backprop_g"):
            output = model(data)
            loss = loss_fn(output, targets)
            loss.backward(retain_graph=True)
        with u.timeit("backprop_H"):
            autograd_lib.backprop_hess(output, hess_type=loss_type)
        autograd_lib.disable_hooks()   # TODO(y): use remove_hooks

        with u.timeit("compute_grad1"):
            autograd_lib.compute_grad1(model)
        with u.timeit("compute_hess"):
            autograd_lib.compute_hess(model)

        for (i, layer) in enumerate(model.layers):

            # input/output layers are unreasonably expensive if not using Kronecker factoring
            if d[i]>50 or d[i+1]>50:
                print(f'layer {i} is too big ({d[i],d[i+1]}), skipping stats')
                continue

            if args.skip_stats:
                continue

            s = AttrDefault(str, {})  # dictionary-like object for layer stats

            #############################
            # Gradient stats
            #############################
            A_t = layer.activations
            assert A_t.shape == (n, d[i])

            # add factor of n because backprop takes loss averaged over batch, while we need per-example loss
            B_t = layer.backprops_list[0] * n
            assert B_t.shape == (n, d[i + 1])

            with u.timeit(f"khatri_g-{i}"):
                G = u.khatri_rao_t(B_t, A_t)  # batch loss Jacobian
            assert G.shape == (n, d[i] * d[i + 1])
            g = G.sum(dim=0, keepdim=True) / n  # average gradient
            assert g.shape == (1, d[i] * d[i + 1])

            u.check_equal(G.reshape(layer.weight.grad1.shape), layer.weight.grad1)

            if args.autograd_check:
                u.check_close(B_t.t() @ A_t / n, layer.weight.saved_grad)
                u.check_close(g.reshape(d[i + 1], d[i]), layer.weight.saved_grad)

            s.sparsity = torch.sum(layer.output <= 0) / layer.output.numel()  # proportion of activations that are zero
            s.mean_activation = torch.mean(A_t)
            s.mean_backprop = torch.mean(B_t)

            # empirical Fisher
            with u.timeit(f'sigma-{i}'):
                efisher = G.t() @ G / n
                sigma = efisher - g.t() @ g
                s.sigma_l2 = u.sym_l2_norm(sigma)
                s.sigma_erank = torch.trace(sigma)/s.sigma_l2

            lambda_regularizer = args.lmb * torch.eye(d[i + 1]*d[i]).to(gl.device)
            H = layer.weight.hess

            with u.timeit(f"invH-{i}"):
                invH = torch.cholesky_inverse(H+lambda_regularizer)

            with u.timeit(f"H_l2-{i}"):
                s.H_l2 = u.sym_l2_norm(H)
                s.iH_l2 = u.sym_l2_norm(invH)

            with u.timeit(f"norms-{i}"):
                s.H_fro = H.flatten().norm()
                s.iH_fro = invH.flatten().norm()
                s.grad_fro = g.flatten().norm()
                s.param_fro = layer.weight.data.flatten().norm()

            u.nan_check(H)
            if args.autograd_check:
                model.zero_grad()
                output = model(data)
                loss = loss_fn(output, targets)
                H_autograd = u.hessian(loss, layer.weight)
                H_autograd = H_autograd.reshape(d[i] * d[i + 1], d[i] * d[i + 1])
                u.check_close(H, H_autograd)

            #  u.dump(sigma, f'/tmp/sigmas/H-{step}-{i}')
            def loss_direction(dd: torch.Tensor, eps):
                """loss improvement if we take step eps in direction dd"""
                return u.to_python_scalar(eps * (dd @ g.t()) - 0.5 * eps ** 2 * dd @ H @ dd.t())

            def curv_direction(dd: torch.Tensor):
                """Curvature in direction dd"""
                return u.to_python_scalar(dd @ H @ dd.t() / (dd.flatten().norm() ** 2))

            with u.timeit(f"pinvH-{i}"):
                pinvH = u.pinv(H)

            with u.timeit(f'curv-{i}'):
                s.grad_curv = curv_direction(g)
                ndir = g @ pinvH  # newton direction
                s.newton_curv = curv_direction(ndir)
                setattr(layer.weight, 'pre', pinvH)  # save Newton preconditioner
                s.step_openai = s.grad_fro**2 / s.grad_curv if s.grad_curv else 999
                s.step_max = 2 / s.H_l2
                s.step_min = torch.tensor(2) / torch.trace(H)

                s.newton_fro = ndir.flatten().norm()  # frobenius norm of Newton update
                s.regret_newton = u.to_python_scalar(g @ pinvH @ g.t() / 2)   # replace with "quadratic_form"
                s.regret_gradient = loss_direction(g, s.step_openai)

            with u.timeit(f'rho-{i}'):
                p_sigma = u.lyapunov_svd(H, sigma)
                if u.has_nan(p_sigma) and args.compute_rho:  # use expensive method
                    print('using expensive method')
                    import pdb; pdb.set_trace()
                    H0, sigma0 = u.to_numpys(H, sigma)
                    p_sigma = scipy.linalg.solve_lyapunov(H0, sigma0)
                    p_sigma = torch.tensor(p_sigma).to(gl.device)

                if u.has_nan(p_sigma):
                    # import pdb; pdb.set_trace()
                    s.psigma_erank = H.shape[0]
                    s.rho = 1
                else:
                    s.psigma_erank = u.sym_erank(p_sigma)
                    s.rho = H.shape[0] / s.psigma_erank

            with u.timeit(f"batch-{i}"):
                s.batch_openai = torch.trace(H @ sigma) / (g @ H @ g.t())
                s.diversity = torch.norm(G, "fro") ** 2 / torch.norm(g) ** 2 / n

                # Faster approaches for noise variance computation
                # s.noise_variance = torch.trace(H.inverse() @ sigma)
                # try:
                #     # this fails with singular sigma
                #     s.noise_variance = torch.trace(torch.solve(sigma, H)[0])
                #     # s.noise_variance = torch.trace(torch.lstsq(sigma, H)[0])
                #     pass
                # except RuntimeError as _:
                s.noise_variance_pinv = torch.trace(pinvH @ sigma)

                s.H_erank = torch.trace(H) / s.H_l2
                s.batch_jain_simple = 1 + s.H_erank
                s.batch_jain_full = 1 + s.rho * s.H_erank

            u.log_scalars(u.nest_stats(layer.name, s))

        # gradient steps
        with u.timeit('inner'):
            for i in range(args.train_steps):
                optimizer.zero_grad()
                data, targets = next(train_iter)
                model.zero_grad()
                output = model(data)
                loss = loss_fn(output, targets)
                loss.backward()

                #            u.log_scalar(train_loss=loss.item())

                if args.method != 'newton':
                    optimizer.step()
                    if args.weight_decay:
                        for group in optimizer.param_groups:
                            for param in group['params']:
                                param.data.mul_(1-args.weight_decay)
                else:
                    for (layer_idx, layer) in enumerate(model.layers):
                        param: torch.nn.Parameter = layer.weight
                        param_data: torch.Tensor = param.data
                        param_data.copy_(param_data - 0.1 * param.grad)
                        if layer_idx != 1:  # only update 1 layer with Newton, unstable otherwise
                            continue
                        u.nan_check(layer.weight.pre)
                        u.nan_check(param.grad.flatten())
                        u.nan_check(u.v2r(param.grad.flatten()) @ layer.weight.pre)
                        param_new_flat = u.v2r(param_data.flatten()) - u.v2r(param.grad.flatten()) @ layer.weight.pre
                        u.nan_check(param_new_flat)
                        param_data.copy_(param_new_flat.reshape(param_data.shape))

                gl.token_count += data.shape[0]

    gl.event_writer.close()
Beispiel #16
0
def main():

    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--batch-size',
                        type=int,
                        default=64,
                        metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size',
                        type=int,
                        default=1000,
                        metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs',
                        type=int,
                        default=10,
                        metavar='N',
                        help='number of epochs to train (default: 10)')
    parser.add_argument('--no-cuda',
                        action='store_true',
                        default=False,
                        help='disables CUDA training')
    parser.add_argument('--seed',
                        type=int,
                        default=1,
                        metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument(
        '--log-interval',
        type=int,
        default=10,
        metavar='N',
        help='how many batches to wait before logging training status')
    parser.add_argument('--save-model',
                        action='store_true',
                        default=False,
                        help='For Saving the current Model')

    parser.add_argument('--wandb',
                        type=int,
                        default=0,
                        help='log to weights and biases')
    parser.add_argument('--autograd_check',
                        type=int,
                        default=0,
                        help='autograd correctness checks')
    parser.add_argument('--logdir',
                        type=str,
                        default='/tmp/runs/curv_train_tiny/run')

    parser.add_argument('--nonlin',
                        type=int,
                        default=1,
                        help="whether to add ReLU nonlinearity between layers")
    parser.add_argument('--bias',
                        type=int,
                        default=1,
                        help="whether to add bias between layers")

    parser.add_argument('--layer',
                        type=int,
                        default=-1,
                        help="restrict updates to this layer")
    parser.add_argument('--data_width', type=int, default=28)
    parser.add_argument('--targets_width', type=int, default=28)
    parser.add_argument(
        '--hess_samples',
        type=int,
        default=1,
        help='number of samples when sub-sampling outputs, 0 for exact hessian'
    )
    parser.add_argument('--hess_kfac',
                        type=int,
                        default=0,
                        help='whether to use KFAC approximation for hessian')
    parser.add_argument('--compute_rho',
                        type=int,
                        default=0,
                        help='use expensive method to compute rho')
    parser.add_argument('--skip_stats',
                        type=int,
                        default=1,
                        help='skip all stats collection')

