def _set_preproc (indata, prefix): pname=util.fix_preproc_name_inconsistency(indata[prefix+'name']) args=util.get_args(indata, prefix) sg('add_preproc', pname, *args) sg('attach_preproc', 'TRAIN') sg('attach_preproc', 'TEST')
def __init__(self, parent, name = None, **args): if name == None: name = self._make_name() if isinstance(parent, Doc): # make sure we're unique if name in parent.children: raise Exception("A box by the name '%s' already exists within children of '%s' parent." % (name, parent.name())) self._is_root = False parent.children[name] = self self.parent = parent p_win = parent.win else: p_win = parent my_args = { 'width': None, 'height': None, 'top': 0, 'left': 0 } my_args = get_args(my_args, args) for arg in my_args: self._args[arg] = my_args[arg] # create our subwin win_args = [self._args['top'], self._args['left']] if self._args['width'] != None and self._args['height'] != None: win_args.insert(0, self._args['height']) win_args.insert(0, self._args['width']) self.win = p_win.subwin(*win_args) # set our dimensions and location (self._height, self._width) = self.win.getmaxyx() self._top = my_args['top'] self._left = my_args['left'] self._name = name self.refresh()
def _get_subkernels (indata, prefix): subkernels={} prefix=prefix+'subkernel' len_prefix=len(prefix) # loop through indata (unordered dict) to gather subkernel data for key in indata: if key.find(prefix)==-1: continue # get subkernel's number try: num=key[len_prefix] except ValueError: raise ValueError, 'Cannot find number for subkernel: "%s"!' % data # get item's name name=key[len_prefix+2:] # append new item if not subkernels.has_key(num): subkernels[num]={} subkernels[num][name]=indata[key] # got all necessary information in new structure, now create a kernel # object for each subkernel for num, data in subkernels.iteritems(): fun=eval(data['name']+'Kernel') args=util.get_args(data, '') subkernels[num]['kernel']=fun(*args) return subkernels
def main(): config = util.get_args() config.cuda = not config.no_cuda torch.cuda.set_device(config.gpu) if config.cuda and torch.cuda.is_available(): print("Using CUDA on GPU ", config.gpu) else: print("Not using CUDA.") net = partnet_model.PARTNET(config) net.load_state_dict( torch.load(config.save_path + '/partnet_final.pkl', map_location=lambda storage, loc: storage.cuda(config.gpu))) if config.cuda: net.cuda() net.eval() if not os.path.exists(config.output_path + 'segmented'): os.makedirs(config.output_path + 'segmented') print("Loading data ...... ", end='\n', flush=True) shape = torch.from_numpy(loadmat(config.data_path + 'demo.mat')['pc']).float() ##for your own new shape ##shape = normalize_shape(shape) with torch.no_grad(): shape = shape.cuda() points_feature = net.pointnet(shape) root_feature = net.pcEncoder(shape) global m m = 0 label = decode_structure(net, root_feature, points_feature, shape) #segmented results writeply(config.output_path + 'segmented/demo.ply', shape, label) print('Successfully output result!')
def __init__(self, parent, **args): my_args = { 'fields': {} } my_args = get_args(my_args, args) Message.__init__(self, parent, **args) self._form = Form(self, my_args['fields']);
def main(): # get argument args = util.get_args() # print argument util.print_args(args) # run te mlus = [] rcs = [] # at every T step for t in range(args.num_test): if t % args.T == 0: repetita_args = util.get_repetita_args(args, t) print('command:', ' '.join(repetita_args)) stdout = util.call(repetita_args) if stdout: print('stdout:', stdout) mlu, rc = util.parse_result(t, stdout, args) if len(mlu) == args.T: mlus.append(mlu) if rc is not None: rcs.append(rc) util.save(mlus, rcs, args)
def __init__(self, client, args = {}): self.env( 'histfile', os.path.join(os.path.expanduser('~'), '.om_history') ) self.client = client self.args = util.get_args(self.args, args)
def _get_subkernels(indata, prefix): subkernels = {} prefix = prefix + 'subkernel' len_prefix = len(prefix) # loop through indata (unordered dict) to gather subkernel data for key in indata: if key.find(prefix) == -1: continue # get subkernel's number try: num = key[len_prefix] except ValueError: raise ValueError, 'Cannot find number for subkernel: "%s"!' % data # get item's name name = key[len_prefix + 2:] # append new item if not subkernels.has_key(num): subkernels[num] = {} subkernels[num][name] = indata[key] # got all necessary information in new structure, now create a kernel # object for each subkernel for num, data in subkernels.iteritems(): fun = eval(data['name'] + 'Kernel') args = util.get_args(data, '') subkernels[num]['kernel'] = fun(*args) return subkernels
def __init__(self): self.maxAcc = 0.0 self.config = util.get_args() self.config.lr_decay = self.config.lr_decay * (1400 // self.config.batch_size) self.config.lr_decay_begin = self.config.lr_decay_begin * ( 1400 // self.config.batch_size) self.config.maxSteps = self.config.epochs * 1400 // self.config.batch_size + 1 print(self.config.maxSteps, " max steps") self.texti = loadData.TextIterator(self.config) self.config.text_vocab_size = len(self.texti.word2id) embed_weight = np.load("../wordEmb/vector_" + self.config.wordemb_suffix + ".npy") self.model = NNManager.Model(self.config, self.config.model_name) self.model.emb.emb.weight.data.copy_(torch.from_numpy(embed_weight)) if self.config.pretrain == 1: self.model.load_state_dict( torch.load(self.config.pretrain_path, map_location='cpu')) self.model.cuda() self.optimizer = torch.optim.Adam( self.model.parameters(), lr=self.config.learning_rate, weight_decay=self.config.weight_decay) self.lossfunc = torch.nn.CrossEntropyLoss().cuda() self.start = time.time()
def main(): args = get_args() torch.backends.cudnn.enabled = False cudnn.benchmark = False torch.multiprocessing.set_sharing_strategy('file_system') train_loader = torch.utils.data.DataLoader(TrainDataset( args=args, transform=transforms.Compose([ transforms.CenterCrop((224, 224)), transforms.RandomHorizontalFlip(), transforms.ToTensor() ])), batch_size=args.batch_size, shuffle=True, num_workers=0) video_val_loader = torch.utils.data.DataLoader(VideoDataset( args=args, transform=transforms.Compose([ transforms.CenterCrop((224, 224)), transforms.RandomHorizontalFlip(), transforms.ToTensor() ]), test_mode=True), batch_size=args.batch_size, shuffle=False, num_workers=0) print("start training") for epoch in range(args.epochs): train(train_loader, video_val_loader, args)
