def __init__(self, Input = pd.DataFrame(), Type = "", Template = "", Opt=0.8, WorkingPath="", Output = "", kernal= "", level="N", metric=0): self.df = Input self.type = Type self.template = Template self.opt = Opt self.working_path = util.path_pro(WorkingPath) self.output_path = Output self.path = "./" self.ndf = [] self.sdf = [] self.number = [] self.string = [] self.operation = [] self.unoperation = [] self.id = [] self.fid = set() self.kernal = kernal self.corr_map = dict() self.num_map = dict() self.matric_dict = dict() self.level = level self.metric = metric self.unique_path = "matrics.msg" self.mapping_path = "mapping.msg" if (not os.path.exists(self.working_path)): os.makedirs(self.working_path)
now_temp, type_template) future.add_done_callback(procFiles_result) curFileNumBegin = curFileNumEnd + 1 #wait(future, return_when=ALL_COMPLETED) threadPool.shutdown(wait=True) if __name__ == "__main__": parse = argparse.ArgumentParser() add_argument(parse) args = parse.parse_args() if (not check_args(args)): exit(1) #init params input_path = util.path_pro(args.Input) template_path = util.path_pro(args.Template) output_path = util.path_pro(args.Output) template_level = args.TemplateLevel time_diff = args.TimeDiff encoder_mode = args.EncoderMode match_policy = args.MatchPolicy mode = args.Mode maxThreadNum = int(args.MaxThreadNum) maxSingleThreadProcFilesNum = int(args.ProcFilesNum) blockSize = int(args.BlockSize) #threadPool = ThreadPoolExecutor(max_workers = maxThreadNum, thread_name_prefix="test_") time1 = time.time() for t in Types: time_t1 = time.time()
choices=["0", "N"], help="The template level.") parse.add_argument( "--Mode", "-m", default="Nor", choices=["Nor", "Sam"], help= "The mode of training. Nor for single large file, Sam for sample file") parse.add_argument("--SampleRate", "-R", default="0.001", help="Sample rate, default by 0.001") args = parse.parse_args() input_path = util.path_pro(args.LogPath) template_level = args.TemplateLevel mode = args.Mode template_path = util.path_pro(args.TemplatePath) sample_rate = args.SampleRate if not os.path.exists(template_path): os.mkdir(template_path) error_num = 0 dic = {} times = {} tot_start = time.time() for t in Types: # command = "python3 /THULR/demo.py " print("Start training: {}".format(t)) s_time = time.time() if (mode == "Nor"):
help="The level of template(0 or N)") parser.add_argument("--Samilarity", "-s", default="0.1", help="The samilarity of template") args = parser.parse_args() filepath = args.Input Type = args.Type Level = args.Level Samilarity = float(args.Samilarity) log_format = "" template_path = util.path_pro(args.Template) if not (os.path.exists(template_path)): os.mkdir(template_path) if Type == "LogA" or Type == "LogB" or Type == "LogG" or Type == "LogH" or Type == "LogJ" or Type == "LogM" or Type == "LogN" or Type == "LogP" or Type == "LogR": head_length = 4 is_multi = True head_regex = r"\[\d{4}\-\d{2}\-\d{2}" if Type == "LogC" or Type == "LogD" or Type == "LogE" or Type == "LogF" or Type == "LogO": head_length = 3 is_multi = True head_regex = r"\[\d{4}\-\d{2}\-\d{2}" if Type == "LogI" or Type == "LogK": head_length = 2 is_multi = True head_regex = r"\[\d{4}\-\d{2}\-\d{2}"