    parser.add_argument('--dataset_size', type=int, default=60000)
    parser.add_argument('--train_steps',
                        type=int,
                        default=1000,
                        help="this many train steps between stat collection")
    parser.add_argument('--stats_steps',
                        type=int,
                        default=1000000,
                        help="total number of curvature stats collections")

    parser.add_argument('--full_batch',
                        type=int,
                        default=0,
                        help='do stats on the whole dataset')
    parser.add_argument('--lr', type=float, default=1e-3)
    parser.add_argument('--weight_decay', type=float, default=2e-5)
    parser.add_argument('--momentum', type=float, default=0.9)
    parser.add_argument('--dropout', type=int, default=0)
    parser.add_argument('--swa', type=int, default=0)
    parser.add_argument('--lmb', type=float, default=1e-3)

    parser.add_argument('--train_batch_size', type=int, default=64)
    parser.add_argument('--stats_batch_size', type=int, default=10000)
    parser.add_argument('--uniform',
                        type=int,
                        default=0,
                        help='use uniform architecture (all layers same size)')
    parser.add_argument('--run_name', type=str, default='noname')

    gl.args = parser.parse_args()
    args = gl.args
    u.seed_random(1)

    gl.project_name = 'train_ciresan'
    u.setup_logdir_and_event_writer(args.run_name)
    print(f"Logging to {gl.logdir}")

    d1 = 28 * 28
    if args.uniform:
        d = [784, 784, 784, 784, 784, 784, 10]
    else:
        d = [784, 2500, 2000, 1500, 1000, 500, 10]
    o = 10
    n = args.stats_batch_size
    model = u.SimpleFullyConnected2(d,
                                    nonlin=args.nonlin,
                                    bias=args.bias,
                                    dropout=args.dropout)
    model = model.to(gl.device)

    optimizer = torch.optim.SGD(model.parameters(),
                                lr=args.lr,
                                momentum=args.momentum)
    dataset = u.TinyMNIST(data_width=args.data_width,
                          targets_width=args.targets_width,
                          original_targets=True,
                          dataset_size=args.dataset_size)
    train_loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=args.train_batch_size,
        shuffle=True,
        drop_last=True)
    train_iter = u.infinite_iter(train_loader)

    assert not args.full_batch, "fixme: validation still uses stats_iter"
    if not args.full_batch:
        stats_loader = torch.utils.data.DataLoader(
            dataset,
            batch_size=args.stats_batch_size,
            shuffle=False,
            drop_last=True)
        stats_iter = u.infinite_iter(stats_loader)
    else:
        stats_iter = None

    test_dataset = u.TinyMNIST(data_width=args.data_width,
                               targets_width=args.targets_width,
                               train=False,
                               original_targets=True,
                               dataset_size=args.dataset_size)
    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=args.stats_batch_size,
                                              shuffle=False,
                                              drop_last=False)

    loss_fn = torch.nn.CrossEntropyLoss()
    autograd_lib.add_hooks(model)
    autograd_lib.disable_hooks()

    gl.token_count = 0
    last_outer = 0
    for step in range(args.stats_steps):
        epoch = gl.token_count // 60000
        print(gl.token_count)
        if last_outer:
            u.log_scalars(
                {"time/outer": 1000 * (time.perf_counter() - last_outer)})
        last_outer = time.perf_counter()

        # compute validation loss
        if args.swa:
            model.eval()
            with u.timeit('swa'):
                base_opt = torch.optim.SGD(model.parameters(),
                                           lr=args.lr,
                                           momentum=args.momentum)
                opt = torchcontrib.optim.SWA(base_opt,
                                             swa_start=0,
                                             swa_freq=1,
                                             swa_lr=args.lr)
                for _ in range(100):
                    optimizer.zero_grad()
                    data, targets = next(train_iter)
                    model.zero_grad()
                    output = model(data)
                    loss = loss_fn(output, targets)
                    loss.backward()
                    opt.step()
                opt.swap_swa_sgd()

        with u.timeit("validate"):
            val_accuracy, val_loss = validate(model, test_loader,
                                              f'test (epoch {epoch})')
            train_accuracy, train_loss = validate(model, stats_loader,
                                                  f'train (epoch {epoch})')

        # save log
        metrics = {
            'epoch': epoch,
            'val_accuracy': val_accuracy,
            'val_loss': val_loss,
            'train_loss': train_loss,
            'train_accuracy': train_accuracy,
            'lr': optimizer.param_groups[0]['lr'],
            'momentum': optimizer.param_groups[0].get('momentum', 0)
        }
        u.log_scalars(metrics)

        # compute stats
        if args.full_batch:
            data, targets = dataset.data, dataset.targets
        else:
            data, targets = next(stats_iter)

        if not args.skip_stats:
            autograd_lib.enable_hooks()
            autograd_lib.clear_backprops(model)
            autograd_lib.clear_hess_backprops(model)
            with u.timeit("backprop_g"):
                output = model(data)
                loss = loss_fn(output, targets)
                loss.backward(retain_graph=True)
            with u.timeit("backprop_H"):
                autograd_lib.backprop_hess(output, hess_type='CrossEntropy')
            autograd_lib.disable_hooks()  # TODO(y): use remove_hooks

            with u.timeit("compute_grad1"):
                autograd_lib.compute_grad1(model)
            with u.timeit("compute_hess"):
                autograd_lib.compute_hess(model,
                                          method='kron',
                                          attr_name='hess2')
            autograd_lib.compute_stats_factored(model)

        for (i, layer) in enumerate(model.layers):
            param_names = {layer.weight: "weight", layer.bias: "bias"}
            for param in [layer.weight, layer.bias]:

                if param is None:
                    continue

                if not hasattr(param, 'stats'):
                    continue
                s = param.stats
                param_name = param_names[param]
                u.log_scalars(u.nest_stats(f"{param_name}", s))

        # gradient steps
        model.train()
        last_inner = 0
        for i in range(args.train_steps):
            if last_inner:
                u.log_scalars(
                    {"time/inner": 1000 * (time.perf_counter() - last_inner)})
            last_inner = time.perf_counter()

            optimizer.zero_grad()
            data, targets = next(train_iter)
            model.zero_grad()
            output = model(data)
            loss = loss_fn(output, targets)
            loss.backward()

            optimizer.step()
            if args.weight_decay:
                for group in optimizer.param_groups:
                    for param in group['params']:
                        param.data.mul_(1 - args.weight_decay)

            gl.token_count += data.shape[0]

    gl.event_writer.close()
Beispiel #17
0
def test_factored_stats_golden_values():
    """Test stats from values generated by non-factored version"""
    u.seed_random(1)
    u.install_pdb_handler()
    torch.set_default_dtype(torch.float32)

    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    args = parser.parse_args()

    logdir = u.create_local_logdir('/temp/runs/factored_test')
    run_name = os.path.basename(logdir)
    gl.event_writer = SummaryWriter(logdir)
    print('logging to ', logdir)

    loss_type = 'LeastSquares'

    args.data_width = 2
    args.dataset_size = 5
    args.stats_batch_size = 5
    d1 = args.data_width**2
    args.stats_batch_size = args.dataset_size
    args.stats_steps = 1

    n = args.stats_batch_size
    o = 10
    d = [d1, o]

    model = u.SimpleFullyConnected2(d, bias=False, nonlin=0)
    model = model.to(gl.device)
    print(model)

    dataset = u.TinyMNIST(data_width=args.data_width,
                          dataset_size=args.dataset_size,
                          loss_type=loss_type)
    stats_loader = torch.utils.data.DataLoader(
        dataset, batch_size=args.stats_batch_size, shuffle=False)
    stats_iter = u.infinite_iter(stats_loader)
    stats_data, stats_targets = next(stats_iter)

    if loss_type == 'LeastSquares':
        loss_fn = u.least_squares
    else:  # loss_type == 'CrossEntropy':
        loss_fn = nn.CrossEntropyLoss()

    autograd_lib.add_hooks(model)
    gl.reset_global_step()
    last_outer = 0
    for step in range(args.stats_steps):
        if last_outer:
            u.log_scalars(
                {"time/outer": 1000 * (time.perf_counter() - last_outer)})
        last_outer = time.perf_counter()

        data, targets = stats_data, stats_targets

        # Capture Hessian and gradient stats
        autograd_lib.enable_hooks()
        autograd_lib.clear_backprops(model)
        with u.timeit("backprop_g"):
            output = model(data)
            loss = loss_fn(output, targets)
            loss.backward(retain_graph=True)

        autograd_lib.clear_hess_backprops(model)
        with u.timeit("backprop_H"):
            autograd_lib.backprop_hess(output, hess_type=loss_type)
        autograd_lib.disable_hooks()  # TODO(y): use remove_hooks

        with u.timeit("compute_grad1"):
            autograd_lib.compute_grad1(model)
        with u.timeit("compute_hess"):
            autograd_lib.compute_hess(model)
            autograd_lib.compute_hess(model, method='kron', attr_name='hess2')

        autograd_lib.compute_stats_factored(model)

        params = list(model.parameters())
        assert len(params) == 1
        new_values = params[0].stats
        golden_values = torch.load('test/factored.pt')

        for valname in new_values:
            print("Checking ", valname)
            if valname == 'sigma_l2':
                u.check_close(new_values[valname],
                              golden_values[valname],
                              atol=1e-2)  # sigma is approximate
            elif valname == 'sigma_erank':
                u.check_close(new_values[valname],
                              golden_values[valname],
                              atol=0.11)  # 1.0 vs 1.1
            elif valname in ['rho', 'step_div_1_adjusted', 'batch_jain_full']:
                continue  # lyapunov stats weren't computed correctly in golden set
            elif valname in ['batch_openai']:
                continue  # batch sizes depend on sigma which is approximate
            elif valname in ['noise_variance_pinv']:
                pass  # went from 0.22 to 0.014 after kron factoring (0.01 with full centering, 0.3 with no centering)
            elif valname in ['sparsity']:
                pass  # had a bug in old calc (using integer arithmetic)
            else:
                u.check_close(new_values[valname],
                              golden_values[valname],
                              rtol=1e-4,
                              atol=1e-6,
                              label=valname)