def run(args): (options, args) = util.get_args(args, OPTIONS, prog = 'index') archive = Archive() articles = map(archive.add, Slicer.sort(Slicer.objects.all(), desc = True)) print "All articles:", articles build_main(options.dest, archive, options) print "Indexed articles:", map(lambda a: build_index(options.dest, a, archive, options), articles)
def _evaluate(indata): prefix = "kernel_" feats = util.get_features(indata, prefix) kfun = eval(indata[prefix + "name"] + "Kernel") kargs = util.get_args(indata, prefix) prefix = "preproc_" pargs = util.get_args(indata, prefix) feats = util.add_preproc(indata[prefix + "name"], feats, *pargs) prefix = "kernel_" kernel = kfun(feats["train"], feats["train"], *kargs) km_train = max(abs(indata[prefix + "matrix_train"] - kernel.get_kernel_matrix()).flat) kernel.init(feats["train"], feats["test"]) km_test = max(abs(indata[prefix + "matrix_test"] - kernel.get_kernel_matrix()).flat) return util.check_accuracy(indata[prefix + "accuracy"], km_train=km_train, km_test=km_test)
def add_field(self, name, **args): my_args = { 'refresh': True, 'type': None, 'caption': '', 'args': {} } my_args = get_args(my_args, args) if name in self._fields: raise Exception("Form %s already contains a field by the name %s." % (self._name, name)) if my_args['type'] == None: raise Exception("Unable to add a field without specifying the class type."); my_args = get_args(my_args, args) metrics = self.get_metrics() top = self._inner_top = len(self._fields) field = my_args['type'](self, name = name, top = top, **my_args['args']) self._fields[name] = field
def main4(): args = get_args() if args.data == "nyt": vocab_file = "/home/ml/lyu40/PycharmProjects/data/nyt/lda_domains/preprocessed/vocab_100d.p" with open(vocab_file, "rb") as f: vocab = pickle.load(f, encoding='latin1') else: vocab_file = '/home/ml/ydong26/data/CNNDM/CNN_DM_pickle_data/vocab_100d.p' with open(vocab_file, "rb") as f: vocab = pickle.load(f, encoding='latin1') config = Config( vocab_size=vocab.embedding.shape[0], embedding_dim=vocab.embedding.shape[1], category_size=args.category_size, category_dim=50, word_input_size=100, sent_input_size=2 * args.hidden, word_GRU_hidden_units=args.hidden, sent_GRU_hidden_units=args.hidden, pretrained_embedding=vocab.embedding, word2id=vocab.w2i, id2word=vocab.i2w, ) doc = Document(content=[[ 'to', 'the', 'editor', 're', 'for', 'women', 'worried', 'about', 'fertility', 'egg', 'bank', 'is', 'a', 'new', 'option', 'sept', '00', 'imagine', 'my', 'joy', 'in', 'reading', 'the', 'morning', 'newspapers', 'on', 'the', 'day', 'of', 'my', '00th', 'birthday', 'and', 'finding', 'not', 'one', 'but', 'two', 'articles', 'on', 'how', 'women', 's', 'fertility', 'drops', 'off', 'precipitously', 'after', 'age', '00' ], [ 'one', 'in', 'the', 'times', 'and', 'one', 'in', 'another', 'newspaper' ], ['i', 'sense', 'a', 'conspiracy', 'here'], [ 'have', 'you', 'been', 'talking', 'to', 'my', 'mother', 'in', 'law' ], ['laura', 'heymann', 'washington']], summary=[[ 'laura', 'heymann', 'letter', 'on', 'sept', '00', 'article', 'about', 'using', 'egg', 'bank', 'to', 'prolong', 'fertility', 'expresses', 'ironic', 'humor', 'about', 'her', 'age', 'and', 'chances', 'of', 'becoming', 'pregnant' ]], label=[0.01] * 100, label_idx=[0.01] * 100) extract_net = model_all.FullyShare(config) label_idx = torch.tensor([2], dtype=torch.float, device='cuda:0').cuda() x = prepare_data(doc, vocab.w2i) sents = Variable(torch.from_numpy(x)).cuda() if label_idx.dim() == 2: outputs = extract_net(sents, label_idx[0]) else: outputs = extract_net(sents, label_idx)
def _evaluate(indata): prefix = 'kernel_' feats = util.get_features(indata, prefix) kargs = util.get_args(indata, prefix) fun = eval(indata[prefix + 'name'] + 'Kernel') kernel = fun(feats['train'], feats['train'], *kargs) prefix = 'regression_' kernel.parallel.set_num_threads(indata[prefix + 'num_threads']) try: name = indata[prefix + 'name'] if (name == 'KERNELRIDGEREGRESSION'): name = 'KernelRidgeRegression' rfun = eval(name) except NameError as e: print("%s is disabled/unavailable!" % indata[prefix + 'name']) return False labels = RegressionLabels(double(indata[prefix + 'labels'])) if indata[prefix + 'type'] == 'svm': regression = rfun(indata[prefix + 'C'], indata[prefix + 'epsilon'], kernel, labels) elif indata[prefix + 'type'] == 'kernelmachine': regression = rfun(indata[prefix + 'tau'], kernel, labels) else: return False regression.parallel.set_num_threads(indata[prefix + 'num_threads']) if prefix + 'tube_epsilon' in indata: regression.set_tube_epsilon(indata[prefix + 'tube_epsilon']) regression.train() alphas = 0 bias = 0 sv = 0 if prefix + 'bias' in indata: bias = abs(regression.get_bias() - indata[prefix + 'bias']) if prefix + 'alphas' in indata: for item in regression.get_alphas().tolist(): alphas += item alphas = abs(alphas - indata[prefix + 'alphas']) if prefix + 'support_vectors' in indata: for item in inregression.get_support_vectors().tolist(): sv += item sv = abs(sv - indata[prefix + 'support_vectors']) kernel.init(feats['train'], feats['test']) classified = max( abs(regression.apply().get_labels() - indata[prefix + 'classified'])) return util.check_accuracy(indata[prefix + 'accuracy'], alphas=alphas, bias=bias, support_vectors=sv, classified=classified)
def run(args): ''' List available blogs ''' (options, args) = util.get_args(args, OPTIONS, prog = 'list') slices = Slicer.slices.all() if not len(slices): return for article in slices: print article, format_extra_data(article, options)
def main(): args = get_args() log_file = "/home/ml/lyu40/PycharmProjects/E_Yue/log/" + args.data + "/100/" + args.ext_model + ".tr.log" scores = [] with open(log_file, "r") as f: for l in f.readlines()[-10000:]: scores.append(float(l.split(' ')[-1].rstrip('/n'))) print("The average rouge score for the recent 10000 examples: ", sum(scores) / len(scores))
def main(): der_arg, input_file, category = get_args("send_jobs.py") print "python ../bin/send_jobs.py {0} {1} {2}".format( input_file, category, der_arg) input_file = "{0}/{1}".format(config.input_dir, os.path.basename(input_file)) pieces = split_input_file(input_file, config.pieces) send_jobs(input_file, pieces, der_arg, category) print "Program exit!"
