def benchmark(method): start_time = time.time() times = [] for i in range(1): if method == 'svd': _result = torch.svd(H) open('/dev/null', 'w').write(str(_result[0])) elif method == 'inv': _result = torch.inverse(H) open('/dev/null', 'w').write(str(_result[0])) elif method == 'pinv': _result = u.pinv(H) open('/dev/null', 'w').write(str(_result[0])) elif method == 'pinverse': _result = torch.pinverse(H) open('/dev/null', 'w').write(str(_result[0])) elif method == 'eig': _result = torch.symeig(H, eigenvectors=True) open('/dev/null', 'w').write(str(_result[0])) elif method == 'svd': _result = torch.svd(H) open('/dev/null', 'w').write(str(_result[0])) elif method == 'solve': _result = torch.solve(S, H) open('/dev/null', 'w').write(str(_result[0])) else: assert False new_time = time.time() elapsed_time = 1000 * (new_time - start_time) print(f"{elapsed_time:8.2f} {method}") start_time = new_time times.append(elapsed_time)
def atest_pinv(): a = torch.tensor([[2., 7, 9], [1, 9, 8], [2, 7, 5]]) b = torch.tensor([[6., 6, 1], [10, 7, 7], [7, 10, 10]]) C = u.Kron(a, b) u.check_close(a.flatten().norm() * b.flatten().norm(), C.frobenius_norm()) u.check_close(C.frobenius_norm(), 4 * math.sqrt(11635.)) Ci = [[ 0, 5 / 102, -(7 / 204), 0, -(70 / 561), 49 / 561, 0, 125 / 1122, -(175 / 2244) ], [ 1 / 20, -(53 / 1020), 8 / 255, -(7 / 55), 371 / 2805, -(224 / 2805), 5 / 44, -(265 / 2244), 40 / 561 ], [ -(1 / 20), 3 / 170, 3 / 170, 7 / 55, -(42 / 935), -(42 / 935), -(5 / 44), 15 / 374, 15 / 374 ], [ 0, -(5 / 102), 7 / 204, 0, 20 / 561, -(14 / 561), 0, 35 / 1122, -(49 / 2244) ], [ -(1 / 20), 53 / 1020, -(8 / 255), 2 / 55, -(106 / 2805), 64 / 2805, 7 / 220, -(371 / 11220), 56 / 2805 ], [ 1 / 20, -(3 / 170), -(3 / 170), -(2 / 55), 12 / 935, 12 / 935, -(7 / 220), 21 / 1870, 21 / 1870 ], [0, 5 / 102, -(7 / 204), 0, 0, 0, 0, -(5 / 102), 7 / 204], [ 1 / 20, -(53 / 1020), 8 / 255, 0, 0, 0, -(1 / 20), 53 / 1020, -(8 / 255) ], [ -(1 / 20), 3 / 170, 3 / 170, 0, 0, 0, 1 / 20, -(3 / 170), -(3 / 170) ]] C = C.expand_vec() C0 = u.to_numpy(C) Ci = torch.tensor(Ci) u.check_close(C @ Ci @ C, C) u.check_close(linalg.pinv(C0), Ci, rtol=1e-5, atol=1e-6) u.check_close(torch.pinverse(C), Ci, rtol=1e-5, atol=1e-6) u.check_close(u.pinv(C), Ci, rtol=1e-5, atol=1e-6) u.check_close(C.pinv(), Ci, rtol=1e-5, atol=1e-6)
def main(): u.seed_random(1) logdir = u.create_local_logdir(args.logdir) run_name = os.path.basename(logdir) gl.event_writer = SummaryWriter(logdir) print(f"Logging to {run_name}") d1 = args.data_width ** 2 assert args.data_width == args.targets_width o = d1 n = args.stats_batch_size d = [d1, 30, 30, 30, 20, 30, 30, 30, d1] # small values for debugging # loss_type = 'LeastSquares' loss_type = 'CrossEntropy' args.wandb = 0 args.stats_steps = 10 args.train_steps = 10 args.stats_batch_size = 10 args.data_width = 2 args.targets_width = 2 args.nonlin = False d1 = args.data_width ** 2 d2 = 2 d3 = args.targets_width ** 2 if loss_type == 'CrossEntropy': d3 = 10 o = d3 n = args.stats_batch_size d = [d1, d2, d3] dsize = max(args.train_batch_size, args.stats_batch_size)+1 model = u.SimpleFullyConnected2(d, bias=True, nonlin=args.nonlin) model = model.to(gl.device) try: # os.environ['WANDB_SILENT'] = 'true' if args.wandb: wandb.init(project='curv_train_tiny', name=run_name) wandb.tensorboard.patch(tensorboardX=False) wandb.config['train_batch'] = args.train_batch_size wandb.config['stats_batch'] = args.stats_batch_size wandb.config['method'] = args.method wandb.config['n'] = n except Exception as e: print(f"wandb crash with {e}") #optimizer = torch.optim.SGD(model.parameters(), lr=0.03, momentum=0.9) optimizer = torch.optim.Adam(model.parameters(), lr=0.03) # make 10x smaller for least-squares loss dataset = u.TinyMNIST(data_width=args.data_width, targets_width=args.targets_width, dataset_size=dsize, original_targets=True) train_loader = torch.utils.data.DataLoader(dataset, batch_size=args.train_batch_size, shuffle=False, drop_last=True) train_iter = u.infinite_iter(train_loader) stats_iter = None if not args.full_batch: stats_loader = torch.utils.data.DataLoader(dataset, batch_size=args.stats_batch_size, shuffle=False, drop_last=True) stats_iter = u.infinite_iter(stats_loader) test_dataset = u.TinyMNIST(data_width=args.data_width, targets_width=args.targets_width, train=False, dataset_size=dsize, original_targets=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.train_batch_size, shuffle=False, drop_last=True) test_iter = u.infinite_iter(test_loader) if loss_type == 'LeastSquares': loss_fn = u.least_squares elif loss_type == 'CrossEntropy': loss_fn = nn.CrossEntropyLoss() autograd_lib.add_hooks(model) gl.token_count = 0 last_outer = 0 val_losses = [] for step in range(args.stats_steps): if last_outer: u.log_scalars({"time/outer": 1000*(time.perf_counter() - last_outer)}) last_outer = time.perf_counter() with u.timeit("val_loss"): test_data, test_targets = next(test_iter) test_output = model(test_data) val_loss = loss_fn(test_output, test_targets) print("val_loss", val_loss.item()) val_losses.append(val_loss.item()) u.log_scalar(val_loss=val_loss.item()) # compute stats if args.full_batch: data, targets = dataset.data, dataset.targets else: data, targets = next(stats_iter) # Capture Hessian and gradient stats autograd_lib.enable_hooks() autograd_lib.clear_backprops(model) autograd_lib.clear_hess_backprops(model) with u.timeit("backprop_g"): output = model(data) loss = loss_fn(output, targets) loss.backward(retain_graph=True) with u.timeit("backprop_H"): autograd_lib.backprop_hess(output, hess_type=loss_type) autograd_lib.disable_hooks() # TODO(y): use remove_hooks with u.timeit("compute_grad1"): autograd_lib.compute_grad1(model) with u.timeit("compute_hess"): autograd_lib.compute_hess(model) for (i, layer) in enumerate(model.layers): # input/output layers are unreasonably expensive if not using Kronecker factoring if d[i]>50 or d[i+1]>50: print(f'layer {i} is too big ({d[i],d[i+1]}), skipping stats') continue if args.skip_stats: continue s = AttrDefault(str, {}) # dictionary-like object for layer stats ############################# # Gradient stats ############################# A_t = layer.activations assert A_t.shape == (n, d[i]) # add factor of n because backprop takes loss averaged over batch, while we need per-example loss B_t = layer.backprops_list[0] * n assert B_t.shape == (n, d[i + 1]) with u.timeit(f"khatri_g-{i}"): G = u.khatri_rao_t(B_t, A_t) # batch loss Jacobian assert G.shape == (n, d[i] * d[i + 1]) g = G.sum(dim=0, keepdim=True) / n # average gradient assert g.shape == (1, d[i] * d[i + 