    gl.event_writer.close()
Beispiel #18
0
def main():
    attemp_count = 0
    while os.path.exists(f"{args.logdir}{attemp_count:02d}"):
        attemp_count += 1
    logdir = f"{args.logdir}{attemp_count:02d}"

    run_name = os.path.basename(logdir)
    gl.event_writer = SummaryWriter(logdir)
    print(f"Logging to {run_name}")
    u.seed_random(1)

    d1 = args.data_width**2
    d2 = 10
    d3 = args.targets_width**2
    o = d3
    n = args.stats_batch_size
    d = [d1, d2, d3]
    model = u.SimpleFullyConnected(d, nonlin=args.nonlin)
    model = model.to(gl.device)

    try:
        # os.environ['WANDB_SILENT'] = 'true'
        if args.wandb:
            wandb.init(project='curv_train_tiny', name=run_name)
            wandb.tensorboard.patch(tensorboardX=False)
            wandb.config['train_batch'] = args.train_batch_size
            wandb.config['stats_batch'] = args.stats_batch_size
            wandb.config['method'] = args.method
            wandb.config['d1'] = d1
            wandb.config['d2'] = d2
            wandb.config['d3'] = d3
            wandb.config['n'] = n
    except Exception as e:
        print(f"wandb crash with {e}")

    optimizer = torch.optim.SGD(model.parameters(), lr=0.03, momentum=0.9)

    dataset = u.TinyMNIST(data_width=args.data_width,
                          targets_width=args.targets_width,
                          dataset_size=args.dataset_size)

    train_loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=args.train_batch_size,
        shuffle=False,
        drop_last=True)
    train_iter = u.infinite_iter(train_loader)

    stats_loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=args.stats_batch_size,
        shuffle=False,
        drop_last=True)
    stats_iter = u.infinite_iter(stats_loader)

    test_dataset = u.TinyMNIST(data_width=args.data_width,
                               targets_width=args.targets_width,
                               dataset_size=args.dataset_size,
                               train=False)
    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=args.stats_batch_size,
                                              shuffle=True,
                                              drop_last=True)
    test_iter = u.infinite_iter(test_loader)

    skip_forward_hooks = False
    skip_backward_hooks = False

    def capture_activations(module: nn.Module, input: List[torch.Tensor],
                            output: torch.Tensor):
        if skip_forward_hooks:
            return
        assert not hasattr(
            module, 'activations'
        ), "Seeing results of previous autograd, call util.zero_grad to clear"
        assert len(input) == 1, "this was tested for single input layers only"
        setattr(module, "activations", input[0].detach())
        setattr(module, "output", output.detach())

    def capture_backprops(module: nn.Module, _input, output):
        if skip_backward_hooks:
            return
        assert len(output) == 1, "this works for single variable layers only"
        if gl.backward_idx == 0:
            assert not hasattr(
                module, 'backprops'
            ), "Seeing results of previous autograd, call util.zero_grad to clear"
            setattr(module, 'backprops', [])
        assert gl.backward_idx == len(module.backprops)
        module.backprops.append(output[0])

    def save_grad(param: nn.Parameter) -> Callable[[torch.Tensor], None]:
        """Hook to save gradient into 'param.saved_grad', so it can be accessed after model.zero_grad(). Only stores gradient
        if the value has not been set, call util.zero_grad to clear it."""
        def save_grad_fn(grad):
            if not hasattr(param, 'saved_grad'):
                setattr(param, 'saved_grad', grad)

        return save_grad_fn

    for layer in model.layers:
        layer.register_forward_hook(capture_activations)
        layer.register_backward_hook(capture_backprops)
        layer.weight.register_hook(save_grad(layer.weight))

    def loss_fn(data, targets):
        err = data - targets.view(-1, data.shape[1])
        assert len(data) == len(targets)
        return torch.sum(err * err) / 2 / len(data)

    gl.token_count = 0
    last_outer = 0
    for step in range(args.stats_steps):
        if last_outer:
            u.log_scalars(
                {"time/outer": 1000 * (time.perf_counter() - last_outer)})
        last_outer = time.perf_counter()
        # compute validation loss
        skip_forward_hooks = True
        skip_backward_hooks = True
        with u.timeit("val_loss"):
            test_data, test_targets = next(test_iter)
            test_output = model(test_data)
            val_loss = loss_fn(test_output, test_targets)
            print("val_loss", val_loss.item())
            u.log_scalar(val_loss=val_loss.item())

        # compute stats
        data, targets = next(stats_iter)
        skip_forward_hooks = False
        skip_backward_hooks = False

        # get gradient values
        with u.timeit("backprop_g"):
            gl.backward_idx = 0
            u.zero_grad(model)
            output = model(data)
            loss = loss_fn(output, targets)
            loss.backward(retain_graph=True)

        # get Hessian values
        skip_forward_hooks = True
        id_mat = torch.eye(o).to(gl.device)

        u.log_scalar(loss=loss.item())

        with u.timeit("backprop_H"):
            # optionally use randomized low-rank approximation of Hessian
            hess_rank = args.hess_samples if args.hess_samples else o

            for out_idx in range(hess_rank):
                model.zero_grad()
                # backprop to get section of batch output jacobian for output at position out_idx
                output = model(
                    data
                )  # opt: using autograd.grad means I don't have to zero_grad
                if args.hess_samples:
                    bval = torch.LongTensor(n, o).to(gl.device).random_(
                        0, 2) * 2 - 1
                    bval = bval.float()
                else:
                    ei = id_mat[out_idx]
                    bval = torch.stack([ei] * n)
                gl.backward_idx = out_idx + 1
                output.backward(bval)
            skip_backward_hooks = True  #

        for (i, layer) in enumerate(model.layers):
            s = AttrDefault(str, {})  # dictionary-like object for layer stats

            #############################
            # Gradient stats
            #############################
            A_t = layer.activations
            assert A_t.shape == (n, d[i])

            # add factor of n because backprop takes loss averaged over batch, while we need per-example loss
            B_t = layer.backprops[0] * n
            assert B_t.shape == (n, d[i + 1])

            with u.timeit(f"khatri_g-{i}"):
                G = u.khatri_rao_t(B_t, A_t)  # batch loss Jacobian
            assert G.shape == (n, d[i] * d[i + 1])
            g = G.sum(dim=0, keepdim=True) / n  # average gradient
            assert g.shape == (1, d[i] * d[i + 1])

            if args.autograd_check:
                u.check_close(B_t.t() @ A_t / n, layer.weight.saved_grad)
                u.check_close(g.reshape(d[i + 1], d[i]),
                              layer.weight.saved_grad)

            s.sparsity = torch.sum(layer.output <= 0) / layer.output.numel()
            s.mean_activation = torch.mean(A_t)
            s.mean_backprop = torch.mean(B_t)

            # empirical Fisher
            with u.timeit(f'sigma-{i}'):
                efisher = G.t() @ G / n
                sigma = efisher - g.t() @ g
                s.sigma_l2 = u.sym_l2_norm(sigma)
                s.sigma_erank = torch.trace(sigma) / s.sigma_l2

            #############################
            # Hessian stats
            #############################
            A_t = layer.activations
            Bh_t = [
                layer.backprops[out_idx + 1] for out_idx in range(hess_rank)
            ]
            Amat_t = torch.cat([A_t] * hess_rank, dim=0)
            Bmat_t = torch.cat(Bh_t, dim=0)

            assert Amat_t.shape == (n * hess_rank, d[i])
            assert Bmat_t.shape == (n * hess_rank, d[i + 1])

            lambda_regularizer = args.lmb * torch.eye(d[i] * d[i + 1]).to(
                gl.device)
            with u.timeit(f"khatri_H-{i}"):
                Jb = u.khatri_rao_t(
                    Bmat_t, Amat_t)  # batch Jacobian, in row-vec format

            with u.timeit(f"H-{i}"):
                H = Jb.t() @ Jb / n

            with u.timeit(f"invH-{i}"):
                invH = torch.cholesky_inverse(H + lambda_regularizer)

            with u.timeit(f"H_l2-{i}"):
                s.H_l2 = u.sym_l2_norm(H)
                s.iH_l2 = u.sym_l2_norm(invH)

            with u.timeit(f"norms-{i}"):
                s.H_fro = H.flatten().norm()
                s.iH_fro = invH.flatten().norm()
                s.jacobian_fro = Jb.flatten().norm()
                s.grad_fro = g.flatten().norm()
                s.param_fro = layer.weight.data.flatten().norm()

            u.nan_check(H)
            if args.autograd_check:
                model.zero_grad()
                output = model(data)
                loss = loss_fn(output, targets)
                H_autograd = u.hessian(loss, layer.weight)
                H_autograd = H_autograd.reshape(d[i] * d[i + 1],
                                                d[i] * d[i + 1])
                u.check_close(H, H_autograd)

