def run(self): fn = backup.export_revision(gui.uuid, gui.host, gui.path, rev, target_dir) util.open_file(fn) gtk.gdk.threads_enter() running_tasks_model.remove(i) gtk.gdk.threads_leave()
def run(self): fn = backup.export_revision( gui.uuid, gui.host, gui.path, rev, target_dir ) os.chdir(target_dir) os.system('tar -zxvf "%s"' % fn) os.remove(fn) os.chdir(util.RUN_FROM_DIR) util.open_file(target_dir) gtk.gdk.threads_enter() running_tasks_model.remove(i) gtk.gdk.threads_leave()
def _link_clicked(browser, frame, request, action, decision, *args, **kwargs): if action.get_reason() == WEBKIT_WEB_NAVIGATION_REASON_OTHER: # let this load pass else: # open file in system util.open_file(action.get_original_uri()) # ignore webkit request decision.ignore()
def run(self): fn = backup.export_revision(gui.uuid, gui.host, gui.path, rev, target_dir) os.chdir(target_dir) os.system('tar -zxvf "%s"' % fn) os.remove(fn) os.chdir(util.RUN_FROM_DIR) util.open_file(target_dir) gtk.gdk.threads_enter() running_tasks_model.remove(i) gtk.gdk.threads_leave()
def load(filename): global datafile datafile = util.open_file(os.path.join(workingdir, filename)) core.clean_all(datafile) return "loaded " + filename
def extract_features(assignment_id, buckets): file_path = '/'.join(['./data/files/1222', assignment_id, 'Breakout.java']) file = util.open_file(file_path) features = [] for bucket in buckets: features += get_features(file, bucket) return features
def extract_features(assignment_id, bucket, report=None): file_path = '/'.join(['./data/files', assignment_id, 'Breakout.java']) file = util.open_file(file_path) file_lines = [l for l in file] if bucket == 'Decomposition': return decomposition_features(file_lines, report) elif bucket == 'Commenting': return commenting_features(file_lines, report) elif bucket == 'Naming and Spacing': return naming_and_spacing_features(file_lines, report) elif bucket == 'Instance Variables and Parameters and Constants': return variable_features(file_lines, report) elif bucket == 'Logic and Redundancy': return logic_redundancy_features(file_lines, report) else: # TODO: implement feature extraction for other buckets. print('Can\'t read that bucket yet :/') return []
sess = tf.Session(config=config) init = tf.initialize_all_variables() sess.run(init) saver = tf.train.Saver() # save all variables checkpoint_dir = model_dir checkpoint_file = 'segm.ckpt' if validation_path: validation_data = util.get_validation_data(validation_path, char_dic, vocab_size, n_steps, padd) seq = 0 while seq < training_iters: c_istate = np.zeros((batch_size, 2 * n_hidden)) i = 0 fid = util.open_file(train_path, 'r') for line in fid: line = line.strip() if line == "": continue line = line.decode('utf-8') sentence = util.snorm(line) pos = 0 while pos != -1: batch_xs, batch_ys, next_pos, count = util.next_batch( sentence, pos, char_dic, vocab_size, n_steps, padd) ''' print 'window : ' + sentence[pos:pos+n_steps].encode('utf-8') print 'count : ' + str(count) print 'next_pos : ' + str(next_pos) print batch_ys print batch_xs
def run(self): fn = backup.export_revision( gui.uuid, gui.host, gui.path, rev, target_dir ) util.open_file(fn) gtk.gdk.threads_enter() running_tasks_model.remove(i) gtk.gdk.threads_leave()
def run_games(first_agent, second_agent, first_agent_turn, num_games, update_param=0, quiet=False, first_file_name="./data/first_save", second_file_name="./data/second_save", first_weights_file_name="./data/first_weights", second_weights_file_name="./data/second_weights", first_result_file_name="./data/first_results", second_result_file_name="./data/second_results", first_m_result_file_name="./data/first_m_results", second_m_result_file_name="./data/second_m_results", play_against_self=False): """ first_agent: instance of Agent which reflects first agent second_agent: instance of Agent which reflects second agent first_agent_turn: True if turn is of the first agent num_games: total number of games to run without training num_training: total number of training games to run """ try: write_str = "num_moves,win,reward,max_q_value\n" if first_agent.is_learning_agent: first_f = open_file(first_file_name, header=write_str) first_w_deq = deque() first_f_res = open_file(first_result_file_name) first_writer_res = csv.writer(first_f_res, lineterminator='\n') first_f_m_res = open_file(first_m_result_file_name) first_writer_m_res = csv.writer(first_f_m_res, lineterminator='\n') first_f_str = "" first_writer_w_list = [] if second_agent.is_learning_agent: second_f = open_file(second_file_name, header=write_str) second_w_deq = deque() second_f_res = open_file(second_result_file_name) second_writer_res = csv.writer(second_f_res, lineterminator='\n') second_f_m_res = open_file(second_m_result_file_name) second_writer_m_res = csv.writer(second_f_m_res, lineterminator='\n') second_f_str = "" second_writer_w_list = [] # learn weights # save weights # test using weights # change agent print('starting game', 0) for i in range(num_games): if (i + 1) % NOTIFY_FREQ == 0: print('Starting game', (i + 1)) rules = ClassicGameRules() if first_agent.has_been_learning_agent: first_agent.start_learning() if second_agent.has_been_learning_agent: second_agent.start_learning() game = rules.new_game(first_agent, second_agent, first_agent_turn, quiet=quiet) num_moves, game_state = game.run() if first_agent.is_learning_agent: reward = first_agent.episode_rewards win = 1 if game_state.is_first_agent_win() else 0 init_state = GameState(the_player_turn=first_agent_turn) max_q_value = first_agent.compute_value_from_q_values( init_state) w_str = str(num_moves) + "," + str(win) + "," + str( reward) + "," + str(max_q_value) + "\n" first_f_str += w_str if (i + 1) % WEIGHTS_SAVE_FREQ == 0: if len(first_w_deq ) != 0 and len(first_w_deq) % NUM_WEIGHTS_REM == 0: first_w_deq.popleft() first_w_deq.append(np.array(first_agent.weights)) if (i + 1) % WRITE_FREQ == 0: first_f.write(first_f_str) first_f_str = "" if second_agent.is_learning_agent: reward = second_agent.episode_rewards win = 1 if game_state.is_second_agent_win() else 0 init_state = GameState(the_player_turn=first_agent_turn) max_q_value = second_agent.compute_value_from_q_values( init_state) w_str = str(num_moves) + "," + str(win) + "," + str( reward) + "," + str(max_q_value) + "\n" second_f_str += w_str if (i + 1) % WEIGHTS_SAVE_FREQ == 0: if len(second_w_deq ) != 0 and len(second_w_deq) % NUM_WEIGHTS_REM == 0: second_w_deq.popleft() second_w_deq.append(np.array(second_agent.weights)) if (i + 1) % WRITE_FREQ == 0: second_f.write(second_f_str) second_f_str = "" if (i + 1) % TEST_FREQ == 0: if first_agent.is_learning_agent: first_agent.stop_learning() if second_agent.is_learning_agent: second_agent.stop_learning() result_f = [] result_s = [] print('strting', TEST_GAMES, 'tests') result_f, result_s = \ multiprocess(rules, first_agent, second_agent, first_agent_turn, quiet=True) if first_agent.has_been_learning_agent: first_writer_res.writerow(result_f[0]) first_writer_m_res.writerow(result_f[1]) if second_agent.has_been_learning_agent: second_writer_res.writerow(result_s[0]) second_writer_m_res.writerow(result_s[1]) if first_agent.has_been_learning_agent and play_against_self: if (i + 1) % CHANGE_AGENT_FREQ == 0: weights = first_w_deq[-1] second_agent = QLearningAgent(weights=weights, is_learning_agent=False) if first_agent.has_been_learning_agent and update_param: first_agent.update_parameters(update_param, (i + 1)) if second_agent.has_been_learning_agent and update_param: second_agent.update_parameters(update_param, (i + 1)) #------------------------------- #Printing result if game_state.is_first_agent_win(): print(type(first_agent).__name__) elif game_state.is_second_agent_win(): print(type(second_agent).__name__) except Exception as e: print(sys.exc_info()[0]) traceback.print_tb(e.__traceback__) finally: if first_agent.has_been_learning_agent: first_f.close() first_f_res.close() first_f_m_res.close() first_f_w = open_file(first_weights_file_name) first_writer_w = csv.writer(first_f_w, lineterminator='\n') first_writer_w.writerows(first_w_deq) first_f_w.close() if second_agent.has_been_learning_agent: second_f.close() second_f_res.close() second_f_m_res.close() second_f_w = open_file(second_weights_file_name) second_writer_w = csv.writer(second_f_w, lineterminator='\n') second_writer_w.writerows(second_w_deq) second_f_w.close()
def open_folder(self, widget, file=''): f = pathjoin(self._hub.config_manager.get_watchlist(), file) util.open_file(f)
inter_op_parallelism_threads=NUM_THREADS, log_device_placement=False) sess = tf.Session(config=config) init = tf.global_variables_initializer() sess.run(init) saver = tf.train.Saver() # save all variables checkpoint_dir = model_dir checkpoint_file = 'segm.ckpt' validation_data = util.get_validation_data_emb(validation_path, char_dic, id2emb, n_steps, padd) seq = 0 while seq < training_iters : c_istate = np.zeros((batch_size, 2*n_hidden)) i = 0 fid = util.open_file(train_path, 'r') for line in fid : line = line.strip() if line == "" : continue line = line.decode('utf-8') sentence = util.snorm(line) pos = 0 while pos != -1 : batch_xs, batch_ys, next_pos, count = util.next_batch_emb(sentence, pos, char_dic, id2emb, n_steps, padd) ''' print 'window : ' + sentence[pos:pos+n_steps].encode('utf-8') print 'count : ' + str(count) print 'next_pos : ' + str(next_pos) print batch_ys print batch_xs '''