def application(environ, start_response): args = util.get_args(environ) if route(environ, 'socket.io'): return socketio_manage(environ, { '/control': ControlNamespace }) elif route(environ, 'presentation'): return presentation(start_response, args) elif route(environ, 'controls'): return controls(start_response, args) else: return util.serve_file(environ, start_response)
def _evaluate (indata): prefix='kernel_' feats=util.get_features(indata, prefix) kargs=util.get_args(indata, prefix) fun=eval(indata[prefix+'name']+'Kernel') kernel=fun(feats['train'], feats['train'], *kargs) prefix='regression_' kernel.parallel.set_num_threads(indata[prefix+'num_threads']) try: name = indata[prefix+'name'] if (name=='KERNELRIDGEREGRESSION'): name = 'KernelRidgeRegression' rfun=eval(name) except NameError as e: print("%s is disabled/unavailable!"%indata[prefix+'name']) return False labels=RegressionLabels(double(indata[prefix+'labels'])) if indata[prefix+'type']=='svm': regression=rfun( indata[prefix+'C'], indata[prefix+'epsilon'], kernel, labels) elif indata[prefix+'type']=='kernelmachine': regression=rfun(indata[prefix+'tau'], kernel, labels) else: return False regression.parallel.set_num_threads(indata[prefix+'num_threads']) if prefix+'tube_epsilon' in indata: regression.set_tube_epsilon(indata[prefix+'tube_epsilon']) regression.train() alphas=0 bias=0 sv=0 if prefix+'bias' in indata: bias=abs(regression.get_bias()-indata[prefix+'bias']) if prefix+'alphas' in indata: for item in regression.get_alphas().tolist(): alphas+=item alphas=abs(alphas-indata[prefix+'alphas']) if prefix+'support_vectors' in indata: for item in inregression.get_support_vectors().tolist(): sv+=item sv=abs(sv-indata[prefix+'support_vectors']) kernel.init(feats['train'], feats['test']) classified=max(abs( regression.apply().get_labels()-indata[prefix+'classified'])) return util.check_accuracy(indata[prefix+'accuracy'], alphas=alphas, bias=bias, support_vectors=sv, classified=classified)
def test(): ret = '' ret += 'get_args() = ' + str(util.get_args()) + '\n' ret += '\n' ret += 'get_args_len() = ' + str(util.get_args_len()) + '\n' ret += '\n' ret += 'get_arg(0) = ' + util.get_arg(0) + '\n' ret += 'get_arg(1) = ' + util.get_arg(1) + '\n' ret += 'get_arg(2) = ' + util.get_arg(2) + '\n' ret += 'get_arg(3, \'-\') = ' + util.get_arg(3, '-') + '\n' return ret
def __init__(self, message, data = None, **args): my_args = { 'email': None, # who to e-mail an error report to 'email_bcc': None # who to bcc error report to } args = get_args(my_args, args); self.message = message; self.data = data; self._args = args; if my_args['email'] != None: self.send_report(my_args['email'], my_args['email_bcc'])
def _evaluate (indata): prefix='kernel_' feats=util.get_features(indata, prefix) kfun=eval(indata[prefix+'name']+'Kernel') kargs=util.get_args(indata, prefix) prefix='preprocessor_' pargs=util.get_args(indata, prefix) feats=util.add_preprocessor(indata[prefix+'name'], feats, *pargs) prefix='kernel_' kernel=kfun(feats['train'], feats['train'], *kargs) km_train=max(abs( indata[prefix+'matrix_train']-kernel.get_kernel_matrix()).flat) kernel.init(feats['train'], feats['test']) km_test=max(abs( indata[prefix+'matrix_test']-kernel.get_kernel_matrix()).flat) return util.check_accuracy( indata[prefix+'accuracy'], km_train=km_train, km_test=km_test)
def _evaluate(indata): prefix = 'kernel_' feats = util.get_features(indata, prefix) kfun = eval(indata[prefix + 'name'] + 'Kernel') kargs = util.get_args(indata, prefix) prefix = 'preproc_' pargs = util.get_args(indata, prefix) feats = util.add_preproc(indata[prefix + 'name'], feats, *pargs) prefix = 'kernel_' kernel = kfun(feats['train'], feats['train'], *kargs) km_train = max( abs(indata[prefix + 'matrix_train'] - kernel.get_kernel_matrix()).flat) kernel.init(feats['train'], feats['test']) km_test = max( abs(indata[prefix + 'matrix_test'] - kernel.get_kernel_matrix()).flat) return util.check_accuracy(indata[prefix + 'accuracy'], km_train=km_train, km_test=km_test)
def main(): # get argument args = util.get_args() # print argument util.print_args(args) # at every T + 1 step t = 1995 repetita_args = util.get_repetita_args(args, t) print('command:', ' '.join(repetita_args)) stdout = util.call(repetita_args) print('stdout:', stdout)
def run(self, method, api, params = {}, args = {}): args = util.get_args(self.args, args, True) api = self._get_uri(api) #if args['verbose']: #sys.stderr.write('+ API=%s, PARAMS=%s, OPTIONS=%s\n' % (api, self.client.encode(params), self.client.encode(args))) retval = {} # check to see if we need to parse params (e.g. got them from CLI) if args['parse_params']: api_params = {}; for param in params: api_params = self.parse_param(param, api_params); params = api_params try: get = None if method is None: if params: method = 'POST' else: method = 'GET' if 'GET' in args: if isinstance(args['GET'], basestring): get = args['GET'] else: get = '&'.join(args['GET']) if method.upper() == 'EXEC': response = self.client.run( api, params, args['raw_response'], args['full_response'], get, '&'.join(args['POST']), args['FILES'] ) else: response = self.client.request( method, api, params, args['raw_response'], args['full_response'], get, args['headers'], args['verbose'], args['raw_noformat'] ) result = True error = None except Exception, e: result = False response = e.message
def _get_machine (indata, prefix, feats): if indata[prefix+'type']=='kernel': pre='kernel_' kargs=util.get_args(indata, pre) kfun=eval(indata[pre+'name']+'Kernel') machine=kfun(feats['train'], feats['train'], *kargs) if indata[pre+'name']=='Linear': normalizer=eval(indata[pre+'normalizer']+'()') machine.set_normalizer(normalizer) machine.init(feats['train'], feats['train']) machine.parallel.set_num_threads(indata[prefix+'num_threads']) elif indata[prefix+'type']=='knn': pre='distance_' dargs=util.get_args(indata, pre) dfun=eval(indata[pre+'name']) machine=dfun(feats['train'], feats['train'], *dargs) machine.parallel.set_num_threads(indata[prefix+'num_threads']) else: machine=None return machine
def _get_machine(indata, prefix, feats): if indata[prefix + 'type'] == 'kernel': pre = 'kernel_' kargs = util.get_args(indata, pre) kfun = eval(indata[pre + 'name'] + 'Kernel') machine = kfun(feats['train'], feats['train'], *kargs) if indata[pre + 'name'] == 'Linear': normalizer = eval(indata[pre + 'normalizer'] + '()') machine.set_normalizer(normalizer) machine.init(feats['train'], feats['train']) machine.parallel.set_num_threads(indata[prefix + 'num_threads']) elif indata[prefix + 'type'] == 'knn': pre = 'distance_' dargs = util.get_args(indata, pre) dfun = eval(indata[pre + 'name']) machine = dfun(feats['train'], feats['train'], *dargs) machine.parallel.set_num_threads(indata[prefix + 'num_threads']) else: machine = None return machine
def _get_machine(indata, prefix, feats): if indata[prefix + "type"] == "kernel": pre = "kernel_" kargs = util.get_args(indata, pre) kfun = eval(indata[pre + "name"] + "Kernel") machine = kfun(feats["train"], feats["train"], *kargs) if indata[pre + "name"] == "Linear": normalizer = eval(indata[pre + "normalizer"] + "()") machine.set_normalizer(normalizer) machine.init(feats["train"], feats["train"]) machine.parallel.set_num_threads(indata[prefix + "num_threads"]) elif indata[prefix + "type"] == "knn": pre = "distance_" dargs = util.get_args(indata, pre) dfun = eval(indata[pre + "name"]) machine = dfun(feats["train"], feats["train"], *dargs) machine.parallel.set_num_threads(indata[prefix + "num_threads"]) else: machine = None return machine
def main(): ts = time.time() der_arg, input_file, category = get_args("run_job_each_host.py") print "python ../bin/run_job_each_host.py {0} {1} {2}".format( input_file, category, der_arg) input_file = "{0}/{1}".format(config.input_dir, os.path.basename(input_file)) scp_files_into_child(input_file) pieces = split_input_file(input_file, config.pieces_in_each_host) print "Pieces {0}".format(pieces) run_jobs(input_file, pieces, der_arg, category) ts2 = time.time() print "Took {0} seconds!".format(ts2 - ts) print "Program exit!"