            #  u.dump(sigma, f'/tmp/sigmas/H-{step}-{i}')
            def loss_direction(dd: torch.Tensor, eps):
                """loss improvement if we take step eps in direction dd"""
                return u.to_python_scalar(eps * (dd @ g.t()) -
                                          0.5 * eps**2 * dd @ H @ dd.t())

            def curv_direction(dd: torch.Tensor):
                """Curvature in direction dd"""
                return u.to_python_scalar(dd @ H @ dd.t() /
                                          (dd.flatten().norm()**2))

            with u.timeit("pinvH"):
                pinvH = u.pinv(H)

            with u.timeit(f'curv-{i}'):
                s.regret_newton = u.to_python_scalar(g @ pinvH @ g.t() / 2)
                s.grad_curv = curv_direction(g)
                ndir = g @ pinvH  # newton direction
                s.newton_curv = curv_direction(ndir)
                setattr(layer.weight, 'pre',
                        pinvH)  # save Newton preconditioner
                s.step_openai = 1 / s.grad_curv if s.grad_curv else 999
                s.step_max = 2 / u.sym_l2_norm(H)
                s.step_min = torch.tensor(2) / torch.trace(H)

                s.newton_fro = ndir.flatten().norm(
                )  # frobenius norm of Newton update
                s.regret_gradient = loss_direction(g, s.step_openai)

            with u.timeit(f'rho-{i}'):
                p_sigma = u.lyapunov_svd(H, sigma)
                if u.has_nan(
                        p_sigma) and args.compute_rho:  # use expensive method
                    H0 = H.cpu().detach().numpy()
                    sigma0 = sigma.cpu().detach().numpy()
                    p_sigma = scipy.linalg.solve_lyapunov(H0, sigma0)
                    p_sigma = torch.tensor(p_sigma).to(gl.device)

                if u.has_nan(p_sigma):
                    s.psigma_erank = H.shape[0]
                    s.rho = 1
                else:
                    s.psigma_erank = u.sym_erank(p_sigma)
                    s.rho = H.shape[0] / s.psigma_erank

            with u.timeit(f"batch-{i}"):
                s.batch_openai = torch.trace(H @ sigma) / (g @ H @ g.t())
                print('openai batch', s.batch_openai)
                s.diversity = torch.norm(G, "fro")**2 / torch.norm(g)**2

                # s.noise_variance = torch.trace(H.inverse() @ sigma)
                # try:
                #     # this fails with singular sigma
                #     s.noise_variance = torch.trace(torch.solve(sigma, H)[0])
                #     # s.noise_variance = torch.trace(torch.lstsq(sigma, H)[0])
                #     pass
                # except RuntimeError as _:
                s.noise_variance_pinv = torch.trace(pinvH @ sigma)

                s.H_erank = torch.trace(H) / s.H_l2
                s.batch_jain_simple = 1 + s.H_erank
                s.batch_jain_full = 1 + s.rho * s.H_erank

            u.log_scalars(u.nest_stats(layer.name, s))

        # gradient steps
        last_inner = 0
        for i in range(args.train_steps):
            if last_inner:
                u.log_scalars(
                    {"time/inner": 1000 * (time.perf_counter() - last_inner)})
            last_inner = time.perf_counter()

            optimizer.zero_grad()
            data, targets = next(train_iter)
            model.zero_grad()
            output = model(data)
            loss = loss_fn(output, targets)
            loss.backward()

            u.log_scalar(train_loss=loss.item())

            if args.method != 'newton':
                optimizer.step()
            else:
                for (layer_idx, layer) in enumerate(model.layers):
                    param: torch.nn.Parameter = layer.weight
                    param_data: torch.Tensor = param.data
                    param_data.copy_(param_data - 0.1 * param.grad)
                    if layer_idx != 1:  # only update 1 layer with Newton, unstable otherwise
                        continue
                    u.nan_check(layer.weight.pre)
                    u.nan_check(param.grad.flatten())
                    u.nan_check(u.v2r(param.grad.flatten()) @ layer.weight.pre)
                    param_new_flat = u.v2r(param_data.flatten()) - u.v2r(
                        param.grad.flatten()) @ layer.weight.pre
                    u.nan_check(param_new_flat)
                    param_data.copy_(param_new_flat.reshape(param_data.shape))

            gl.token_count += data.shape[0]

    gl.event_writer.close()
Beispiel #19
0
def main():

    u.install_pdb_handler()
    u.seed_random(1)
    logdir = u.create_local_logdir(args.logdir)
    run_name = os.path.basename(logdir)
    gl.event_writer = SummaryWriter(logdir)
    print(f"Logging to {logdir}")

    loss_type = 'CrossEntropy'

    d1 = args.data_width ** 2
    args.stats_batch_size = min(args.stats_batch_size, args.dataset_size)
    args.train_batch_size = min(args.train_batch_size, args.dataset_size)
    n = args.stats_batch_size
    o = 10
    d = [d1, 60, 60, 60, o]
    # dataset_size = args.dataset_size

    model = u.SimpleFullyConnected2(d, bias=True, nonlin=args.nonlin, last_layer_linear=True)
    model = model.to(gl.device)
    u.mark_expensive(model.layers[0])    # to stop grad1/hess calculations on this layer
    print(model)

    try:
        if args.wandb:
            wandb.init(project='curv_train_tiny', name=run_name, dir='/tmp/wandb.runs')
            wandb.tensorboard.patch(tensorboardX=False)
            wandb.config['train_batch'] = args.train_batch_size
            wandb.config['stats_batch'] = args.stats_batch_size
            wandb.config['n'] = n
    except Exception as e:
        print(f"wandb crash with {e}")

    optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.9)
    #  optimizer = torch.optim.Adam(model.parameters(), lr=0.03)  # make 10x smaller for least-squares loss
    dataset = u.TinyMNIST(data_width=args.data_width, dataset_size=args.dataset_size, loss_type=loss_type)

    train_loader = torch.utils.data.DataLoader(dataset, batch_size=args.train_batch_size, shuffle=False, drop_last=True)
    train_iter = u.infinite_iter(train_loader)

    stats_loader = torch.utils.data.DataLoader(dataset, batch_size=args.stats_batch_size, shuffle=False, drop_last=True)
    stats_iter = u.infinite_iter(stats_loader)
    stats_data, stats_targets = next(stats_iter)

    test_dataset = u.TinyMNIST(data_width=args.data_width, train=False, dataset_size=args.dataset_size, loss_type=loss_type)
    test_batch_size = min(args.dataset_size, 1000)
    test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=test_batch_size, shuffle=False, drop_last=True)
    test_iter = u.infinite_iter(test_loader)

    if loss_type == 'LeastSquares':
        loss_fn = u.least_squares
    else:   # loss_type == 'CrossEntropy':
        loss_fn = nn.CrossEntropyLoss()

    autograd_lib.add_hooks(model)
    gl.reset_global_step()
    last_outer = 0
    val_losses = []
    for step in range(args.stats_steps):
        if last_outer:
            u.log_scalars({"time/outer": 1000*(time.perf_counter() - last_outer)})
        last_outer = time.perf_counter()

        with u.timeit("val_loss"):
            test_data, test_targets = next(test_iter)
            test_output = model(test_data)
            val_loss = loss_fn(test_output, test_targets)
            print("val_loss", val_loss.item())
            val_losses.append(val_loss.item())
            u.log_scalar(val_loss=val_loss.item())

        with u.timeit("validate"):
            if loss_type == 'CrossEntropy':
                val_accuracy, val_loss = validate(model, test_loader, f'test (stats_step {step})')
                # train_accuracy, train_loss = validate(model, train_loader, f'train (stats_step {step})')

                metrics = {'stats_step': step, 'val_accuracy': val_accuracy, 'val_loss': val_loss}
                u.log_scalars(metrics)

        data, targets = stats_data, stats_targets

        if not args.skip_stats:
            # Capture Hessian and gradient stats
            autograd_lib.enable_hooks()
            autograd_lib.clear_backprops(model)
            autograd_lib.clear_hess_backprops(model)
            with u.timeit("backprop_g"):
                output = model(data)
                loss = loss_fn(output, targets)
                loss.backward(retain_graph=True)
            with u.timeit("backprop_H"):
                autograd_lib.backprop_hess(output, hess_type=loss_type)
            autograd_lib.disable_hooks()   # TODO(y): use remove_hooks

            with u.timeit("compute_grad1"):
                autograd_lib.compute_grad1(model)
            with u.timeit("compute_hess"):
                autograd_lib.compute_hess(model)

            for (i, layer) in enumerate(model.layers):

                if hasattr(layer, 'expensive'):
                    continue

                param_names = {layer.weight: "weight", layer.bias: "bias"}
                for param in [layer.weight, layer.bias]:
                    # input/output layers are unreasonably expensive if not using Kronecker factoring
                    if d[i]*d[i+1] > 8000:
                        print(f'layer {i} is too big ({d[i],d[i+1]}), skipping stats')
                        continue

                    s = AttrDefault(str, {})  # dictionary-like object for layer stats

                    #############################
                    # Gradient stats
                    #############################
                    A_t = layer.activations
                    B_t = layer.backprops_list[0] * n
                    s.sparsity = torch.sum(layer.output <= 0) / layer.output.numel()  # proportion of activations that are zero
                    s.mean_activation = torch.mean(A_t)
                    s.mean_backprop = torch.mean(B_t)

                    # empirical Fisher
                    G = param.grad1.reshape((n, -1))
                    g = G.mean(dim=0, keepdim=True)

                    u.nan_check(G)
                    with u.timeit(f'sigma-{i}'):
                        efisher = G.t() @ G / n
                        sigma = efisher - g.t() @ g
                        # sigma_spectrum =
                        s.sigma_l2 = u.sym_l2_norm(sigma)
                        s.sigma_erank = torch.trace(sigma)/s.sigma_l2

