Beispiel #1
0
def pred(model, X, char_set, label_set, post_correction):
	pred_res = model.predict(X)
	pred_res = [one_hot_decoder(i, char_set) for i in pred_res]
	pred_res = [list2str(i) for i in pred_res]
	# post correction
	if post_correction:
		pred_res = correction(pred_res, label_set)
	return pred_res
Beispiel #2
0
def pred(model, X, char_set, label_set, post_correction):
    pred_res = model.predict(X)
    pred_res = [one_hot_decoder(i, char_set) for i in pred_res]
    pred_res = [list2str(i) for i in pred_res]
    # post correction
    if post_correction:
        pred_res = correction(pred_res, label_set)
    return pred_res
Beispiel #3
0
 def pred(self, X):
     pred_res = self.model.predict(X, batch_size=256)
     self.pred_probs = pred_res
     pred_res = [one_hot_decoder(i, self.char_set) for i in pred_res]
     pred_res = [list2str(i) for i in pred_res]
     # post correction
     if self.post_correction:
         pred_res = correction(pred_res, self.label_set)
     return pred_res
Beispiel #4
0
 def pred(self, X):
     pred_res = self.model.predict(X, batch_size=256)
     self.pred_probs = pred_res
     pred_res = [one_hot_decoder(i, self.char_set) for i in pred_res]
     pred_res = [list2str(i) for i in pred_res]
     # post correction
     if self.post_correction:
         pred_res = correction(pred_res, self.label_set)
     return pred_res
Beispiel #5
0
def test(model, test_data, char_set, post_correction):
	test_X, test_y = test_data[0], test_data[1]
	test_y = [one_hot_decoder(i, char_set) for i in test_y]
	test_y = [list2str(i) for i in test_y]
	pred_res = pred(model, test_X, char_set, post_correction)

	nb_correct = sum(pred_res[i]==test_y[i] for i in range(len(pred_res)))
	for i in range(len(pred_res)):
		if test_y[i] != pred_res[i]:
			print ('test:', test_y[i])
			print ('pred:', pred_res[i])
			pass
	print ('nb_correct: ', nb_correct)
	print ('Acurracy: ', float(nb_correct) / len(pred_res))
Beispiel #6
0
def test(model, test_data, char_set, label_set, post_correction):
	test_X, test_y = test_data[0], test_data[1]
	test_y = [one_hot_decoder(i, char_set) for i in test_y]
	test_y = [list2str(i) for i in test_y]
	pred_res = pred(model, test_X, char_set, label_set, post_correction)
	# for i in pred_res:
	# 	print i
	nb_correct = sum(pred_res[i]==test_y[i] for i in range(len(pred_res)))
	for i in range(len(pred_res)):
		if test_y[i] != pred_res[i]:
			print 'test:', test_y[i]
			print 'pred:', pred_res[i]
			pass
	print 'nb_correct: ', nb_correct
	print 'Acurracy: ', float(nb_correct) / len(pred_res)