def dm_analysis(dm_model_path, docs): try: embeddings = pickle.load(open("analyze_embeddings.p", "rb")) except FileNotFoundError: args = get_args() with open(args.vocab_file, "rb") as f: vocab = pickle.load(f, encoding='latin1') config = Config( vocab_size=vocab.embedding.shape[0], embedding_dim=vocab.embedding.shape[1], category_size=args.category_size, category_dim=50, word_input_size=100, sent_input_size=2 * args.hidden, word_GRU_hidden_units=args.hidden, sent_GRU_hidden_units=args.hidden, pretrained_embedding=vocab.embedding, word2id=vocab.w2i, id2word=vocab.i2w, ) dm_model = DomainModel(config) dm_model_dict = torch.load(dm_model_path)['state_dict'] dm_model.load_state_dict(dm_model_dict) dm_enc_analyzer = Dm_Enc_Analyzer(dm_model.encoder_list) dm_dec_analyzer = Dm_Dec_Analyzer(dm_model.decoder_list) # evaluate example articles # each doc is a Doc object embeddings = [] probs = [] for doc in docs: try: print(doc.content) x = prepare_data(doc, vocab.w2i) sents = Variable(torch.from_numpy(x)) label_idx = Variable( torch.from_numpy(np.array([doc.label_idx]))) embedding = dm_enc_analyzer(sents, label_idx) embeddings.append(embedding) prob = dm_dec_analyzer(embedding) probs.append(prob) except: print("problem in doing evaluation, skip this doc") pass pickle.dump(embeddings, open("analyze_embeddings.p", "wb")) print(probs)
def _evaluate(indata): prefix = 'kernel_' feats = util.get_features(indata, prefix) kargs = util.get_args(indata, prefix) fun = eval(indata[prefix + 'name'] + 'Kernel') kernel = fun(feats['train'], feats['train'], *kargs) prefix = 'regression_' kernel.parallel.set_num_threads(indata[prefix + 'num_threads']) try: rfun = eval(indata[prefix + 'name']) except NameError, e: print "%s is disabled/unavailable!" % indata[prefix + 'name'] return False
def __init__(self, parent, **args): my_args = { 'title': self._title, 'title_attr': self._title_attr, 'title_align': self._title_align, 'msg': self._msg, 'msg_attr': curses.color_pair(0) } my_args = get_args(my_args, args) self._title = my_args['title'] self._title_attr = my_args['title_attr'] self._title_align = my_args['title_align'] self._msg = my_args['msg'] self._msg_attr = my_args['msg_attr'] Box.__init__(self, parent, **args)
def _evaluate (indata): prefix='kernel_' feats=util.get_features(indata, prefix) kargs=util.get_args(indata, prefix) fun=eval(indata[prefix+'name']+'Kernel') kernel=fun(feats['train'], feats['train'], *kargs) prefix='regression_' kernel.parallel.set_num_threads(indata[prefix+'num_threads']) try: rfun=eval(indata[prefix+'name']) except NameError, e: print "%s is disabled/unavailable!"%indata[prefix+'name'] return False
def main(): # num shows dataset size # drawpca draws pca results for datasets # umap draws scatter plot of umap projection # penscatter draws scatter plot on pendulum dataset, we draw scatter plot of x0 args = util.get_args('num', 'drawpca', 'umap', 'penscatter') cfg, lbl = util.get_label_cfg_by_args(args) if args.num: show_dataset_size(cfg) if args.drawpca: drawPCA(cfg) if args.umap: drawUMap(cfg) if args.penscatter: drawPenScatter(cfg)
def _evaluate(indata): prefix = "kernel_" feats = util.get_features(indata, prefix) kargs = util.get_args(indata, prefix) fun = eval(indata[prefix + "name"] + "Kernel") kernel = fun(feats["train"], feats["train"], *kargs) prefix = "regression_" kernel.parallel.set_num_threads(indata[prefix + "num_threads"]) try: rfun = eval(indata[prefix + "name"]) except NameError, e: print "%s is disabled/unavailable!" % indata[prefix + "name"] return False
def main(): # run trains the model # eval evaluate the model and dump into some file # prob evaluate probability to find assignment # k is the number of experts # valid changes model evaluation on the validation set # label evaluates label args = util.get_args('run', 'eval', 'prob', 'k5', 'valid', 'label') if args.run: run_the_training(args) if args.eval: eval_model(args) if args.valid: eval_model_on_valid(args) if args.label: eval_final_label(args)
def _evaluate (indata): prefix='distance_' feats=util.get_features(indata, prefix) dfun=eval(indata[prefix+'name']) dargs=util.get_args(indata, prefix) distance=dfun(feats['train'], feats['train'], *dargs) dm_train=max(abs( indata[prefix+'matrix_train']-distance.get_distance_matrix()).flat) distance.init(feats['train'], feats['test']) dm_test=max(abs( indata[prefix+'matrix_test']-distance.get_distance_matrix()).flat) return util.check_accuracy( indata[prefix+'accuracy'], dm_train=dm_train, dm_test=dm_test)
def main(): # test is dummy arguments # run trains the model # eval evaluate the model # prob evaluate probability to find assignment # valid means we evaluate model on the validation set # label means we get prediction of label args = util.get_args('test', 'run', 'eval', 'prob', 'valid', 'label') if args.run: run_the_training(args) if args.eval: eval_model(args) if args.valid: eval_model_on_valid(args) if args.label: eval_final_label(args)
def run(args): (options, args) = util.get_args(args, OPTIONS, prog = 'copy-dep', options_func = lambda options:\ (len(options.what) > 1 and (options.what[0] == 'all') and (options.what.remove('all') or options))\ or options) if 'all' in options.what: print "-> Copying all" copy_all() elif 'all' not in options.what: if 'media' in options.what: print "-> Copying media" copy_media() if 'linked' in options.what: print "-> Copying linked" sys.stderr.write("WARNING: Linked copy doesn't exist.") pass #Copy linked print options, args