                    H = param.hess
                    lambda_regularizer = args.lmb * torch.eye(H.shape[0]).to(gl.device)
                    u.nan_check(H)

                    with u.timeit(f"invH-{i}"):
                        invH = torch.cholesky_inverse(H+lambda_regularizer)

                    with u.timeit(f"H_l2-{i}"):
                        s.H_l2 = u.sym_l2_norm(H)
                        s.iH_l2 = u.sym_l2_norm(invH)

                    with u.timeit(f"norms-{i}"):
                        s.H_fro = H.flatten().norm()
                        s.iH_fro = invH.flatten().norm()
                        s.grad_fro = g.flatten().norm()
                        s.param_fro = param.data.flatten().norm()

                    def loss_direction(dd: torch.Tensor, eps):
                        """loss improvement if we take step eps in direction dd"""
                        return u.to_python_scalar(eps * (dd @ g.t()) - 0.5 * eps ** 2 * dd @ H @ dd.t())

                    def curv_direction(dd: torch.Tensor):
                        """Curvature in direction dd"""
                        return u.to_python_scalar(dd @ H @ dd.t() / (dd.flatten().norm() ** 2))

                    with u.timeit(f"pinvH-{i}"):
                        pinvH = u.pinv(H)

                    with u.timeit(f'curv-{i}'):
                        s.grad_curv = curv_direction(g)  # curvature (eigenvalue) in direction g
                        ndir = g @ pinvH  # newton direction
                        s.newton_curv = curv_direction(ndir)
                        setattr(layer.weight, 'pre', pinvH)  # save Newton preconditioner
                        s.step_openai = 1 / s.grad_curv if s.grad_curv else 1234567
                        s.step_div_inf = 2 / s.H_l2         # divegent step size for batch_size=infinity
                        s.step_div_1 = torch.tensor(2) / torch.trace(H)   # divergent step for batch_size=1

                        s.newton_fro = ndir.flatten().norm()  # frobenius norm of Newton update
                        s.regret_newton = u.to_python_scalar(g @ pinvH @ g.t() / 2)   # replace with "quadratic_form"
                        s.regret_gradient = loss_direction(g, s.step_openai)

                    with u.timeit(f'rho-{i}'):
                        s.rho, s.lyap_erank, lyap_evals = u.truncated_lyapunov_rho(H, sigma)
                        s.step_div_1_adjusted = s.step_div_1/s.rho

                    with u.timeit(f"batch-{i}"):
                        s.batch_openai = torch.trace(H @ sigma) / (g @ H @ g.t())
                        s.diversity = torch.norm(G, "fro") ** 2 / torch.norm(g) ** 2 / n  # Gradient diversity / n
                        s.noise_variance_pinv = torch.trace(pinvH @ sigma)
                        s.H_erank = torch.trace(H) / s.H_l2
                        s.batch_jain_simple = 1 + s.H_erank
                        s.batch_jain_full = 1 + s.rho * s.H_erank

                    param_name = f"{layer.name}={param_names[param]}"
                    u.log_scalars(u.nest_stats(f"{param_name}", s))

                    H_evals = u.symeig_pos_evals(H)
                    sigma_evals = u.symeig_pos_evals(sigma)
                    u.log_spectrum(f'{param_name}/hess', H_evals)
                    u.log_spectrum(f'{param_name}/sigma', sigma_evals)
                    u.log_spectrum(f'{param_name}/lyap', lyap_evals)

        # gradient steps
        with u.timeit('inner'):
            for i in range(args.train_steps):
                optimizer.zero_grad()
                data, targets = next(train_iter)
                model.zero_grad()
                output = model(data)
                loss = loss_fn(output, targets)
                loss.backward()

                optimizer.step()
                if args.weight_decay:
                    for group in optimizer.param_groups:
                        for param in group['params']:
                            param.data.mul_(1-args.weight_decay)

                gl.increment_global_step(data.shape[0])

    gl.event_writer.close()
Beispiel #20
0
def test_factored_hessian():
    """"Simple test to ensure Hessian computation is working.

    In a linear neural network with squared loss, Newton step will converge in one step.
    Compute stats after minimizing, pass sanity checks.
    """

    u.seed_random(1)
    loss_type = 'LeastSquares'

    data_width = 2
    n = 5
    d1 = data_width ** 2
    o = 10
    d = [d1, o]

    model = u.SimpleFullyConnected2(d, bias=False, nonlin=False)
    model = model.to(gl.device)
    print(model)

    dataset = u.TinyMNIST(data_width=data_width, dataset_size=n, loss_type=loss_type)
    stats_loader = torch.utils.data.DataLoader(dataset, batch_size=n, shuffle=False)
    stats_iter = u.infinite_iter(stats_loader)
    stats_data, stats_targets = next(stats_iter)

    if loss_type == 'LeastSquares':
        loss_fn = u.least_squares
    else:  # loss_type == 'CrossEntropy':
        loss_fn = nn.CrossEntropyLoss()

    autograd_lib.add_hooks(model)
    gl.reset_global_step()
    last_outer = 0

    data, targets = stats_data, stats_targets

    # Capture Hessian and gradient stats
    autograd_lib.enable_hooks()
    autograd_lib.clear_backprops(model)

    output = model(data)
    loss = loss_fn(output, targets)
    print(loss)
    loss.backward(retain_graph=True)
    layer = model.layers[0]

    autograd_lib.clear_hess_backprops(model)
    autograd_lib.backprop_hess(output, hess_type=loss_type)
    autograd_lib.disable_hooks()

    # compute Hessian using direct method, compare against PyTorch autograd
    hess0 = u.hessian(loss, layer.weight)
    autograd_lib.compute_hess(model)
    hess1 = layer.weight.hess
    print(hess1)
    u.check_close(hess0.reshape(hess1.shape), hess1, atol=1e-9, rtol=1e-6)

    # compute Hessian using factored method
    autograd_lib.compute_hess(model, method='kron', attr_name='hess2', vecr_order=True)
    # s.regret_newton = vecG.t() @ pinvH.commute() @ vecG.t() / 2  # TODO(y): figure out why needed transposes

    hess2 = layer.weight.hess2
    u.check_close(hess1, hess2, atol=1e-9, rtol=1e-6)

    # Newton step in regular notation
    g1 = layer.weight.grad.flatten()
    newton1 = hess1 @ g1

    g2 = u.Vecr(layer.weight.grad)
    newton2 = g2 @ hess2

    u.check_close(newton1, newton2, atol=1e-9, rtol=1e-6)

    # compute regret in factored notation, compare against actual drop in loss
    regret1 = g1 @ hess1.pinverse() @ g1 / 2
    regret2 = g2 @ hess2.pinv() @ g2 / 2
    u.check_close(regret1, regret2)

    current_weight = layer.weight.detach().clone()
    param: torch.nn.Parameter = layer.weight
    # param.data.sub_((hess1.pinverse() @ g1).reshape(param.shape))
    # output = model(data)
    # loss = loss_fn(output, targets)
    # print("result 1", loss)

    # param.data.sub_((hess1.pinverse() @ u.vec(layer.weight.grad)).reshape(param.shape))
    # output = model(data)
    # loss = loss_fn(output, targets)
    # print("result 2", loss)

    # param.data.sub_((u.vec(layer.weight.grad).t() @ hess1.pinverse()).reshape(param.shape))
    # output = model(data)
    # loss = loss_fn(output, targets)
    # print("result 3", loss)
    #

    del layer.weight.grad
    output = model(data)
    loss = loss_fn(output, targets)
    loss.backward()
    param.data.sub_(u.unvec(hess1.pinverse() @ u.vec(layer.weight.grad), layer.weight.shape[0]))
    output = model(data)
    loss = loss_fn(output, targets)
    print("result 4", loss)

    # param.data.sub_((g1 @ hess1.pinverse() @ g1).reshape(param.shape))

    print(loss)
Beispiel #21
0
def main():
    attemp_count = 0
    while os.path.exists(f"{args.logdir}{attemp_count:02d}"):
        attemp_count += 1
    logdir = f"{args.logdir}{attemp_count:02d}"

    run_name = os.path.basename(logdir)
    gl.event_writer = SummaryWriter(logdir)
    print(f"Logging to {run_name}")
    u.seed_random(1)

    try:
        # os.environ['WANDB_SILENT'] = 'true'
        if args.wandb:
            wandb.init(project='curv_train_tiny', name=run_name)
            wandb.tensorboard.patch(tensorboardX=False)
            wandb.config['train_batch'] = args.train_batch_size
            wandb.config['stats_batch'] = args.stats_batch_size
            wandb.config['method'] = args.method

    except Exception as e:
        print(f"wandb crash with {e}")

    #    data_width = 4
    #    targets_width = 2

    d1 = args.data_width**2
    d2 = 10
    d3 = args.targets_width**2
    o = d3
    n = args.stats_batch_size
    d = [d1, d2, d3]
    model = u.SimpleFullyConnected(d, nonlin=args.nonlin)
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)

    dataset = u.TinyMNIST(data_width=args.data_width,
                          targets_width=args.targets_width,
                          dataset_size=args.dataset_size)
    train_loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=args.train_batch_size,
        shuffle=False,
        drop_last=True)
    train_iter = u.infinite_iter(train_loader)

    stats_loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=args.stats_batch_size,
        shuffle=False,
        drop_last=True)
    stats_iter = u.infinite_iter(stats_loader)

    def capture_activations(module, input, _output):
        if skip_forward_hooks:
            return
        assert gl.backward_idx == 0  # no need to forward-prop on Hessian computation
        assert not hasattr(
            module, 'activations'
        ), "Seeing activations from previous forward, call util.zero_grad to clear"
        assert len(input) == 1, "this works for single input layers only"
        setattr(module, "activations", input[0].detach())

    def capture_backprops(module: nn.Module, _input, output):
        if skip_backward_hooks:
            return
        assert len(output) == 1, "this works for single variable layers only"
        if gl.backward_idx == 0:
            assert not hasattr(
                module, 'backprops'
            ), "Seeing results of previous autograd, call util.zero_grad to clear"
            setattr(module, 'backprops', [])
        assert gl.backward_idx == len(module.backprops)
        module.backprops.append(output[0])

    def save_grad(param: nn.Parameter) -> Callable[[torch.Tensor], None]:
        """Hook to save gradient into 'param.saved_grad', so it can be accessed after model.zero_grad(). Only stores gradient
        if the value has not been set, call util.zero_grad to clear it."""
        def save_grad_fn(grad):
            if not hasattr(param, 'saved_grad'):
                setattr(param, 'saved_grad', grad)

        return save_grad_fn

    for layer in model.layers:
        layer.register_forward_hook(capture_activations)
        layer.register_backward_hook(capture_backprops)
        layer.weight.register_hook(save_grad(layer.weight))

    def loss_fn(data, targets):
        err = data - targets.view(-1, data.shape[1])
        assert len(data) == len(targets)
        return torch.sum(err * err) / 2 / len(data)

    gl.token_count = 0
    for step in range(args.stats_steps):
        data, targets = next(stats_iter)
        skip_forward_hooks = False
        skip_backward_hooks = False