1]) u.check_equal(G.reshape(layer.weight.grad1.shape), layer.weight.grad1) if args.autograd_check: u.check_close(B_t.t() @ A_t / n, layer.weight.saved_grad) u.check_close(g.reshape(d[i + 1], d[i]), layer.weight.saved_grad) s.sparsity = torch.sum(layer.output <= 0) / layer.output.numel() # proportion of activations that are zero s.mean_activation = torch.mean(A_t) s.mean_backprop = torch.mean(B_t) # empirical Fisher with u.timeit(f'sigma-{i}'): efisher = G.t() @ G / n sigma = efisher - g.t() @ g s.sigma_l2 = u.sym_l2_norm(sigma) s.sigma_erank = torch.trace(sigma)/s.sigma_l2 lambda_regularizer = args.lmb * torch.eye(d[i + 1]*d[i]).to(gl.device) H = layer.weight.hess with u.timeit(f"invH-{i}"): invH = torch.cholesky_inverse(H+lambda_regularizer) with u.timeit(f"H_l2-{i}"): s.H_l2 = u.sym_l2_norm(H) s.iH_l2 = u.sym_l2_norm(invH) with u.timeit(f"norms-{i}"): s.H_fro = H.flatten().norm() s.iH_fro = invH.flatten().norm() s.grad_fro = g.flatten().norm() s.param_fro = layer.weight.data.flatten().norm() u.nan_check(H) if args.autograd_check: model.zero_grad() output = model(data) loss = loss_fn(output, targets) H_autograd = u.hessian(loss, layer.weight) H_autograd = H_autograd.reshape(d[i] * d[i + 1], d[i] * d[i + 1]) u.check_close(H, H_autograd) # u.dump(sigma, f'/tmp/sigmas/H-{step}-{i}') def loss_direction(dd: torch.Tensor, eps): """loss improvement if we take step eps in direction dd""" return u.to_python_scalar(eps * (dd @ g.t()) - 0.5 * eps ** 2 * dd @ H @ dd.t()) def curv_direction(dd: torch.Tensor): """Curvature in direction dd""" return u.to_python_scalar(dd @ H @ dd.t() / (dd.flatten().norm() ** 2)) with u.timeit(f"pinvH-{i}"): pinvH = u.pinv(H) with u.timeit(f'curv-{i}'): s.grad_curv = curv_direction(g) ndir = g @ pinvH # newton direction s.newton_curv = curv_direction(ndir) setattr(layer.weight, 'pre', pinvH) # save Newton preconditioner s.step_openai = s.grad_fro**2 / s.grad_curv if s.grad_curv else 999 s.step_max = 2 / s.H_l2 s.step_min = torch.tensor(2) / torch.trace(H) s.newton_fro = ndir.flatten().norm() # frobenius norm of Newton update s.regret_newton = u.to_python_scalar(g @ pinvH @ g.t() / 2) # replace with "quadratic_form" s.regret_gradient = loss_direction(g, s.step_openai) with u.timeit(f'rho-{i}'): p_sigma = u.lyapunov_svd(H, sigma) if u.has_nan(p_sigma) and args.compute_rho: # use expensive method print('using expensive method') import pdb; pdb.set_trace() H0, sigma0 = u.to_numpys(H, sigma) p_sigma = scipy.linalg.solve_lyapunov(H0, sigma0) p_sigma = torch.tensor(p_sigma).to(gl.device) if u.has_nan(p_sigma): # import pdb; pdb.set_trace() s.psigma_erank = H.shape[0] s.rho = 1 else: s.psigma_erank = u.sym_erank(p_sigma) s.rho = H.shape[0] / s.psigma_erank with u.timeit(f"batch-{i}"): s.batch_openai = torch.trace(H @ sigma) / (g @ H @ g.t()) s.diversity = torch.norm(G, "fro") ** 2 / torch.norm(g) ** 2 / n # Faster approaches for noise variance computation # s.noise_variance = torch.trace(H.inverse() @ sigma) # try: # # this fails with singular sigma # s.noise_variance = torch.trace(torch.solve(sigma, H)[0]) # # s.noise_variance = torch.trace(torch.lstsq(sigma, H)[0]) # pass # except RuntimeError as _: s.noise_variance_pinv = torch.trace(pinvH @ sigma) s.H_erank = torch.trace(H) / s.H_l2 s.batch_jain_simple = 1 + s.H_erank s.batch_jain_full = 