def main(): epsilon, discount, alpha, iterations, selfPlay, readValues = get_args( sys.argv) if selfPlay == True: agent1 = Agent(1, epsilon, discount, alpha) agent2 = Agent(-1, epsilon, discount, alpha) print( "Beginning self play. Corresponding state values will be stored in agent1_values.txt and agent2_values.txt" ) for i in range(iterations): print("Iteration %d..." % (i)) self_play(agent1, agent2) agent1.write_qvalues('agent1_values.txt') agent2.write_qvalues('agent2_values.txt') elif readValues == True: token = 0 ai = 0 while (True): token = input("What piece would you like to be (X/O)") if token == "X" or token == "O": break if token == "X": token = 1 ai = Agent(token * -1, epsilon=.2, discount=.7, alpha=.7, readValues=True, file="./agent2_values.txt") else: token = -1 ai = Agent(token * -1, epsilon=.2, discount=.7, alpha=.7, readValues=True, file="./agent1_values.txt") human = Human(token) if token == 1: # human is X play_human_vs_ai(human, ai, token) ai.write_qvalues("agent2_values.txt") else: play_human_vs_ai(ai, human, token) ai.write_qvalues("agent1_values.txt")
def _evaluate (indata, prefix): feats=util.get_features(indata, prefix) kfun=eval(indata[prefix+'name']+'Kernel') kargs=util.get_args(indata, prefix) kernel=kfun(*kargs) if indata.has_key(prefix+'normalizer'): kernel.set_normalizer(eval(indata[prefix+'normalizer']+'()')) kernel.init(feats['train'], feats['train']) km_train=max(abs( indata[prefix+'matrix_train']-kernel.get_kernel_matrix()).flat) kernel.init(feats['train'], feats['test']) km_test=max(abs( indata[prefix+'matrix_test']-kernel.get_kernel_matrix()).flat) return util.check_accuracy( indata[prefix+'accuracy'], km_train=km_train, km_test=km_test)
def run_1model(eval_path): outfpath = sys.argv[3] if len(sys.argv) == 4 else None sys.argv = sys.argv[:2] args = util.get_args() config = util.initialize_from_env(args.experiment, args.logdir) config['eval_path'] = eval_path model = cm.CorefModel(config, eval_mode=True) with tf.Session() as session: model.restore(session, args.latest_checkpoint) model.evaluate(session, official_stdout=True, pprint=False, test=True, outfpath=outfpath)
def main(): # kmean means we directly run kmeans on solution space with scaling # pcakmean means we run kmeans after running pca # speuclid means we do spectral clustering with euclidean distance (might be sparse) # spdydx means we do spectral clustering with dy/dx as distance # spvio means spectral clustering with constraint violation as distance # pen means we handle the pendulum dataset # car means we deal with the vehicle dataset # drone means we handle the drone obstacle problem # dtwo means drone with two obstacles # append means we append new k to existing data # neighbor is an integer of number of neighbors used for constructing sparse graph args = util.get_args('append', 'neighbor10') # args = getArgs('kmean', 'pcakmean', 'speuclid', 'spdydx', 'spvio', 'pen', 'car', 'drone', 'dtwo', 'append', 'neighbor10') if args.pen: cfg = datanames.PENDULUM k = [3, 5, 10, 20] target_dir = 'data/pen' elif args.car: cfg = datanames.VEHICLE k = [5, 10, 20, 40] target_dir = 'data/car' elif args.drone: cfg = datanames.DRONE k = [5, 10, 20, 40, 80, 160] target_dir = 'data/drone' elif args.dtwo: cfg = datanames.DRONETWO k = [5, 10, 20, 40, 80] target_dir = 'data/dronetwo' elif args.done: cfg = datanames.DRONEONE k = [5, 10, 20, 40, 80] target_dir = 'data/droneone' else: print('You must choose from existing datasets') raise SystemExit if args.kmean: generate_kmean_label(cfg, k, target_dir, args.append) if args.pcakmean: generate_pca_kmean_label(cfg, k, target_dir, args.append) try: if args.speuclid or args.spdydx or args.spvio: generate_spectral_label(cfg, k, target_dir, args.neighbor, args) except: pass
def main(): args = util.get_args() INPUT_FILE = args.file or 'data.xlsx' DB = args.db or 'temp' TABLE = args.table or 'temp' # Connection params file = os.path.join(os.environ['USERPROFILE'], 'Desktop', 'Scripts', INPUT_FILE) user = os.environ['PGUSER'] password = os.environ['PGPASSWORD'] # dump df = pd.read_excel(file) engine = create_engine( f'postgresql://{user}:{password}@localhost:5432/{DB}') df.to_sql(TABLE, engine, if_exists='replace')
def __init__(self, parent, **args): my_args = { 'caption': self._caption, 'caption_attr': self._caption_attr, 'default_val': self._default_val, 'style': 'simple' } if not isinstance(parent, Form): raise Exception("Fields may only be added to forms.") my_args = get_args(my_args, args) Box.__init__(self, parent, **args) self._caption = my_args['caption'] self._caption_attr = my_args['caption_attr'] self._default_val = my_args['default_val'] self._val = my_args['default_val'] if not my_args['style'] in self.STYLES: raise Exception("Unrecognized style %s for field %s." % (my_args['style'], self._name)) self._style = my_args['style']
def _evaluate(indata, prefix): feats = util.get_features(indata, prefix) kfun = eval(indata[prefix + 'name'] + 'Kernel') kargs = util.get_args(indata, prefix) kernel = kfun(*kargs) if indata.has_key(prefix + 'normalizer'): kernel.set_normalizer(eval(indata[prefix + 'normalizer'] + '()')) kernel.init(feats['train'], feats['train']) km_train = max( abs(indata[prefix + 'matrix_train'] - kernel.get_kernel_matrix()).flat) kernel.init(feats['train'], feats['test']) km_test = max( abs(indata[prefix + 'matrix_test'] - kernel.get_kernel_matrix()).flat) return util.check_accuracy(indata[prefix + 'accuracy'], km_train=km_train, km_test=km_test)
def main(): # get parameters args = util.get_args() # set random seed np.random.seed(args.seed) # get benchmark functions = benchmark.get_functions(args) print(functions) # run optimizer Results = [] mto = args.algorithm(functions, args) mto.optimize(callback=Results.append) # save data optimizer.save(Results, args)
def _evaluate(indata): prefix = 'distance_' feats = util.get_features(indata, prefix) dfun = eval(indata[prefix + 'name']) dargs = util.get_args(indata, prefix) distance = dfun(feats['train'], feats['train'], *dargs) dm_train = max( abs(indata[prefix + 'matrix_train'] - distance.get_distance_matrix()).flat) distance.init(feats['train'], feats['test']) dm_test = max( abs(indata[prefix + 'matrix_test'] - distance.get_distance_matrix()).flat) return util.check_accuracy(indata[prefix + 'accuracy'], dm_train=dm_train, dm_test=dm_test)
