def bc_rel_aspect_fcns_gen(stats, metric): value_one = stats['data'][sorted(stats['group'])[0]][metric]['lowest'] aspect_fcns = { 'bc_rel': (lambda g, d, m: divide_def0(value_one, float(d[m]['lowest']) ) / float(g)) } return aspect_fcns
def ft_cost_fcn(g, d, m1, m2, graph): ''' m1 is the metric we use for comparison; m2 is the opponent. ''' m1_opt_combo = d[m1]['lowest_combo'] m2_opt_combo = d[m2]['lowest_combo'] apsp = nx.all_pairs_dijkstra_path_length(graph) apsp_paths = nx.all_pairs_dijkstra_path(graph) weighted = True extra_params = None m1_opt_m1_value = d[m1]['lowest'] m2_opt_m1_value = METRIC_FCNS[m1](graph, m2_opt_combo, apsp, apsp_paths, weighted, extra_params) print "metric values for %s" % (m1) print " value for combo %s opt for %s: %s" % (m1_opt_combo, m1, m1_opt_m1_value) print " value for combo %s opt for %s: %s" % (m2_opt_combo, m2, m2_opt_m1_value) value = divide_def0(m2_opt_m1_value, m1_opt_m1_value) print " return value of: %s for k = %s" % (value, g) return value
'miles_cost': 'rx' }, 'aspect_fcns': { 'miles_cost': (lambda g, d, m: d[m]['lowest'] / float(g)) }, 'ylabel': (lambda m: metric_fullname(m) + "\nmiles over cost") }, 'ratios': { 'aspect_colors': { #'highest': 'rx', 'mean': 'bo', 'one': 'g+' }, 'aspect_fcns': { #'highest': (lambda g, d, m: divide_def0(d[m]['highest'], d[m]['lowest'])), 'mean': (lambda g, d, m: divide_def0(d[m]['mean'], d[m]['lowest'])), 'one': (lambda g, d, m: 1.0) }, 'ylabel': (lambda m: metric_fullname(m) + "/optimal"), 'max_x': (lambda o: 12.0), 'min_y': (lambda o: 1.0), 'max_y': (lambda o: 2.5) }, 'durations': { 'aspect_colors': { 'duration': 'rx' }, 'aspect_fcns': { 'duration': (lambda g, d, m: d[m]['duration']) }, 'ylabel': (lambda m: metric_fullname(m) + "duration (sec)")
'aspect_fcns': { 'lowest': (lambda g, d, m: d[m]['lowest']) }, 'aspect_colors': { 'lowest': 'g+' }, 'get_data_fcns': ranges_get_data_fcns }, 'ratios_all': { 'aspect_colors': { 'highest': 'rx', 'mean': 'bo', 'one': 'g+' }, 'aspect_fcns': { 'highest': (lambda g, d, m: divide_def0(d[m]['highest'], d[m]['lowest'])), 'mean': (lambda g, d, m: divide_def0(d[m]['mean'], d[m]['lowest'])), 'one': (lambda g, d, m: 1.0) }, 'ylabel': (lambda m: metric_fullname(m) + "/optimal"), 'min_y': (lambda o: 0.8), 'max_y': (lambda o: 6.0), 'get_data_fcns': shared_get_data_fcns }, 'ratios_mean': { 'aspect_colors': { 'mean': 'b*', 'one': 'g+' }, 'aspect_fcns': { 'mean': (lambda g, d, m: divide_def0(d[m]['mean'], d[m]['lowest'])),
def bc_rel_aspect_fcns_gen(stats, metric): value_one = stats['data'][sorted(stats['group'])[0]][metric]['lowest'] aspect_fcns = {'bc_rel': (lambda g, d, m: divide_def0(value_one, float(d[m]['lowest'])) / float(g))} return aspect_fcns