1 + s.rho * s.H_erank u.log_scalars(u.nest_stats(layer.name, s)) # gradient steps with u.timeit('inner'): for i in range(args.train_steps): optimizer.zero_grad() data, targets = next(train_iter) model.zero_grad() output = model(data) loss = loss_fn(output, targets) loss.backward() # u.log_scalar(train_loss=loss.item()) if args.method != 'newton': optimizer.step() if args.weight_decay: for group in optimizer.param_groups: for param in group['params']: param.data.mul_(1-args.weight_decay) else: for (layer_idx, layer) in enumerate(model.layers): param: torch.nn.Parameter = layer.weight param_data: torch.Tensor = param.data param_data.copy_(param_data - 0.1 * param.grad) if layer_idx != 1: # only update 1 layer with Newton, unstable otherwise continue u.nan_check(layer.weight.pre) u.nan_check(param.grad.flatten()) u.nan_check(u.v2r(param.grad.flatten()) @ layer.weight.pre) param_new_flat = u.v2r(param_data.flatten()) - u.v2r(param.grad.flatten()) @ layer.weight.pre u.nan_check(param_new_flat) param_data.copy_(param_new_flat.reshape(param_data.shape)) gl.token_count += data.shape[0] gl.event_writer.close()
def main(): attemp_count = 0 while os.path.exists(f"{args.logdir}{attemp_count:02d}"): attemp_count += 1 logdir = f"{args.logdir}{attemp_count:02d}" run_name = os.path.basename(logdir) gl.event_writer = SummaryWriter(logdir) print(f"Logging to {run_name}") u.seed_random(1) try: # os.environ['WANDB_SILENT'] = 'true' if args.wandb: wandb.init(project='curv_train_tiny', name=run_name) wandb.tensorboard.patch(tensorboardX=False) wandb.config['train_batch'] = args.train_batch_size wandb.config['stats_batch'] = args.stats_batch_size wandb.config['method'] = args.method except Exception as e: print(f"wandb crash with {e}") # data_width = 4 # targets_width = 2 d1 = args.data_width**2 d2 = 10 d3 = args.targets_width**2 o = d3 n = args.stats_batch_size d = [d1, d2, d3] model = u.SimpleFullyConnected(d, nonlin=args.nonlin) optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) dataset = u.TinyMNIST(data_width=args.data_width, targets_width=args.targets_width, dataset_size=args.dataset_size) train_loader = torch.utils.data.DataLoader( dataset, batch_size=args.train_batch_size, shuffle=False, drop_last=True) train_iter = u.infinite_iter(train_loader) stats_loader = torch.utils.data.DataLoader( dataset, batch_size=args.stats_batch_size, shuffle=False, drop_last=True) stats_iter = u.infinite_iter(stats_loader) def capture_activations(module, input, _output): if skip_forward_hooks: return assert gl.backward_idx == 0 # no need to forward-prop on Hessian computation assert not hasattr( module, 'activations' ), "Seeing activations from previous forward, call util.zero_grad to clear" assert len(input) == 1, "this works for single input layers only" setattr(module, "activations", input[0].detach()) def capture_backprops(module: nn.Module, _input, output): if skip_backward_hooks: return assert len(output) == 1, "this works for single variable layers only" if gl.backward_idx == 0: assert not hasattr( module, 'backprops' ), "Seeing results of previous autograd, call util.zero_grad to clear" setattr(module, 'backprops', []) assert gl.backward_idx == len(module.backprops) module.backprops.append(output[0]) def save_grad(param: nn.Parameter) -> Callable[[torch.Tensor], None]: """Hook to save gradient into 'param.saved_grad', so it can be accessed after model.zero_grad(). Only stores gradient if the value has not been set, call util.zero_grad to clear it.""" def save_grad_fn(grad): if not hasattr(param, 'saved_grad'): setattr(param, 'saved_grad', grad) return save_grad_fn for layer in model.layers: layer.register_forward_hook(capture_activations) layer.register_backward_hook(capture_backprops) layer.weight.register_hook(save_grad(layer.weight)) def loss_fn(data, targets): err = data - targets.view(-1, data.shape[1]) assert len(data) == len(targets) return torch.sum(err * err) / 2 / len(data) gl.token_count = 0 for step in range(args.stats_steps): data, targets = next(stats_iter) skip_forward_hooks = False skip_backward_hooks = False # get gradient values gl.backward_idx = 0 u.zero_grad(model) output = model(data) loss = loss_fn(output, targets) loss.backward(retain_graph=True) print("loss", loss.item()) # get Hessian values skip_forward_hooks = True id_mat = torch.eye(o) u.log_scalars({'loss': loss.item()}) # o = 0 for out_idx in range(o): model.zero_grad() # backprop to get section of batch output jacobian for output at position out_idx output = model( data ) # opt: using autograd.grad means I don't have to zero_grad ei = id_mat[out_idx] bval = torch.stack([ei] * n) gl.backward_idx = out_idx + 1 output.backward(bval) skip_backward_hooks = True # for (i, layer) in enumerate(model.layers): s = AttrDefault(str, {}) # dictionary-like object for layer stats ############################# # Gradient stats ############################# A_t = layer.activations assert A_t.shape == (n, d[i]) # add factor of n because backprop takes loss averaged over batch, while we need per-example loss B_t = layer.backprops[0] * n assert B_t.shape == (n, d[i + 1]) G = u.khatri_rao_t(B_t, A_t) # batch loss Jacobian assert G.shape == (n, d[i] * d[i + 1]) g = G.sum(dim=0, keepdim=True) / n # average gradient assert g.shape == (1, d[i] * d[i + 1]) if args.autograd_check: u.check_close(B_t.t() @ A_t / n, layer.weight.saved_grad) u.check_close(g.reshape(d[i + 1], d[i]), layer.weight.saved_grad) # empirical Fisher efisher = G.t() @ G / n sigma = efisher - g.t() @ g # u.dump(sigma, f'/tmp/sigmas/{step}-{i}') s.sigma_l2 = u.l2_norm(sigma) ############################# # Hessian stats ############################# A_t = layer.activations Bh_t = [layer.backprops[out_idx + 1] for out_idx in range(o)] Amat_t = torch.cat([A_t] * o, dim=0) Bmat_t = torch.cat(Bh_t, dim=0) assert Amat_t.shape == (n * o, d[i]) assert Bmat_t.shape == (n * o, d[i + 1]) Jb = u.khatri_rao_t(Bmat_t, Amat_t) # batch Jacobian, in row-vec format H = Jb.t() @ Jb / n pinvH = u.pinv(H) s.hess_l2 = u.l2_norm(H) s.invhess_l2 = u.l2_norm(pinvH) s.hess_fro = H.flatten().norm() s.invhess_fro = pinvH.flatten().norm() s.jacobian_l2 = u.l2_norm(Jb) s.grad_fro = g.flatten().norm() s.param_fro = layer.weight.data.flatten().norm() u.nan_check(H) if args.autograd_check: model.zero_grad() output = model(data) loss = loss_fn(output, targets) H_autograd = u.hessian(loss, layer.weight) H_autograd = H_autograd.reshape(d[i] * d[i + 1], d[i] * d[i + 1]) u.check_close(H, H_autograd) # u.dump(sigma, f'/tmp/sigmas/H-{step}-{i}') def loss_direction(dd: torch.Tensor, eps): """loss improvement