def __init__(self, out_class): torch.manual_seed(100) """ Training Parameters""" train_args = vars(get_args()) train_args['NumEpochs'] = 500 train_args['BatchSize'] = 16 * 4 train_args['ValGamma'] = 0.9 train_args['ValLr'] = 1e-4 train_args['ValWeightDecay'] = 0.00 train_args['RunPar'] = True train_args['use_gpu'] = [0] if train_args['registration']: print('Perform Examples of Linear Registration') registration(['SAG_IW_TSE_LEFT']) #, 'SAG_IW_TSE_RIGHT']) """ Options """ options = { 'sampling': 'random7', 'use_val': True, 'img_dir': 'data/registered/', 'load_list': ['SAG_IW_TSE_LEFT', 'SAG_IW_TSE_RIGHT'], 'slice_range': [None, None], 'network_choice': 'present', 'fusion_method': 'cat', 'trial_name': 'Pain_uni_present' } """ Create and save Manager""" self.Manager = KneeManager(options=options, train_args=train_args, labels=get_label('Fusion_Results/' + options['trial_name']), out_class=out_class) print(self.Manager.options) print(self.Manager.train_args) if not os.path.isdir('Fusion_Results/' + self.Manager.options['trial_name']): os.mkdir('Fusion_Results/' + self.Manager.options['trial_name']) if not os.path.isdir('cam_print/'): os.mkdir('cam_print/')
def main3(): #doc = pkl.load(open("doc_example.p", "rb")) #print(doc.content) #print(len(doc.content)) #print("*"*40) #print(doc.summary) doc = Document(content=[[ 'to', 'the', 'editor', 're', 'for', 'women', 'worried', 'about', 'fertility', 'egg', 'bank', 'is', 'a', 'new', 'option', 'sept', '00', 'imagine', 'my', 'joy', 'in', 'reading', 'the', 'morning', 'newspapers', 'on', 'the', 'day', 'of', 'my', '00th', 'birthday', 'and', 'finding', 'not', 'one', 'but', 'two', 'articles', 'on', 'how', 'women', 's', 'fertility', 'drops', 'off', 'precipitously', 'after', 'age', '00' ], [ 'one', 'in', 'the', 'times', 'and', 'one', 'in', 'another', 'newspaper' ], ['i', 'sense', 'a', 'conspiracy', 'here'], [ 'have', 'you', 'been', 'talking', 'to', 'my', 'mother', 'in', 'law' ], ['laura', 'heymann', 'washington']], summary=[[ 'laura', 'heymann', 'letter', 'on', 'sept', '00', 'article', 'about', 'using', 'egg', 'bank', 'to', 'prolong', 'fertility', 'expresses', 'ironic', 'humor', 'about', 'her', 'age', 'and', 'chances', 'of', 'becoming', 'pregnant' ]], label=1, label_idx=1) #x = torch.tensor([1.]*12, device='cuda:0') #outputs = torch.nn.functional.softmax(Variable(x), dim=0).data #outputs = outputs.view(12, 1) args = get_args() #print("args.std_rouge:", args.std_rouge) if args.oracle_length == -1: # use true oracle length oracle_summary_sent_num = len(doc.summary) else: oracle_summary_sent_num = args.oracle_length
def _evaluate_top_fisher(indata, prefix): feats = {} wordfeats = util.get_features(indata, prefix) pos_train = HMM(wordfeats['train'], indata[prefix + 'N'], indata[prefix + 'M'], indata[prefix + 'pseudo']) pos_train.train() pos_train.baum_welch_viterbi_train(BW_NORMAL) neg_train = HMM(wordfeats['train'], indata[prefix + 'N'], indata[prefix + 'M'], indata[prefix + 'pseudo']) neg_train.train() neg_train.baum_welch_viterbi_train(BW_NORMAL) pos_test = HMM(pos_train) pos_test.set_observations(wordfeats['test']) neg_test = HMM(neg_train) neg_test.set_observations(wordfeats['test']) if indata[prefix + 'name'] == 'TOP': feats['train'] = TOPFeatures(10, pos_train, neg_train, False, False) feats['test'] = TOPFeatures(10, pos_test, neg_test, False, False) else: feats['train'] = FKFeatures(10, pos_train, neg_train) feats['train'].set_opt_a(-1) #estimate prior feats['test'] = FKFeatures(10, pos_test, neg_test) feats['test'].set_a( feats['train'].get_a()) #use prior from training data prefix = 'kernel_' args = util.get_args(indata, prefix) kernel = PolyKernel(feats['train'], feats['train'], *args) # kernel=PolyKernel(*args) # kernel.init(feats['train'], feats['train']) km_train = max( abs(indata[prefix + 'matrix_train'] - kernel.get_kernel_matrix()).flat) kernel.init(feats['train'], feats['test']) km_test = max( abs(indata[prefix + 'matrix_test'] - kernel.get_kernel_matrix()).flat) return util.check_accuracy(indata[prefix + 'accuracy'], km_train=km_train, km_test=km_test)
def _evaluate_top_fisher (indata, prefix): feats={} wordfeats=util.get_features(indata, prefix) pos_train=HMM(wordfeats['train'], indata[prefix+'N'], indata[prefix+'M'], indata[prefix+'pseudo']) pos_train.train() pos_train.baum_welch_viterbi_train(BW_NORMAL) neg_train=HMM(wordfeats['train'], indata[prefix+'N'], indata[prefix+'M'], indata[prefix+'pseudo']) neg_train.train() neg_train.baum_welch_viterbi_train(BW_NORMAL) pos_test=HMM(pos_train) pos_test.set_observations(wordfeats['test']) neg_test=HMM(neg_train) neg_test.set_observations(wordfeats['test']) if indata[prefix+'name']=='TOP': feats['train']=TOPFeatures(10, pos_train, neg_train, False, False) feats['test']=TOPFeatures(10, pos_test, neg_test, False, False) else: feats['train']=FKFeatures(10, pos_train, neg_train) feats['train'].set_opt_a(-1) #estimate prior feats['test']=FKFeatures(10, pos_test, neg_test) feats['test'].set_a(feats['train'].get_a()) #use prior from training data prefix='kernel_' args=util.get_args(indata, prefix) kernel=PolyKernel(feats['train'], feats['train'], *args) # kernel=PolyKernel(*args) # kernel.init(feats['train'], feats['train']) km_train=max(abs( indata[prefix+'matrix_train']-kernel.get_kernel_matrix()).flat) kernel.init(feats['train'], feats['test']) km_test=max(abs( indata[prefix+'matrix_test']-kernel.get_kernel_matrix()).flat) return util.check_accuracy(indata[prefix+'accuracy'], km_train=km_train, km_test=km_test)
def write(self, text, **args): '''Prints formatted text to the box interior, returning the formatted text.''' my_args = { 'text_align': self._text_align, 'text_indent': self._text_indent, 'text_attr': self._text_attr, 'text_wrap': self._text_wrap, 'left': 0, 'top': 0, 'refresh': True } my_args = get_args(my_args, args) center = self.get_center() # TODO: word-wrapping/overflow break our text up into multiple lines f_text = text # figure out how to format the text metrics = self.get_metrics() top = metrics['inner_top'] + my_args['top'] left = metrics['inner_left'] + my_args['left'] if my_args['text_align'] == 'left': if self._text_indent != 0: left += self._text_indent elif my_args['text_align'] == 'center': left = int(center['left'] - (len(text) / 2)) if self._text_indent != 0: left += self._text_indent elif my_args['text_align'] == 'right': left = (metrics['inner_right'] - my_args['left']) - len(text) if self._text_indent != 0: left -= self._text_indent else: raise Exception("Invalid text alignment of '%s'." \ % my_args['text_align']) self.doc.win.addstr(top, left, text, my_args['text_attr']) if my_args['refresh']: self.doc.win.refresh() return self
