Beispiel #1
0
def train(height = CAPTCHA_HEIGHT, width = CAPTCHA_WIDTH, y_size = len(CAPTCHA_LIST) * CAPTCHA_LEN):
    acc_rate = 0.95
    
    x = placeholder(float32, [None, height * width])
    y = placeholder(float32, [None, y_size])
    keep_prob = placeholder(float32)
    y_conv = cnn_graph(x, keep_prob, (height, width))
    optimizer = optimize_graph(y, y_conv)
    accuracy = accuracy_graph(y, y_conv)
    saver = Saver()
    sess = Session()
    sess.run(global_variables_initializer())
    step = 0
    while 1:
        batch_x, batch_y = get_next_batch(64)
        sess.run(optimizer, feed_dict = {x: batch_x, y: batch_y, keep_prob: 0.75})
        if step % 100 == 0:
            batch_x_test, batch_y_test = get_next_batch(100)
            acc = sess.run(accuracy, feed_dict = {x: batch_x_test, y: batch_y_test, keep_prob: 1.0})
            print(datetime.now().strftime('%c'), ' step:', step, ' accuracy:', acc)
            if acc > acc_rate:
                if not isdir('./model'):
                    mkdir('./model')
                
                print('Saving to model/captcha.model')
                saver.save(sess, './model/captcha.model', global_step = step)
                print('Saved to model/captcha.model')
                acc_rate += 0.005
                if acc_rate >= 1:
                    break
        step += 1
    sess.close()
Beispiel #2
0
def train(height=CAPTCHA_HEIGHT,
          width=CAPTCHA_WIDTH,
          y_size=len(CAPTCHA_LIST) * CAPTCHA_LEN):
    """
    cnn训练
    :param height: 验证码高度
    :param width:   验证码宽度
    :param y_size:  验证码预备字符列表长度*验证码长度(默认为4)
    :return:
    """
    # cnn在图像大小是2的倍数时性能最高, 如果图像大小不是2的倍数,可以在图像边缘补无用像素
    # 在图像上补2行,下补3行,左补2行,右补2行
    # np.pad(image,((2,3),(2,2)), 'constant', constant_values=(255,))

    acc_rate = 0.95  # 预设模型准确率标准
    # 按照图片大小申请占位符
    x = tf.placeholder(tf.float32, [None, height * width])
    y = tf.placeholder(tf.float32, [None, y_size])
    # 防止过拟合 训练时启用 测试时不启用 神经元使用率
    keep_prob = tf.placeholder(tf.float32)
    # cnn模型
    y_conv = cnn_graph(x, keep_prob, (height, width))
    # 优化
    optimizer = optimize_graph(y, y_conv)
    # 计算准确率
    accuracy = accuracy_graph(y, y_conv)
    # 启动会话.开始训练
    saver = tf.train.Saver()
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())  # 初始化
    step = 0  # 步数
    while 1:
        batch_x, batch_y = get_next_batch(64)
        sess.run(optimizer,
                 feed_dict={
                     x: batch_x,
                     y: batch_y,
                     keep_prob: 0.75
                 })
        # 每训练一百次测试一次
        if step % 100 == 0:
            batch_x_test, batch_y_test = get_next_batch(100)
            acc = sess.run(accuracy,
                           feed_dict={
                               x: batch_x_test,
                               y: batch_y_test,
                               keep_prob: 1.0
                           })
            print(datetime.now().strftime('%c'), ' step:', step, ' accuracy:',
                  acc)
            # 准确率满足要求,保存模型
            if acc > acc_rate:
                model_path = "./model/captcha.model"
                saver.save(sess, model_path, global_step=step)
                acc_rate += 0.01
                if acc_rate > 0.99:  # 准确率达到99%则退出
                    break
        step += 1
    sess.close()
Beispiel #3
0
def train(height=CAPTCHA_HEIGHT,
          width=CAPTCHA_WIDTH,
          y_size=len(CHARSET_LIST) * CAPTCHA_LEN):
    """
    cnn训练
    :param height: 验证码高度
    :param width:   验证码宽度
    :param y_size:  验证码预备字符列表长度*验证码长度(默认为4)
    :return:
    """
    target_accuracy = PRESET_ACCURACY  # 预设模型准确率标准
    # cnn 在图像大小是 2 的倍数时性能最高, 如果图像大小不是 2 的倍数,可以在图像边缘补无用像素
    # 在图像上补 2 行,下补 3 行,左补 2 行,右补 2 行
    # np.pad(image, ((2, 3), (2, 2)), 'constant', constant_values=(255,))

