def nsdual(g, wins, nn, M=None): M = chkM(M,g) # Construct the diagonal of the frame operator matrix explicitly x = np.zeros((nn,), dtype=float) for gi,mii,sl in izip(g, M, wins): xa = np.square(np.fft.fftshift(gi)) xa *= mii x[sl] += xa # could be more elegant... # (w1a,w1b),(w2a,w2b) = sl # x[w1a] += xa[:w1a.stop-w1a.start] # xa = xa[w1a.stop-w1a.start:] # x[w1b] += xa[:w1b.stop-w1b.start] # xa = xa[w1b.stop-w1b.start:] # x[w2a] += xa[:w2a.stop-w2a.start] # xa = xa[w2a.stop-w2a.start:] # x[w2b] += xa[:w2b.stop-w2b.start] ## xa = xa[w1b.stop-w1b.start:] # Using the frame operator and the original window sequence, compute # the dual window sequence # gd = [gi/N.fft.ifftshift(N.hstack((x[wi[0][0]],x[wi[0][1]],x[wi[1][0]],x[wi[1][1]]))) for gi,wi in izip(g,wins)] gd = [gi/np.fft.ifftshift(x[wi]) for gi,wi in izip(g,wins)] return gd
def nsdual(g, wins, nn, M=None): M = chkM(M, g) # Construct the diagonal of the frame operator matrix explicitly x = np.zeros((nn, ), dtype=float) for gi, mii, sl in izip(g, M, wins): xa = np.square(np.fft.fftshift(gi)) xa *= mii x[sl] += xa # could be more elegant... # (w1a,w1b),(w2a,w2b) = sl # x[w1a] += xa[:w1a.stop-w1a.start] # xa = xa[w1a.stop-w1a.start:] # x[w1b] += xa[:w1b.stop-w1b.start] # xa = xa[w1b.stop-w1b.start:] # x[w2a] += xa[:w2a.stop-w2a.start] # xa = xa[w2a.stop-w2a.start:] # x[w2b] += xa[:w2b.stop-w2b.start] ## xa = xa[w1b.stop-w1b.start:] # Using the frame operator and the original window sequence, compute # the dual window sequence # gd = [gi/N.fft.ifftshift(N.hstack((x[wi[0][0]],x[wi[0][1]],x[wi[1][0]],x[wi[1][1]]))) for gi,wi in izip(g,wins)] gd = [gi / np.fft.ifftshift(x[wi]) for gi, wi in izip(g, wins)] return gd
def nsgtf_sl(f_slices, g, wins, nn, M=None, real=False, reducedform=0, measurefft=False, multithreading=False): M = chkM(M,g) dtype = g[0].dtype fft = fftp(measure=measurefft, dtype=dtype) ifft = ifftp(measure=measurefft, dtype=dtype) if real: assert 0 <= reducedform <= 2 sl = slice(reducedform,len(g)//2+1-reducedform) else: sl = slice(0,None) maxLg = max(int(ceil(float(len(gii))/mii))*mii for mii,gii in izip(M[sl],g[sl])) temp0 = None if multithreading and MP is not None: mmap = MP.Pool().map else: mmap = map loopparams = [] for mii,gii,win_range in izip(M[sl],g[sl],wins[sl]): Lg = len(gii) col = int(ceil(float(Lg)/mii)) assert col*mii >= Lg gi1 = gii[:(Lg+1)//2] gi2 = gii[-(Lg//2):] p = (mii,gii,gi1,gi2,win_range,Lg,col) loopparams.append(p) # main loop over slices for f in f_slices: Ls = len(f) # some preparation ft = fft(f) if temp0 is None: # pre-allocate buffer (delayed because of dtype) temp0 = np.empty(maxLg, dtype=ft.dtype) # A small amount of zero-padding might be needed (e.g. for scale frames) if nn > Ls: ft = np.concatenate((ft, np.zeros(nn-Ls, dtype=ft.dtype))) # The actual transform c = nsgtf_loop(loopparams, ft, temp0) # TODO: if matrixform, perform "2D" FFT along one axis # this could also be nicely parallelized y = mmap(ifft,c) yield y
def nsgtf_sl(f_slices,g,wins,nn,M=None,real=False,reducedform=0,measurefft=False): M = chkM(M,g) fft = fftp(measure=measurefft) ifft = ifftp(measure=measurefft) if real: assert 0 <= reducedform <= 2 sl = slice(reducedform,len(g)//2+1-reducedform) else: sl = slice(0,None) maxLg = max(int(ceil(float(len(gii))/mii))*mii for mii,gii in izip(M[sl],g[sl])) temp0 = None loopparams = [] for mii,gii,win_range in izip(M[sl],g[sl],wins[sl]): Lg = len(gii) col = int(ceil(float(Lg)/mii)) assert col*mii >= Lg gi1 = gii[:(Lg+1)//2] gi2 = gii[-(Lg//2):] p = (mii,gii,gi1,gi2,win_range,Lg,col) loopparams.append(p) if True or T is None: def loop(temp0): c = [] # Initialization of the result # The actual transform # TODO: stuff loop into theano for mii,gii,gi1,gi2,win_range,Lg,col in loopparams: # Lg = len(gii) # if the number of time channels is too small (mii < Lg), aliasing is introduced # wrap around and