        # get gradient values
        gl.backward_idx = 0
        u.zero_grad(model)
        output = model(data)
        loss = loss_fn(output, targets)
        loss.backward(retain_graph=True)

        print("loss", loss.item())

        # get Hessian values
        skip_forward_hooks = True
        id_mat = torch.eye(o)

        u.log_scalars({'loss': loss.item()})

        # o = 0
        for out_idx in range(o):
            model.zero_grad()
            # backprop to get section of batch output jacobian for output at position out_idx
            output = model(
                data
            )  # opt: using autograd.grad means I don't have to zero_grad
            ei = id_mat[out_idx]
            bval = torch.stack([ei] * n)
            gl.backward_idx = out_idx + 1
            output.backward(bval)
        skip_backward_hooks = True  #

        for (i, layer) in enumerate(model.layers):
            s = AttrDefault(str, {})  # dictionary-like object for layer stats

            #############################
            # Gradient stats
            #############################
            A_t = layer.activations
            assert A_t.shape == (n, d[i])

            # add factor of n because backprop takes loss averaged over batch, while we need per-example loss
            B_t = layer.backprops[0] * n
            assert B_t.shape == (n, d[i + 1])

            G = u.khatri_rao_t(B_t, A_t)  # batch loss Jacobian
            assert G.shape == (n, d[i] * d[i + 1])
            g = G.sum(dim=0, keepdim=True) / n  # average gradient
            assert g.shape == (1, d[i] * d[i + 1])

            if args.autograd_check:
                u.check_close(B_t.t() @ A_t / n, layer.weight.saved_grad)
                u.check_close(g.reshape(d[i + 1], d[i]),
                              layer.weight.saved_grad)

            # empirical Fisher
            efisher = G.t() @ G / n
            sigma = efisher - g.t() @ g
            # u.dump(sigma, f'/tmp/sigmas/{step}-{i}')
            s.sigma_l2 = u.l2_norm(sigma)

            #############################
            # Hessian stats
            #############################
            A_t = layer.activations
            Bh_t = [layer.backprops[out_idx + 1] for out_idx in range(o)]
            Amat_t = torch.cat([A_t] * o, dim=0)
            Bmat_t = torch.cat(Bh_t, dim=0)

            assert Amat_t.shape == (n * o, d[i])
            assert Bmat_t.shape == (n * o, d[i + 1])

            Jb = u.khatri_rao_t(Bmat_t,
                                Amat_t)  # batch Jacobian, in row-vec format
            H = Jb.t() @ Jb / n
            pinvH = u.pinv(H)

            s.hess_l2 = u.l2_norm(H)
            s.invhess_l2 = u.l2_norm(pinvH)

            s.hess_fro = H.flatten().norm()
            s.invhess_fro = pinvH.flatten().norm()

            s.jacobian_l2 = u.l2_norm(Jb)
            s.grad_fro = g.flatten().norm()
            s.param_fro = layer.weight.data.flatten().norm()

            u.nan_check(H)
            if args.autograd_check:
                model.zero_grad()
                output = model(data)
                loss = loss_fn(output, targets)
                H_autograd = u.hessian(loss, layer.weight)
                H_autograd = H_autograd.reshape(d[i] * d[i + 1],
                                                d[i] * d[i + 1])
                u.check_close(H, H_autograd)

            #  u.dump(sigma, f'/tmp/sigmas/H-{step}-{i}')
            def loss_direction(dd: torch.Tensor, eps):
                """loss improvement if we take step eps in direction dd"""
                return u.to_python_scalar(eps * (dd @ g.t()) -
                                          0.5 * eps**2 * dd @ H @ dd.t())

            def curv_direction(dd: torch.Tensor):
                """Curvature in direction dd"""
                return u.to_python_scalar(dd @ H @ dd.t() /
                                          dd.flatten().norm()**2)

            s.regret_newton = u.to_python_scalar(g @ u.pinv(H) @ g.t() / 2)
            s.grad_curv = curv_direction(g)
            ndir = g @ u.pinv(H)  # newton direction
            s.newton_curv = curv_direction(ndir)
            setattr(layer.weight, 'pre',
                    u.pinv(H))  # save Newton preconditioner
            s.step_openai = 1 / s.grad_curv if s.grad_curv else 999

            s.newton_fro = ndir.flatten().norm(
            )  # frobenius norm of Newton update
            s.regret_gradient = loss_direction(g, s.step_openai)

            u.log_scalars(u.nest_stats(layer.name, s))

        # gradient steps
        for i in range(args.train_steps):
            optimizer.zero_grad()
            data, targets = next(train_iter)
            model.zero_grad()
            output = model(data)
            loss = loss_fn(output, targets)
            loss.backward()

            u.log_scalar(train_loss=loss.item())

            if args.method != 'newton':
                optimizer.step()
            else:
                for (layer_idx, layer) in enumerate(model.layers):
                    param: torch.nn.Parameter = layer.weight
                    param_data: torch.Tensor = param.data
                    param_data.copy_(param_data - 0.1 * param.grad)
                    if layer_idx != 1:  # only update 1 layer with Newton, unstable otherwise
                        continue
                    u.nan_check(layer.weight.pre)
                    u.nan_check(param.grad.flatten())
                    u.nan_check(u.v2r(param.grad.flatten()) @ layer.weight.pre)
                    param_new_flat = u.v2r(param_data.flatten()) - u.v2r(
                        param.grad.flatten()) @ layer.weight.pre
                    u.nan_check(param_new_flat)
                    param_data.copy_(param_new_flat.reshape(param_data.shape))

            gl.token_count += data.shape[0]

    gl.event_writer.close()
Beispiel #22
0
def test_hessian_multibatch():
    """Test that Kronecker-factored computations still work when splitting work over batches."""

    u.seed_random(1)

    # torch.set_default_dtype(torch.float64)

    gl.project_name = 'test'
    gl.logdir_base = '/tmp/runs'
    run_name = 'test_hessian_multibatch'
    u.setup_logdir_and_event_writer(run_name=run_name)

    loss_type = 'CrossEntropy'
    data_width = 2
    n = 4
    d1 = data_width ** 2
    o = 10
    d = [d1, o]

    model = u.SimpleFullyConnected2(d, bias=False, nonlin=False)
    model = model.to(gl.device)

    dataset = u.TinyMNIST(data_width=data_width, dataset_size=n, loss_type=loss_type)
    stats_loader = torch.utils.data.DataLoader(dataset, batch_size=n, shuffle=False)
    stats_iter = u.infinite_iter(stats_loader)

    if loss_type == 'LeastSquares':
        loss_fn = u.least_squares
    else:  # loss_type == 'CrossEntropy':
        loss_fn = nn.CrossEntropyLoss()

    autograd_lib.add_hooks(model)
    gl.reset_global_step()
    last_outer = 0

    stats_iter = u.infinite_iter(stats_loader)
    stats_data, stats_targets = next(stats_iter)
    data, targets = stats_data, stats_targets

    # Capture Hessian and gradient stats
    autograd_lib.enable_hooks()
    autograd_lib.clear_backprops(model)

    output = model(data)
    loss = loss_fn(output, targets)
    loss.backward(retain_graph=True)
    layer = model.layers[0]

    autograd_lib.clear_hess_backprops(model)
    autograd_lib.backprop_hess(output, hess_type=loss_type)
    autograd_lib.disable_hooks()

    # compute Hessian using direct method, compare against PyTorch autograd
    hess0 = u.hessian(loss, layer.weight)
    autograd_lib.compute_hess(model)
    hess1 = layer.weight.hess
    u.check_close(hess0.reshape(hess1.shape), hess1, atol=1e-8, rtol=1e-6)

    # compute Hessian using factored method. Because Hessian depends on examples for cross entropy, factoring is not exact, raise tolerance
    autograd_lib.compute_hess(model, method='kron', attr_name='hess2', vecr_order=True)
    hess2 = layer.weight.hess2
    u.check_close(hess1, hess2, atol=1e-3, rtol=1e-1)

    # compute Hessian using multibatch
    # restart iterators
    dataset = u.TinyMNIST(data_width=data_width, dataset_size=n, loss_type=loss_type)
    assert n % 2 == 0
    stats_loader = torch.utils.data.DataLoader(dataset, batch_size=n//2, shuffle=False)
    stats_iter = u.infinite_iter(stats_loader)
    autograd_lib.compute_cov(model, loss_fn, stats_iter, batch_size=n//2, steps=2)

    cov: autograd_lib.LayerCov = layer.cov
    hess2: u.Kron = hess2.commute()    # get back into AA x BB order
    u.check_close(cov.H.value(), hess2)
def test_main():