    # 按照图片大小申请占位符
    x = tf.compat.v1.placeholder(tf.float32, [None, height * width])
    y = tf.compat.v1.placeholder(tf.float32, [None, y_size])
    # 防止过拟合 训练时启用 测试时不启用 神经元使用率
    keep_prob = tf.compat.v1.placeholder(tf.float32)
    # cnn 模型
    y_conv = cnn_graph(x, keep_prob, (height, width))
    # 优化
    optimizer = optimize_graph(y, y_conv)
    # 计算准确率
    accuracy = accuracy_graph(y, y_conv)
    # 启动会话,开始训练
    saver = tf.compat.v1.train.Saver()
    sess = tf.compat.v1.Session()
    sess.run(tf.compat.v1.global_variables_initializer())  # 初始化
    step = 0  # 步数
    while 1:
        batch_x, batch_y = get_next_batch(64)
        sess.run(optimizer,
                 feed_dict={
                     x: batch_x,
                     y: batch_y,
                     keep_prob: 0.75
                 })
        # 每训练 100 次测试一次
        if step % 100 == 0:
            batch_x_test, batch_y_test = get_next_batch(100)
            current_accuracy = sess.run(accuracy,
                                        feed_dict={
                                            x: batch_x_test,
                                            y: batch_y_test,
                                            keep_prob: 1.0
                                        })
            print(datetime.now().strftime('%c'), ' step:', step, ' accuracy:',
                  current_accuracy)
            # 准确率满足要求,保存模型
            if current_accuracy > target_accuracy:
                model_path = os.path.join(MODEL_DIR, "captcha-model")
                saver.save(sess, model_path, global_step=step)
                target_accuracy += 0.01
                if target_accuracy > FINAL_ACCURACY:  # 准确率达到 FINAL_ACCURACY 则退出
                    break
        step += 1
    sess.close()
Beispiel #4
0
def train(height=CAPTCHA_HEIGHT, width=CAPTCHA_WIDTH, y_size=len(CAPTCHA_LIST)*CAPTCHA_LEN):
    """
    cnn训练
    :param height: 验证码高度
    :param width:   验证码宽度
    :param y_size:  验证码预备字符列表长度*验证码长度(默认为4)
    :return:
    """
    # cnn在图像大小是2的倍数时性能最高, 如果图像大小不是2的倍数,可以在图像边缘补无用像素
    # 在图像上补2行,下补3行,左补2行,右补2行
    # np.pad(image,((2,3),(2,2)), 'constant', constant_values=(255,))

    acc_rate = 0.95     # 预设模型准确率标准
    # 按照图片大小申请占位符
    x = tf.placeholder(tf.float32, [None, height * width])
    y = tf.placeholder(tf.float32, [None, y_size])
    # 防止过拟合 训练时启用 测试时不启用 神经元使用率
    keep_prob = tf.placeholder(tf.float32)
    # cnn模型
    y_conv = cnn_graph(x, keep_prob, (height, width))
    # 优化
    optimizer = optimize_graph(y, y_conv)
    # 计算准确率
    accuracy = accuracy_graph(y, y_conv)
    # 启动会话.开始训练
    saver = tf.train.Saver()
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())     # 初始化
    # 基于当前已有模型进行二次训练
    if os.path.exists("model/checkpoint"):
        model_file = tf.train.latest_checkpoint('model/')
        saver.restore(sess, model_file)
    step = 0    # 步数
    while 1:
        batch_x, batch_y = get_next_batch(64)
        sess.run(optimizer, feed_dict={x: batch_x, y: batch_y, keep_prob: 0.75})
        # 每训练一百次测试一次
        if step % 100 == 0:
            batch_x_test, batch_y_test = get_next_batch(100)
            acc = sess.run(accuracy, feed_dict={x: batch_x_test, y: batch_y_test, keep_prob: 1.0})
            print(datetime.now().strftime('%c'), ' step:', step, ' accuracy:', acc)
            # 准确率满足要求,保存模型
            if acc > acc_rate:
                model_path = "./model/captcha.model"
                saver.save(sess, model_path, global_step=step)
                acc_rate += 0.01
                if acc_rate > 0.99:     # 准确率达到99%则退出

                    #  训练结束时保存pb模型
                    constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['output'])
                    with tf.gfile.FastGFile("./model/" + str(step) + 'model.pb', mode='wb') as f:
                        f.write(constant_graph.SerializeToString())

                    break
        step += 1
    sess.close()
Beispiel #5
0
summary = tf.summary.merge_all()

saver = tf.train.Saver()

# Initializer
init = tf.global_variables_initializer()
saver_step = 100
with tf.Session() as sess:
    writer = tf.summary.FileWriter(logdir="./Tensorboard", graph=sess.graph)

    sess.run(init)

    for step in range(1, par.num_steps + 1):
        # Get the next batch
        batch_x, batch_y = util.get_next_batch(batch_size=par.batch_size,
                                               image_size=par.image_size,
                                               threshold=par.threshold)
        batch_y = tf.one_hot(np.reshape(batch_y, [-1]), par.num_classes)
        _, s = sess.run(
            [training_op, summary],
            feed_dict={
                X: batch_x,
                Y: sess.run(batch_y),
                keep_prob: par.dropout,
                global_step: step
            })

        writer.add_summary(s, step)

        if step % par.display_step == 0 or step == 1:
            loss, acc = sess.run([loss_op, accuracy],