def __init__(self, f, pbounds, random_state=None, verbose=2): """ this is a comment """ self._random_state = ensure_rng(random_state) # Data structure containing the function to be optimized, the bounds of # its domain, and a record of the evaluations we have done so far self._space = TargetSpace(f, pbounds, random_state) # queue self._queue = Queue() # Internal GP regressor self._gp = GaussianProcessRegressor( kernel=Matern(nu=2.5), alpha=1e-6, normalize_y=True, n_restarts_optimizer=1, random_state=self._random_state, #optimizer=None ) self._verbose = verbose super(BayesianOptimization, self).__init__(events=DEFAULT_EVENTS)
def __init__(self, target_func, pbounds, random_state=None): """ Parameters ---------- target_func : function Function to be maximized. pbounds : dict Dictionary with parameters names as keys and a tuple with minimum and maximum values. random_state : int, RandomState, or None optionally specify a seed for a random number generator """ self.random_state = ensure_rng(random_state) # The function to be optimized self.target_func = target_func # Get the name of the parameters self._keys = sorted(pbounds) # Create an array with parameters bounds self._bounds = np.array( [item[1] for item in sorted(pbounds.items(), key=lambda x: x[0])], dtype=np.float) # preallocated memory for X and Y points self._params = np.empty(shape=(0, self.dim)) self._target = np.empty(shape=(0)) # keep track of unique points we have seen so far self._cache = {}
def __init__(self, f, pbounds, random_state=None, verbose=2, constraints=[]): """""" self._random_state = ensure_rng(random_state) # Data structure containing the function to be optimized, the bounds of # its domain, and a record of the evaluations we have done so far self._space = TargetSpace(f, pbounds, random_state) # queue self._queue = Queue() # Internal GP regressor self._gp = GaussianProcessRegressor( kernel=Matern(nu=2.5), alpha=3e-3, normalize_y=True, n_restarts_optimizer=25, random_state=self._random_state, ) self._verbose = verbose # Key constraints correspond to literal keyword names # array constraints correspond to point in array row self._key_constraints = constraints self._array_constraints = self.array_like_constraints() super(BayesianOptimization, self).__init__(events=DEFAULT_EVENTS)
def __init__(self, f, pbounds, random_state=None, verbose=2, bounds_transformer=None): self._random_state = ensure_rng(random_state) # Data structure containing the function to be optimized, the bounds of # its domain, and a record of the evaluations we have done so far self._space = TargetSpace(f, pbounds, random_state) self._queue = Queue() # Internal GP regressor self._gp = GaussianProcessRegressor( kernel=Matern(nu=2.5), alpha=1e-6, normalize_y=True, n_restarts_optimizer=5, random_state=self._random_state, ) self._verbose = verbose self._bounds_transformer = bounds_transformer if self._bounds_transformer: try: self._bounds_transformer.initialize(self._space) except (AttributeError, TypeError): raise TypeError('The transformer must be an instance of ' 'DomainTransformer') super(BayesianOptimization, self).__init__(events=DEFAULT_EVENTS)
def __init__(self, target_func, prange, random_state=None): """ Parameters ---------- target_func : function Function to be maximized. pbounds : dict Dictionary with parameters names as keys and a tuple with minimum maximum, and step values. random_state : int, RandomState, or None optionally specify a seed for a random number generator """ self.random_state = ensure_rng(random_state) # The function to be optimized self.target_func = target_func # Get the name of the parameters self._keys = sorted(prange) # Get associated pbounds for TargetSpace() self._pbounds = {item[0] :(item[1][:2]) for item in sorted(prange.items(), key=lambda x: x[0])} # Create an array with parameters steps self._steps = np.array( [item[1][-1] for item in sorted(prange.items(), key=lambda x: x[0])], dtype=np.float ) # keep track of unique points we have seen so far self._discrete_cache = {} super(DiscreteSpace, self).__init__(target_func=target_func, pbounds=self._pbounds, random_state=random_state)
def reset_rng(self, random_state=None): self._random_state = ensure_rng(random_state)