def _evaluate_top_fisher (indata, prefix): raise NotImplementedError, 'TOP/Fisher not yet supported in static interfaces.' sg('new_hmm', indata[prefix+'N'], indata[prefix+'M']) pos=HMM(wordfeats['train'], indata[prefix+'N'], indata[prefix+'M'], indata[prefix+'pseudo']) pos.train() pos.baum_welch_viterbi_train(BW_NORMAL) neg=HMM(wordfeats['train'], indata[prefix+'N'], indata[prefix+'M'], indata[prefix+'pseudo']) neg.train() neg.baum_welch_viterbi_train(BW_NORMAL) pos_clone=HMM(pos) neg_clone=HMM(neg) pos_clone.set_observations(wordfeats['test']) neg_clone.set_observations(wordfeats['test']) if indata[prefix+'type']=='TOP': feats['train']=TOPFeatures(10, pos, neg, False, False) feats['test']=TOPFeatures(10, pos_clone, neg_clone, False, False) else: feats['train']=FKFeatures(10, pos, neg) feats['train'].set_opt_a(-1) #estimate prior feats['test']=FKFeatures(10, pos_clone, neg_clone) feats['test'].set_a(feats['train'].get_a()) #use prior from training data prefix='kernel_' args=util.get_args(indata, prefix) kernel=PolyKernel(feats['train'], feats['train'], *args) km_train=max(abs( indata[prefix+'matrix_train']-kernel.get_kernel_matrix()).flat) kernel.init(feats['train'], feats['test']) km_test=max(abs( indata[prefix+'matrix_test']-kernel.get_kernel_matrix()).flat) return util.check_accuracy(indata[prefix+'accuracy'], km_train=km_train, km_test=km_test)
def border(self, **args): my_args = { 'style': None, 'border': None, 'border_chars': self._border_chars, 'border_attr': self._border_attr, 'refresh': True } my_args = get_args(my_args, args) # return our style info by default if my_args['style'] == None and my_args['border'] == None: return { 'border': self._border, 'border_chars': self._border_chars, 'border_attr': self._border_attr } elif my_args['style'] in BORDER_STYLES: my_args['border'] = [1, 1, 1, 1]; my_args['border_chars'] = BORDER_STYLES[my_args['style']][0:8] my_args['border_attr'] = BORDER_STYLES[my_args['style']][8] elif not (len(my_args['border_chars']) == 8 and len(my_args['border']) == 4): raise Exception("Invalid border sizes (%s), chars (%s), or style (%s)." % (str(my_args['border']), str(my_args['border_chars']), str(my_args['style'])) ) # set our border info self._border = my_args['border'] self._border_chars = my_args['border_chars'] self._border_attr = my_args['border_attr'] # ['|', '|', '-', '-', '.', '.', "'", "'"] # left rght top btm tl tr bl br # 0 1 2 3 4 5 6 7 top = self._top + self._margin[0] + my_args['border'][0] bottom = top + self._height + 1 - my_args['border'][2] metrics = self.get_metrics() for y in range(top, bottom): # left edge for i in range(0, my_args['border'][3]): self.doc.win.addch( y, self._left + self._margin[3] + i, ord(my_args['border_chars'][0]), my_args['border_attr'] ) # right edge for i in range(0, my_args['border'][3]): self.doc.win.addch( y, self._left + self._width + 1 + self._margin[3] + i, ord(my_args['border_chars'][1]), my_args['border_attr'] ) # top border for i in range(0, my_args['border'][0]): self.doc.win.addstr( self._top + self._margin[0] + i, self._left + self._margin[3] + my_args['border'][3], my_args['border_chars'][2] * (self._width + 1 - my_args['border'][1]), my_args['border_attr'] ) # bottom border for i in range(0, my_args['border'][2]): self.doc.win.addstr( bottom + i, self._left + self._margin[3] + my_args['border'][3], my_args['border_chars'][3] * (self._width + 1 - my_args['border'][1]), my_args['border_attr'] ) # top left and top right corners for i in range(0, my_args['border'][0]): # top left self.doc.win.addstr( self._top + self._margin[0] + i, self._left + self._margin[3], my_args['border_chars'][4] * my_args['border'][3], my_args['border_attr'] ) # top right self.doc.win.addstr( self._top + self._margin[0] + i, self._left + self._margin[3] + self._width + 1, my_args['border_chars'][5] * my_args['border'][1], my_args['border_attr'] ) # bottom left and bottom right corners for i in range(0, my_args['border'][2]): # bottom left self.doc.win.addstr( bottom + i, self._left + self._margin[3], my_args['border_chars'][6] * my_args['border'][3], my_args['border_attr'] ) # bottom right self.doc.win.addstr( bottom + i, self._left + self._margin[3] + self._width, my_args['border_chars'][7] * my_args['border'][1], my_args['border_attr'] ) self._dirty = True # and refresh if needed if my_args['refresh']: self.doc.win.refresh() return self
def parse_args(self, expr, arg_slice=None): args = { 'path': None, 'verb': None, 'api_args': {}, 'basic_auth': None, 'cmd_args': [], 'headers': {}, 'data': [], 'extract': [], 'exclude': [], 'invert_color': False, 'color': self.main_args['color'], 'formatted': self.main_args['formatted'], 'url': self.main_args['url'], 'verbose': False, 'stdout_redir': None, 'redir_type': None, 'shell': False, 'query': [], 'help': False, # user just wanted some help 'FILES': [], 'oauth': { 'consumer_key': None, 'consumer_secret': None, 'token': None, 'token_secret': None } } if isinstance(expr, basestring): parts = shlex.split(expr) else: parts = expr # already a list # check for any condensed parameters (e.g. -fr = -f, -r) old_parts = parts[:] for i in range(0, len(parts)): part = parts[i] if len(part) > 2 and part[0] == '-' and not (part[1] in ['-', '+', '=']): # expand the parameters out parts = parts[:i] + \ [''.join(['-', param]) for param in parts[i][1:]] + \ parts[i + 1:] i = 0 # iterate through each paramter and handle it while i < len(parts): part = parts[i] if len(part) == 0: pass elif part == '>' or part[0] == '>' or part == '>>': # output redirection! woot if part == '>' or parts == '>>': i += 1 if part == '>': args['redir_type'] = 'w' else: args['redir_type'] = 'a' if i == len(parts): raise Exception("Missing file path to output result to.") args['stdout_redir'] = parts[i] else: if len(part) > 1 and part[0:2] == '>>': args['stdout_redir'] = part[2:] args['redir_type'] = 'a' else: args['stdout_redir'] = part[1:] args['redir_type'] = 'w' elif part == '-B' or part == '--basic': i += 1 if i == len(parts): raise Exception("Missing HTTP basic auth user/pass parameter.") if ':' not in parts[i]: raise Exception("Expected HTTP basic auth in format 'user:pass'.") args['basic_auth'] = parts[i] elif part == '-F' or part == '--file': i += 1 if i == len(parts): raise Exception("Missing value for file to upload.") # collect up the name if parts[i].find('=') == -1 or parts[i].find('&') != -1: raise Exception("Invalid file name=file_path pair.") (name, path) = parts[i].split('=', 1) # make sure the file exists if not os.path.isfile(path): raise Exception("Unable to either read or locate file '%s." % path) args['FILES'][name] = path raise Exception("Not supported at the moment") elif part == '-Q' or part == '--query': i += 1 if i == len(parts): raise Exception("Missing query name=value pair.") # make sure we have a valid pair if parts[i].find('=') == -1 or parts[i].find('&') != -1: raise Exception("Invalid query name=value pair.") args['query'].append(parts[i]) elif part == '-i' or part == '--invert': args['invert_color'] = True elif part == '-c' or part == '--color': args['color'] = True elif part == '-C' or part == '--no-color': args['color'] = False elif part == '-v' or part == '--verbose': args['verbose'] = True elif part == '-f' or part == '--form': args['headers']['content-type'] = 'application/x-www-form-urlencoded' elif part == '-O' or part == '--oauth': # the next 4 parameters are for oauth if i + 4 == len(parts): raise Exception("Missing one of the following values for --oauth: consumer key, consumer secret, token, token secret.") next_params = [ 'consumer_key', 'consumer_secret', 'token', 'token_secret' ] for ctr in range(0, 4): args['oauth'][next_params[ctr]] = parts[i + ctr + 1] i += 4 elif part == '-h' or part == '--help': self.print_help() args['help'] = True elif part == '-H' or part == '--header': i += 1 if i == len(parts): raise Exception("Missing value for HTTP header.") h_parts = parts[i].split(': ', 1) if len(h_parts) != 2: raise Exception("Invalid HTTP header.") args['headers'][h_parts[0].lower()] = h_parts[1] elif part == '-s' or part == '--shell': args['shell'] = True elif part == '-j' or part == '--json': i += 1 if i == len(parts): raise Exception("Missing value for JSON API params.") try: api_args = self.decode(parts[i]) if isinstance(api_args, dict): args['api_args'].update(api_args) else: raise JSONException("JSON values must be a dictionary of arguments.") except JSONException as e: sys.stderr.write('Invalid JSON:' + e.message) raise e except Exception as e: sys.stderr.write('Invalid JSON:' + e.message) raise JSONException(e.message) elif part == '-r' or part == '--raw': args['formatted'] = False elif part == '--url' or part == '-u': i += 1 if i == len(parts): raise Exception("Missing value for URL.") args['url'] = parts[i] elif part == '-d' or part == '--data': i += 1 if i == len(parts): raise Exception("Missing value for --data.") part = parts[i] if part.index('=') == -1: raise Exception("Invalid parameter for --data: expected format NAME[+]=PATH") args['data'].append(DataMap(*part.split('=', 1))) elif part == '-x' or part == '--extract': i += 1 if i == len(parts): raise Exception("Missing value for --extract.") args['extract'].append(parts[i]) elif part == '-X' or part == '--exclude': i += 1 if i == len(parts): raise Exception("Missing value for --exclude.") args['exclude'].append(parts[i]) else: # we always pick up the command/method first if args['verb'] is None: args['verb'] = part.lower() # process any aliases if args['verb'] in self.method_aliases: args['verb'] = self.method_aliases[args['verb']] elif args['verb'] in self.http_methods and args['path'] is None: # collect the API -- unless this is a internal command args['path'] = util.pretty_path(self.parse_path(part), False, False) else: # anything else is a parameter if args['verb'] in self.http_methods: # get the name/value args['api_args'] = self.parse_param(part, args['api_args']) else: args['cmd_args'].append(part) i += 1 if arg_slice is not None: args = util.get_args(arg_slice, args) return args
#!/usr/bin/env /usr/bin/python # -*- coding: utf-8 -*- import render import query import util import get_svg import re args = util.get_args() #get the form data in an array render.http_header() #load header render.html_header() #load scripts gt = args['GraphTerm'] if 'GraphTerm' in args else '' #ct = args['ClusterTerm'] if 'ClusterTerm' in args else '' mode = args['GraphMode'] if 'GraphMode' in args else '' render.render_div_search(ft=gt, gt=gt) #display form #render.render_datalist( 'terms'); x = args['all'] if 'all' in args else '' match = re.search(r'cl[0-9]',mode) if mode == 'all' or match: print ''' <p> Most Connected graph </p> ''' print get_svg.get_svg_all(args) print ''' </div> '''
import os import time import glob import torch import torch.optim as O import torch.nn as nn from torchtext import data from torchtext import datasets from model import SNLIClassifier from util import get_args args = get_args() torch.cuda.set_device(args.gpu) inputs = data.Field(lower=args.lower) answers = data.Field(sequential=False) train, dev, test = datasets.SNLI.splits(inputs, answers) inputs.build_vocab(train, dev, test) if args.word_vectors: if os.path.isfile(args.vector_cache): inputs.vocab.vectors = torch.load(args.vector_cache) else: inputs.vocab.load_vectors(wv_dir=args.data_cache, wv_type=args.word_vectors, wv_dim=args.d_embed) os.makedirs(os.path.dirname(args.vector_cache), exist_ok=True) torch.save(inputs.vocab.vectors, args.vector_cache)