sum up in the end (below) # col = int(ceil(float(Lg)/mii)) # normally col == 1 # assert col*mii >= Lg temp = temp0[:col*mii] # original version # t = ft[win_range]*N.fft.fftshift(N.conj(gii)) # temp[:(Lg+1)//2] = t[Lg//2:] # if mii is odd, this is of length mii-mii//2 # temp[-(Lg//2):] = t[:Lg//2] # if mii is odd, this is of length mii//2 # modified version to avoid superfluous memory allocation t1 = temp[:(Lg+1)//2] t1[:] = gi1 # if mii is odd, this is of length mii-mii//2 t2 = temp[-(Lg//2):] t2[:] = gi2 # if mii is odd, this is of length mii//2 ftw = ft[win_range] t2 *= ftw[:Lg//2] t1 *= ftw[Lg//2:] # (wh1a,wh1b),(wh2a,wh2b) = win_range # t2[:wh1a.stop-wh1a.start] *= ft[wh1a] # t2[wh1a.stop-wh1a.start:] *= ft[wh1b] # t1[:wh2a.stop-wh2a.start] *= ft[wh2a] # t1[wh2a.stop-wh2a.start:] *= ft[wh2b] temp[(Lg+1)//2:-(Lg//2)] = 0 # clear gap (if any) if col > 1: temp = N.sum(temp.reshape((mii,-1)),axis=1) else: temp = temp.copy() c.append(temp) return c else: raise RuntimeError("Theano support not implemented yet") for f in f_slices: Ls = len(f) # some preparation ft = fft(f) if temp0 is None: # pre-allocate buffer (delayed because of dtype) temp0 = N.empty(maxLg,dtype=ft.dtype) # A small amount of zero-padding might be needed (e.g. for scale frames) if nn > Ls: ft = N.concatenate((ft,N.zeros(nn-Ls,dtype=ft.dtype))) # The actual transform c = loop(temp0) yield map(ifft,c) # TODO: if matrixform, perform "2D" FFT along one axis
def nsgtf_sl(f_slices, g, wins, nn, M=None, real=False, reducedform=0, measurefft=False): M = chkM(M, g) fft = fftp(measure=measurefft) ifft = ifftp(measure=measurefft) if real: assert 0 <= reducedform <= 2 sl = slice(reducedform, len(g) // 2 + 1 - reducedform) else: sl = slice(0, None) maxLg = max( int(ceil(float(len(gii)) / mii)) * mii for mii, gii in izip(M[sl], g[sl])) temp0 = None loopparams = [] for mii, gii, win_range in izip(M[sl], g[sl], wins[sl]): Lg = len(gii) col = int(ceil(float(Lg) / mii)) assert col * mii >= Lg gi1 = gii[:(Lg + 1) // 2] gi2 = gii[-(Lg // 2):] p = (mii, gii, gi1, gi2, win_range, Lg, col) loopparams.append(p) if True or T is None: def loop(temp0): c = [] # Initialization of the result # The actual transform # TODO: stuff loop into theano for mii, gii, gi1, gi2, win_range, Lg, col in loopparams: # Lg = len(gii) # if the number of time channels is too small (mii < Lg), aliasing is introduced # wrap around and sum up in the end (below) # col = int(ceil(float(Lg)/mii)) # normally col == 1 # assert col*mii >= Lg temp = temp0[:col * mii] # original version # t = ft[win_range]*N.fft.fftshift(N.conj(gii)) # temp[:(Lg+1)//2] = t[Lg//2:] # if mii is odd, this is of length mii-mii//2 # temp[-(Lg//2):] = t[:Lg//2] # if mii is odd, this is of length mii//2 # modified version to avoid superfluous memory allocation t1 = temp[:(Lg + 1) // 2] t1[:] = gi1 # if mii is odd, this is of length mii-mii//2 t2 = temp[-(Lg // 2):] t2[:] = gi2 # if mii is odd, this is of length mii//2 ftw = ft[win_range] t2 *= ftw[:Lg // 2] t1 *= ftw[Lg // 2:] # (wh1a,wh1b),(wh2a,wh2b) = win_range # t2[:wh1a.stop-wh1a.start] *= ft[wh1a] # t2[wh1a.stop-wh1a.start:] *= ft[wh1b] # t1[:wh2a.stop-wh2a.start] *= ft[wh2a] # t1[wh2a.stop-wh2a.start:] *= ft[wh2b] temp[(Lg + 1) // 2:-(Lg // 2)] = 0 # clear gap (if any) if col > 1: temp = N.sum(temp.reshape((mii, -1)), axis=1) else: temp = temp.copy() c.append(temp) return c else: raise RuntimeError("Theano support not implemented yet") for f in f_slices: Ls = len(f) # some preparation ft = fft(f) if temp0 is None: # pre-allocate buffer (delayed because of dtype) temp0 = N.empty(maxLg, dtype=ft.dtype) # A small amount of zero-padding might be needed (e.g. for scale frames) if nn > Ls: ft = N.concatenate((ft, N.zeros(nn - Ls, dtype=ft.dtype))) # The actual transform c = loop(temp0) yield map(ifft, c) # TODO: if matrixform, perform "2D" FFT along one axis