def test_merge_models(): index = util.load_index('casado') stmt, best_obj = util.merge_models([index['casado01'], index['casado03']]) output = StringIO() ampl.pretty_print(output, stmt) assert output.getvalue() == \ """var x1 in [0, 20]; var x2 in [-10, 10]; minimize f: ((exp(-3 * x1) - sin(x1) ^ 3) + 1.0) * ((x2 - x2 ^ 2) ^ 2 + (x2 - 1) ^ 2); """ assert best_obj == 0
from util import load_conll, eval_result, dev_and_test_comb, gen_data, pad_data, pad_label, pad_word_input, load_index, \ data_to_seq from config import config # np.random.seed(7) texts, labels = load_conll(config.train_path, config.labels_index) val_texts, val_labels = load_conll(config.dev_path, config.labels_index) # texts, labels = load_conll('keras_data/1.txt') test_texts, test_labels = load_conll(config.test_path, config.labels_index) # ===================== # build char cnn # ===================== index_char = load_index(config.char_index) # print(index_char) MAX_WORD_LENGTH = config.word_length wl = MAX_WORD_LENGTH train_char, sl, wl = gen_data(texts, 0, wl, index_char) val_char, sl, wl = gen_data(val_texts, sl, wl, index_char) test_char, sl, wl = gen_data(test_texts, sl, wl, index_char) MAX_SEQUENCE_LENGTH = sl if MAX_SEQUENCE_LENGTH % 2 == 1: MAX_SEQUENCE_LENGTH += 1 print(MAX_WORD_LENGTH) print(MAX_SEQUENCE_LENGTH)
# Benchmark example import couenne, lgo from util import Config, load_index inputs = load_index('casado', 'hansen') # Timeout in seconds timeout = 60 configs = [ Config('minos'), Config('baron'), Config('couenne', couenne.options()), Config('lgo', {'opmode': lgo.LOCAL_SEARCH_MODE}, suffix='local-search'), Config('lgo', {'opmode': lgo.MULTISTART_MODE}, suffix='multistart') ]
# This benchmark is run on a collection of Casado and Hansen problems. import couenne, lgo from util import Config, load_index from common import * inputs = load_index('casado', 'hansen') # Timeout in seconds timeout = 60 configs = [ Config('minos'), Config('baron'), Config('couenne', couenne.options()), Config('lgo', {'opmode': lgo.LOCAL_SEARCH_MODE}, suffix='local-search'), Config('lgo', {'opmode': lgo.MULTISTART_MODE}, suffix='multistart', on_nl_file=lgo.make_maxfct_setter(2)) ]
# This benchmark is run on a collection of 3-dimensional problems generated # by combining problems from Casado and Hansen. import couenne, lgo from util import Config, get_problem_combinator, load_index from common import * inputs = get_problem_combinator(load_index('casado', 'hansen'), 3, 1000) # Timeout in seconds timeout = 60 configs = [ Config('lgo', {'opmode': lgo.LOCAL_SEARCH_MODE}, suffix='local-search'), Config('lgo', {'opmode': lgo.MULTISTART_MODE}, suffix='multistart', on_nl_file=lgo.make_maxfct_setter(2)), Config('lgo', {'opmode': lgo.MULTISTART_MODE}, suffix='multistart-k4', on_nl_file=lgo.make_maxfct_setter(4)), Config('minos'), Config('baron'), Config('couenne', couenne.options()) ]
from os.path import join from collections import Counter import time from util import preprocess, load_index from util import VOCAB_FILE from Doc import doc from documents import Documents from output import Results import pandas as pd from pandas import DataFrame import numpy as np INDEX = load_index() class Answer_query(object): """这个类 将一个查询语句 解析成向量的形式 """ def __init__(self, query_string, topk=10): """args: query_string:查询的字符串 topk:返回的文档的个数 """ self.query_string = query_string self.query_tokens = preprocess(self.query_string) self.topk = topk def vectorize(self):