    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--test-batch-size',
                        type=int,
                        default=1000,
                        metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs',
                        type=int,
                        default=10,
                        metavar='N',
                        help='number of epochs to train (default: 10)')
    parser.add_argument('--lr',
                        type=float,
                        default=0.01,
                        metavar='LR',
                        help='learning rate (default: 0.01)')
    parser.add_argument('--momentum',
                        type=float,
                        default=0.5,
                        metavar='M',
                        help='SGD momentum (default: 0.5)')
    parser.add_argument('--no-cuda',
                        action='store_true',
                        default=False,
                        help='disables CUDA training')
    parser.add_argument('--seed',
                        type=int,
                        default=1,
                        metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument(
        '--log-interval',
        type=int,
        default=10,
        metavar='N',
        help='how many batches to wait before logging training status')
    parser.add_argument('--save-model',
                        action='store_true',
                        default=False,
                        help='For Saving the current Model')

    parser.add_argument('--wandb',
                        type=int,
                        default=1,
                        help='log to weights and biases')
    parser.add_argument('--autograd_check',
                        type=int,
                        default=0,
                        help='autograd correctness checks')
    parser.add_argument('--logdir',
                        type=str,
                        default='/temp/runs/curv_train_tiny/run')

    parser.add_argument('--train_batch_size', type=int, default=100)
    parser.add_argument('--stats_batch_size', type=int, default=60000)
    parser.add_argument('--dataset_size', type=int, default=60000)
    parser.add_argument('--train_steps',
                        type=int,
                        default=100,
                        help="this many train steps between stat collection")
    parser.add_argument('--stats_steps',
                        type=int,
                        default=1000000,
                        help="total number of curvature stats collections")
    parser.add_argument('--nonlin',
                        type=int,
                        default=1,
                        help="whether to add ReLU nonlinearity between layers")
    parser.add_argument('--method',
                        type=str,
                        choices=['gradient', 'newton'],
                        default='gradient',
                        help="descent method, newton or gradient")
    parser.add_argument('--layer',
                        type=int,
                        default=-1,
                        help="restrict updates to this layer")
    parser.add_argument('--data_width', type=int, default=28)
    parser.add_argument('--targets_width', type=int, default=28)
    parser.add_argument('--lmb', type=float, default=1e-3)
    parser.add_argument(
        '--hess_samples',
        type=int,
        default=1,
        help='number of samples when sub-sampling outputs, 0 for exact hessian'
    )
    parser.add_argument('--hess_kfac',
                        type=int,
                        default=0,
                        help='whether to use KFAC approximation for hessian')
    parser.add_argument('--compute_rho',
                        type=int,
                        default=1,
                        help='use expensive method to compute rho')
    parser.add_argument('--skip_stats',
                        type=int,
                        default=0,
                        help='skip all stats collection')
    parser.add_argument('--full_batch',
                        type=int,
                        default=0,
                        help='do stats on the whole dataset')
    parser.add_argument('--weight_decay', type=float, default=1e-4)

    #args = parser.parse_args()
    args = AttrDict()
    args.lmb = 1e-3
    args.compute_rho = 1
    args.weight_decay = 1e-4
    args.method = 'gradient'
    args.logdir = '/tmp'
    args.data_width = 2
    args.targets_width = 2
    args.train_batch_size = 10
    args.full_batch = False
    args.skip_stats = False
    args.autograd_check = False

    u.seed_random(1)
    logdir = u.create_local_logdir(args.logdir)
    run_name = os.path.basename(logdir)
    #gl.event_writer = SummaryWriter(logdir)
    gl.event_writer = u.NoOp()
    # print(f"Logging to {run_name}")

    # small values for debugging
    # loss_type = 'LeastSquares'
    loss_type = 'CrossEntropy'

    args.wandb = 0
    args.stats_steps = 10
    args.train_steps = 10
    args.stats_batch_size = 10
    args.data_width = 2
    args.targets_width = 2
    args.nonlin = False
    d1 = args.data_width**2
    d2 = 2
    d3 = args.targets_width**2

    d1 = args.data_width**2
    assert args.data_width == args.targets_width
    o = d1
    n = args.stats_batch_size
    d = [d1, 30, 30, 30, 20, 30, 30, 30, d1]

    if loss_type == 'CrossEntropy':
        d3 = 10
    o = d3
    n = args.stats_batch_size
    d = [d1, d2, d3]
    dsize = max(args.train_batch_size, args.stats_batch_size) + 1

    model = u.SimpleFullyConnected2(d, bias=True, nonlin=args.nonlin)
    model = model.to(gl.device)

    try:
        # os.environ['WANDB_SILENT'] = 'true'
        if args.wandb:
            wandb.init(project='curv_train_tiny', name=run_name)
            wandb.tensorboard.patch(tensorboardX=False)
            wandb.config['train_batch'] = args.train_batch_size
            wandb.config['stats_batch'] = args.stats_batch_size
            wandb.config['method'] = args.method
            wandb.config['n'] = n
    except Exception as e:
        print(f"wandb crash with {e}")

    # optimizer = torch.optim.SGD(model.parameters(), lr=0.03, momentum=0.9)
    optimizer = torch.optim.Adam(
        model.parameters(), lr=0.03)  # make 10x smaller for least-squares loss
    dataset = u.TinyMNIST(data_width=args.data_width,
                          targets_width=args.targets_width,
                          dataset_size=dsize,
                          original_targets=True)

    train_loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=args.train_batch_size,
        shuffle=False,
        drop_last=True)
    train_iter = u.infinite_iter(train_loader)

    stats_iter = None
    if not args.full_batch:
        stats_loader = torch.utils.data.DataLoader(
            dataset,
            batch_size=args.stats_batch_size,
            shuffle=False,
            drop_last=True)
        stats_iter = u.infinite_iter(stats_loader)

    test_dataset = u.TinyMNIST(data_width=args.data_width,
                               targets_width=args.targets_width,
                               train=False,
                               dataset_size=dsize,
                               original_targets=True)
    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=args.train_batch_size,
                                              shuffle=False,
                                              drop_last=True)
    test_iter = u.infinite_iter(test_loader)

    if loss_type == 'LeastSquares':
        loss_fn = u.least_squares
    elif loss_type == 'CrossEntropy':
        loss_fn = nn.CrossEntropyLoss()

    autograd_lib.add_hooks(model)
    gl.token_count = 0
    last_outer = 0
    val_losses = []
    for step in range(args.stats_steps):
        if last_outer:
            u.log_scalars(
                {"time/outer": 1000 * (time.perf_counter() - last_outer)})
        last_outer = time.perf_counter()

        with u.timeit("val_loss"):
            test_data, test_targets = next(test_iter)
            test_output = model(test_data)
            val_loss = loss_fn(test_output, test_targets)
            # print("val_loss", val_loss.item())
            val_losses.append(val_loss.item())
            u.log_scalar(val_loss=val_loss.item())

        # compute stats
        if args.full_batch:
            data, targets = dataset.data, dataset.targets
        else:
            data, targets = next(stats_iter)

        # Capture Hessian and gradient stats
        autograd_lib.enable_hooks()
        autograd_lib.clear_backprops(model)
        autograd_lib.clear_hess_backprops(model)
        with u.timeit("backprop_g"):
            output = model(data)
            loss = loss_fn(output, targets)
            loss.backward(retain_graph=True)
        with u.timeit("backprop_H"):
            autograd_lib.backprop_hess(output, hess_type=loss_type)
        autograd_lib.disable_hooks()  # TODO(y): use remove_hooks

        with u.timeit("compute_grad1"):
            autograd_lib.compute_grad1(model)
        with u.timeit("compute_hess"):
            autograd_lib.compute_hess(model)

        for (i, layer) in enumerate(model.layers):

            # input/output layers are unreasonably expensive if not using Kronecker factoring
            if d[i] > 50 or d[i + 1] > 50:
                print(
                    f'layer {i} is too big ({d[i], d[i + 1]}), skipping stats')
                continue

            if args.skip_stats:
                continue

            s = AttrDefault(str, {})  # dictionary-like object for layer stats

            #############################
            # Gradient stats
            #############################
            A_t = layer.activations
            assert A_t.shape == (n, d[i])

            # add factor of n because backprop takes loss averaged over batch, while we need per-example loss
            B_t = layer.backprops_list[0] * n
            assert B_t.shape == (n, d[i + 1])

            with u.timeit(f"khatri_g-{i}"):
                G = u.khatri_rao_t(B_t, A_t)  # batch loss Jacobian
            assert G.shape == (n, d[i] * d[i + 1])
            g = G.sum(dim=0, keepdim=True) / n  # average gradient
            assert g.shape == (1, d[i] * d[i + 1])

            u.check_equal(G.reshape(layer.weight.grad1.shape),
                          layer.weight.grad1)

            if args.autograd_check:
                u.check_close(B_t.t() @ A_t / n, layer.weight.saved_grad)
                u.check_close(g.reshape(d[i + 1], d[i]),
                              layer.weight.saved_grad)

            s.sparsity = torch.sum(layer.output <= 0) / layer.output.numel(
            )  # proportion of activations that are zero
            s.mean_activation = torch.mean(A_t)
            s.mean_backprop = torch.mean(B_t)

            # empirical Fisher
            with u.timeit(f'sigma-{i}'):
                efisher = G.t() @ G / n
                sigma = efisher - g.t() @ g
                s.sigma_l2 = u.sym_l2_norm(sigma)
                s.sigma_erank = torch.trace(sigma) / s.sigma_l2

            lambda_regularizer = args.lmb * torch.eye(d[i + 1] * d[i]).to(
                gl.device)
            H = layer.weight.hess

            with u.timeit(f"invH-{i}"):
                invH = torch.cholesky_inverse(H + lambda_regularizer)

            with u.timeit(f"H_l2-{i}"):
                s.H_l2 = u.sym_l2_norm(H)
                s.iH_l2 = u.sym_l2_norm(invH)

            with u.timeit(f"norms-{i}"):
                s.H_fro = H.flatten().norm()
                s.iH_fro = invH.flatten().norm()
                s.grad_fro = g.flatten().norm()
                s.param_fro = layer.weight.data.flatten().norm()

            u.nan_check(H)
            if args.autograd_check:
                model.zero_grad()
                output = model(data)
                loss = loss_fn(output, targets)
                H_autograd = u.hessian(loss, layer.weight)
                H_autograd = H_autograd.reshape(d[i] * d[i + 1],
                                                d[i] * d[i + 1])
                u.check_close(H, H_autograd)