candidates.append([index[words[1]][i][0],index[words[1]][i][1]/10000,index[words[1]][i][2],index[words[1]][i][3],index[words[1]][i][4]]) if words[2] in index: for i in range(min(5,len(index[words[2]]))): candidates.append([index[words[2]][i][0],index[words[2]][i][1]/10000,index[words[2]][i][2],index[words[2]][i][3],index[words[2]][i][4]]) if words[3] in index: for i in range(min(5,len(index[words[3]]))): candidates.append([index[words[3]][i][0],index[words[3]][i][1]/10000,index[words[3]][i][2],index[words[3]][i][3],index[words[3]][i][4]]) if words[4] in index: for i in range(min(5,len(index[words[4]]))): candidates.append([index[words[4]][i][0],index[words[4]][i][1]/10000,index[words[4]][i][2],index[words[4]][i][3],index[words[4]][i][4]]) candidates.sort(key = lambda x: x[1], reverse=True) for i in range(min(5,len(candidates))): print(candidates[i]) return def loop(index): while True: request = input("> ") if not request: break print(f"quering: {request}") query(index, request) if __name__ == "__main__": nltk.download('wordnet') index = load_index("dic1_index.zstd") loop(index)
# This benchmark is run on a collection of 2-dimensional problems generated # by combining problems from Casado and Hansen. import couenne, lgo from util import Config, get_problem_combinator, load_index from common import * inputs = get_problem_combinator(load_index("casado", "hansen"), 2) # Timeout in seconds timeout = 60 configs = [ Config("lgo", {"opmode": lgo.LOCAL_SEARCH_MODE}, suffix="local-search"), Config("lgo", {"opmode": lgo.MULTISTART_MODE}, suffix="multistart", on_nl_file=lgo.make_maxfct_setter(2)), Config("lgo", {"opmode": lgo.MULTISTART_MODE}, suffix="multistart-k4", on_nl_file=lgo.make_maxfct_setter(4)), Config("minos"), Config("baron"), Config("couenne", couenne.options()), ]
new_vocab_unique['rank'].apply(np.log) new_vocab_unique['logr'] = new_vocab_unique['rank'].apply(np.log) new_vocab_unique['log_count'] = new_vocab_unique['count'].apply(np.log) new_vocab_unique.head() new_vocab_unique.tail() new_vocab_unique.to_csv(index=False) new_vocab_unique.to_csv("DATA/zif.csv",index=False) new_vocab new_vocab.drop("Unnamed: 0") new_vocab new_vocab.drop('Unnamed: 0') new_vocab.drop(columns=['Unnamed: 0']) new_vocab = new_vocab.drop(columns=['Unnamed: 0']) new_vocab from util import load_index index = load_index("DATA/not_stop/index.pkl") index.head() index.sum() tfs = index.sum(axis=1) tfs new_vocab.head() tfs.values len(tfs.values) t = tfs.reindex(new_vocab.index) t.head() tfs.head() t = tfs.reindex(new_vocab['word']) t.head() len(t) len(new_vocab) t.tail()
def test_load_index(): index = util.load_index('cute') assert len(index) == 738 assert index['cresc100']['best_obj'] == 1e-08 assert index['cresc100']['path'] == os.path.join('cute', 'cresc100.mod')
p2gon pgon powell price qb2 rosenbr s324 s383 schwefel shekel steenbre tre weapon ''') inputs = load_index('nlmodels') for model in inputs.keys(): if model not in models: del inputs[model] inputs.update(load_index('jdp')) # Timeout in seconds timeout = 60 configs = [ Config('knitro', {'feastol': 1e-8}), Config('lgo', {'opmode': lgo.LOCAL_SEARCH_MODE}, suffix='local-search'), Config('lgo', {'opmode': lgo.MULTISTART_MODE}, suffix='multistart', on_nl_file=lgo.make_maxfct_setter(2)) ]
parser.add_argument( '--hits_rel', type=int, default=5, help= 'the hits here has to be <= the hits in relation prediction retrieval') parser.add_argument('--no_heuristics', action='store_false', help='do not use heuristics', dest='heuristics') parser.add_argument('--output_dir', type=str, default="./results") args = parser.parse_args() print(args) ent_type = args.ent_type.lower() rel_type = args.rel_type.lower() # assert (ent_type == "crf" or ent_type == "lstm" or ent_type == "gru") # assert (rel_type == "lr" or rel_type == "cnn" or rel_type == "lstm" or rel_type == "gru") output_dir = os.path.join(args.output_dir, "{}-{}".format(ent_type, rel_type)) os.makedirs(output_dir, exist_ok=True) index_reach = load_index(args.index_reachpath) index_degrees = load_index(args.index_degreespath) mid2wiki = get_mid2wiki(args.wiki_path) test_answers = answer_rerank(args.data_path, args.ent_path, args.rel_path, output_dir, index_reach, index_degrees, mid2wiki, args.heuristics, args.hits_ent, args.hits_rel)