            #  u.dump(sigma, f'/tmp/sigmas/H-{step}-{i}')
            def loss_direction(dd: torch.Tensor, eps):
                """loss improvement if we take step eps in direction dd"""
                return u.to_python_scalar(eps * (dd @ g.t()) -
                                          0.5 * eps**2 * dd @ H @ dd.t())

            def curv_direction(dd: torch.Tensor):
                """Curvature in direction dd"""
                return u.to_python_scalar(dd @ H @ dd.t() /
                                          (dd.flatten().norm()**2))

            with u.timeit(f"pinvH-{i}"):
                pinvH = H.pinverse()

            with u.timeit(f'curv-{i}'):
                s.grad_curv = curv_direction(g)
                ndir = g @ pinvH  # newton direction
                s.newton_curv = curv_direction(ndir)
                setattr(layer.weight, 'pre',
                        pinvH)  # save Newton preconditioner
                s.step_openai = s.grad_fro**2 / s.grad_curv if s.grad_curv else 999
                s.step_max = 2 / s.H_l2
                s.step_min = torch.tensor(2) / torch.trace(H)

                s.newton_fro = ndir.flatten().norm(
                )  # frobenius norm of Newton update
                s.regret_newton = u.to_python_scalar(
                    g @ pinvH @ g.t() / 2)  # replace with "quadratic_form"
                s.regret_gradient = loss_direction(g, s.step_openai)

            with u.timeit(f'rho-{i}'):
                p_sigma = u.lyapunov_spectral(H, sigma)

                discrepancy = torch.max(abs(p_sigma - p_sigma.t()) / p_sigma)

                s.psigma_erank = u.sym_erank(p_sigma)
                s.rho = H.shape[0] / s.psigma_erank

            with u.timeit(f"batch-{i}"):
                s.batch_openai = torch.trace(H @ sigma) / (g @ H @ g.t())
                s.diversity = torch.norm(G, "fro")**2 / torch.norm(g)**2 / n

                # Faster approaches for noise variance computation
                # s.noise_variance = torch.trace(H.inverse() @ sigma)
                # try:
                #     # this fails with singular sigma
                #     s.noise_variance = torch.trace(torch.solve(sigma, H)[0])
                #     # s.noise_variance = torch.trace(torch.lstsq(sigma, H)[0])
                #     pass
                # except RuntimeError as _:
                s.noise_variance_pinv = torch.trace(pinvH @ sigma)

                s.H_erank = torch.trace(H) / s.H_l2
                s.batch_jain_simple = 1 + s.H_erank
                s.batch_jain_full = 1 + s.rho * s.H_erank

            u.log_scalars(u.nest_stats(layer.name, s))

        # gradient steps
        with u.timeit('inner'):
            for i in range(args.train_steps):
                optimizer.zero_grad()
                data, targets = next(train_iter)
                model.zero_grad()
                output = model(data)
                loss = loss_fn(output, targets)
                loss.backward()

                #            u.log_scalar(train_loss=loss.item())

                if args.method != 'newton':
                    optimizer.step()
                    if args.weight_decay:
                        for group in optimizer.param_groups:
                            for param in group['params']:
                                param.data.mul_(1 - args.weight_decay)
                else:
                    for (layer_idx, layer) in enumerate(model.layers):
                        param: torch.nn.Parameter = layer.weight
                        param_data: torch.Tensor = param.data
                        param_data.copy_(param_data - 0.1 * param.grad)
                        if layer_idx != 1:  # only update 1 layer with Newton, unstable otherwise
                            continue
                        u.nan_check(layer.weight.pre)
                        u.nan_check(param.grad.flatten())
                        u.nan_check(
                            u.v2r(param.grad.flatten()) @ layer.weight.pre)
                        param_new_flat = u.v2r(param_data.flatten()) - u.v2r(
                            param.grad.flatten()) @ layer.weight.pre
                        u.nan_check(param_new_flat)
                        param_data.copy_(
                            param_new_flat.reshape(param_data.shape))

                gl.token_count += data.shape[0]

    gl.event_writer.close()

    assert val_losses[0] > 2.4  # 2.4828238487243652
    assert val_losses[-1] < 2.25  # 2.20609712600708
def main():
    u.install_pdb_handler()
    u.seed_random(1)
    logdir = u.create_local_logdir(args.logdir)
    run_name = os.path.basename(logdir)
    gl.event_writer = SummaryWriter(logdir)
    print(f"Logging to {logdir}")

    loss_type = 'CrossEntropy'

    d1 = args.data_width ** 2
    args.stats_batch_size = min(args.stats_batch_size, args.dataset_size)
    args.train_batch_size = min(args.train_batch_size, args.dataset_size)
    n = args.stats_batch_size
    o = 10
    d = [d1, 60, 60, 60, o]
    # dataset_size = args.dataset_size

    model = u.SimpleFullyConnected2(d, bias=True, nonlin=args.nonlin, last_layer_linear=True)
    model = model.to(gl.device)
    u.mark_expensive(model.layers[0])    # to stop grad1/hess calculations on this layer
    print(model)

    try:
        if args.wandb:
            wandb.init(project='curv_train_tiny', name=run_name, dir='/tmp/wandb.runs')
            wandb.tensorboard.patch(tensorboardX=False)
            wandb.config['train_batch'] = args.train_batch_size
            wandb.config['stats_batch'] = args.stats_batch_size
            wandb.config['n'] = n
    except Exception as e:
        print(f"wandb crash with {e}")

    optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.9)
    #  optimizer = torch.optim.Adam(model.parameters(), lr=0.03)  # make 10x smaller for least-squares loss
    dataset = u.TinyMNIST(data_width=args.data_width, dataset_size=args.dataset_size, loss_type=loss_type)

    train_loader = torch.utils.data.DataLoader(dataset, batch_size=args.train_batch_size, shuffle=False, drop_last=True)
    train_iter = u.infinite_iter(train_loader)

    stats_loader = torch.utils.data.DataLoader(dataset, batch_size=args.stats_batch_size, shuffle=False, drop_last=True)
    stats_iter = u.infinite_iter(stats_loader)
    stats_data, stats_targets = next(stats_iter)

    test_dataset = u.TinyMNIST(data_width=args.data_width, train=False, dataset_size=args.dataset_size, loss_type=loss_type)
    test_batch_size = min(args.dataset_size, 1000)
    test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=test_batch_size, shuffle=False, drop_last=True)
    test_iter = u.infinite_iter(test_loader)

    if loss_type == 'LeastSquares':
        loss_fn = u.least_squares
    else:   # loss_type == 'CrossEntropy':
        loss_fn = nn.CrossEntropyLoss()

    autograd_lib.add_hooks(model)
    gl.reset_global_step()
    last_outer = 0
    val_losses = []
    for step in range(args.stats_steps):
        if last_outer:
            u.log_scalars({"time/outer": 1000*(time.perf_counter() - last_outer)})
        last_outer = time.perf_counter()

        with u.timeit("val_loss"):
            test_data, test_targets = next(test_iter)
            test_output = model(test_data)
            val_loss = loss_fn(test_output, test_targets)
            print("val_loss", val_loss.item())
            val_losses.append(val_loss.item())
            u.log_scalar(val_loss=val_loss.item())

        with u.timeit("validate"):
            if loss_type == 'CrossEntropy':
                val_accuracy, val_loss = validate(model, test_loader, f'test (stats_step {step})')
                # train_accuracy, train_loss = validate(model, train_loader, f'train (stats_step {step})')

                metrics = {'stats_step': step, 'val_accuracy': val_accuracy, 'val_loss': val_loss}
                u.log_scalars(metrics)

        data, targets = stats_data, stats_targets

        if not args.skip_stats:
            # Capture Hessian and gradient stats
            autograd_lib.enable_hooks()
            autograd_lib.clear_backprops(model)
            autograd_lib.clear_hess_backprops(model)
            with u.timeit("backprop_g"):
                output = model(data)
                loss = loss_fn(output, targets)
                loss.backward(retain_graph=True)
            with u.timeit("backprop_H"):
                autograd_lib.backprop_hess(output, hess_type='CrossEntropy')
            autograd_lib.disable_hooks()   # TODO(y): use remove_hooks

            with u.timeit("compute_grad1"):
                autograd_lib.compute_grad1(model)
            with u.timeit("compute_hess"):
                autograd_lib.compute_hess(model, method='kron', attr_name='hess2')

            autograd_lib.compute_stats_factored(model)

            for (i, layer) in enumerate(model.layers):
                param_names = {layer.weight: "weight", layer.bias: "bias"}
                for param in [layer.weight, layer.bias]:

                    if param is None:
                        continue

                    if not hasattr(param, 'stats'):
                        continue
                    s = param.stats
                    param_name = param_names[param]
                    u.log_scalars(u.nest_stats(f"{param_name}", s))

        # gradient steps
        with u.timeit('inner'):
            for i in range(args.train_steps):
                optimizer.zero_grad()
                data, targets = next(train_iter)
                model.zero_grad()
                output = model(data)
                loss = loss_fn(output, targets)
                loss.backward()

                optimizer.step()
                if args.weight_decay:
                    for group in optimizer.param_groups:
                        for param in group['params']:
                            param.data.mul_(1-args.weight_decay)

                gl.increment_global_step(data.shape[0])

    gl.event_writer.close()