if we take step eps in direction dd""" return u.to_python_scalar(eps * (dd @ g.t()) - 0.5 * eps**2 * dd @ H @ dd.t()) def curv_direction(dd: torch.Tensor): """Curvature in direction dd""" return u.to_python_scalar(dd @ H @ dd.t() / dd.flatten().norm()**2) s.regret_newton = u.to_python_scalar(g @ u.pinv(H) @ g.t() / 2) s.grad_curv = curv_direction(g) ndir = g @ u.pinv(H) # newton direction s.newton_curv = curv_direction(ndir) setattr(layer.weight, 'pre', u.pinv(H)) # save Newton preconditioner s.step_openai = 1 / s.grad_curv if s.grad_curv else 999 s.newton_fro = ndir.flatten().norm( ) # frobenius norm of Newton update s.regret_gradient = loss_direction(g, s.step_openai) u.log_scalars(u.nest_stats(layer.name, s)) # gradient steps for i in range(args.train_steps): optimizer.zero_grad() data, targets = next(train_iter) model.zero_grad() output = model(data) loss = loss_fn(output, targets) loss.backward() u.log_scalar(train_loss=loss.item()) if args.method != 'newton': optimizer.step() else: for (layer_idx, layer) in enumerate(model.layers): param: torch.nn.Parameter = layer.weight param_data: torch.Tensor = param.data param_data.copy_(param_data - 0.1 * param.grad) if layer_idx != 1: # only update 1 layer with Newton, unstable otherwise continue u.nan_check(layer.weight.pre) u.nan_check(param.grad.flatten()) u.nan_check(u.v2r(param.grad.flatten()) @ layer.weight.pre) param_new_flat = u.v2r(param_data.flatten()) - u.v2r( param.grad.flatten()) @ layer.weight.pre u.nan_check(param_new_flat) param_data.copy_(param_new_flat.reshape(param_data.shape)) gl.token_count += data.shape[0] gl.event_writer.close()
def main(): u.install_pdb_handler() u.seed_random(1) logdir = u.create_local_logdir(args.logdir) run_name = os.path.basename(logdir) gl.event_writer = SummaryWriter(logdir) print(f"Logging to {logdir}") loss_type = 'CrossEntropy' d1 = args.data_width ** 2 args.stats_batch_size = min(args.stats_batch_size, args.dataset_size) args.train_batch_size = min(args.train_batch_size, args.dataset_size) n = args.stats_batch_size o = 10 d = [d1, 60, 60, 60, o] # dataset_size = args.dataset_size model = u.SimpleFullyConnected2(d, bias=True, nonlin=args.nonlin, last_layer_linear=True) model = model.to(gl.device) u.mark_expensive(model.layers[0]) # to stop grad1/hess calculations on this layer print(model) try: if args.wandb: wandb.init(project='curv_train_tiny', name=run_name, dir='/tmp/wandb.runs') wandb.tensorboard.patch(tensorboardX=False) wandb.config['train_batch'] = args.train_batch_size wandb.config['stats_batch'] = args.stats_batch_size wandb.config['n'] = n except Exception as e: print(f"wandb crash with {e}") optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.9) # optimizer = torch.optim.Adam(model.parameters(), lr=0.03) # make 10x smaller for least-squares loss dataset = u.TinyMNIST(data_width=args.data_width, dataset_size=args.dataset_size, loss_type=loss_type) train_loader = torch.utils.data.DataLoader(dataset, batch_size=args.train_batch_size, shuffle=False, drop_last=True) train_iter = u.infinite_iter(train_loader) stats_loader = torch.utils.data.DataLoader(dataset, batch_size=args.stats_batch_size, shuffle=False, drop_last=True) stats_iter = u.infinite_iter(stats_loader) stats_data, stats_targets = next(stats_iter) test_dataset = u.TinyMNIST(data_width=args.data_width, train=False, dataset_size=args.dataset_size, loss_type=loss_type) test_batch_size = min(args.dataset_size, 1000) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=test_batch_size, shuffle=False, drop_last=True) test_iter = u.infinite_iter(test_loader) if loss_type == 'LeastSquares': loss_fn = u.least_squares else: # loss_type == 'CrossEntropy': loss_fn = nn.CrossEntropyLoss() autograd_lib.add_hooks(model) gl.reset_global_step() last_outer = 0 val_losses = [] for step in range(args.stats_steps): if last_outer: u.log_scalars({"time/outer": 1000*(time.perf_counter() - last_outer)}) last_outer = time.perf_counter() with u.timeit("val_loss"): test_data, test_targets = next(test_iter) test_output = model(test_data) val_loss = loss_fn(test_output, test_targets) print("val_loss", val_loss.item()) val_losses.append(val_loss.item()) u.log_scalar(val_loss=val_loss.item()) with u.timeit("validate"): if loss_type == 'CrossEntropy': val_accuracy, val_loss = validate(model, test_loader, f'test (stats_step {step})') # train_accuracy, train_loss = validate(model, train_loader, f'train (stats_step {step})') metrics = {'stats_step': step, 'val_accuracy': val_accuracy, 'val_loss': val_loss} u.log_scalars(metrics) data, targets = stats_data, stats_targets if not args.skip_stats: # Capture Hessian and gradient stats autograd_lib.enable_hooks() autograd_lib.clear_backprops(model) autograd_lib.clear_hess_backprops(model) with u.timeit("backprop_g"): output = model(data) loss = loss_fn(output, targets) loss.backward(retain_graph=True) with u.timeit("backprop_H"): autograd_lib.backprop_hess(output, hess_type=loss_type) autograd_lib.disable_hooks() # TODO(y): use remove_hooks with u.timeit("compute_grad1"): autograd_lib.compute_grad1(model) with u.timeit("compute_hess"): autograd_lib.compute_hess(model) for (i, layer) in enumerate(model.layers): if hasattr(layer, 'expensive'): continue param_names = {layer.weight: "weight", layer.bias: "bias"} for param in [layer.weight, layer.bias]: # input/output layers are unreasonably expensive if not using Kronecker factoring if d[i]*d[i+1] > 8000: print(f'layer {i} is too big ({d[i],d[i+1]}), skipping stats') continue s = AttrDefault(str, {}) # dictionary-like object for layer stats ############################# # Gradient stats ############################# A_t = layer.activations B_t = layer.backprops_list[0] * n s.sparsity = torch.sum(layer.output <= 0) / layer.output.numel() # proportion of activations that are zero s.mean_activation = torch.mean(A_t) s.mean_backprop = torch.mean(B_t) # empirical Fisher G = param.grad1.reshape((n, -1)) g = G.mean(dim=0, keepdim=True) u.nan_check(G) with u.timeit(f'sigma-{i}'): efisher = G.t() @ G / n sigma = efisher - g.t() @ g # sigma_spectrum = s.sigma_l2 = u.sym_l2_norm(sigma) s.sigma_erank = torch.trace(sigma)/s.sigma_l2 H = param.hess lambda_regularizer = args.lmb * torch.eye(H.shape[0]).to(gl.device) u.nan_check(H) with u.timeit(f"invH-{i}"): invH = torch.cholesky_inverse(H+lambda_regularizer) with u.timeit(f"H_l2-{i}"): s.H_l2 = u.sym_l2_norm(H) s.iH_l2 = u.sym_l2_norm(invH) with u.timeit(f"norms-{i}"): s.H_fro = H.flatten().norm() s.iH_fro = invH.flatten().norm() s.grad_fro = g.flatten().norm() s.param_fro = param.data.flatten().norm() def loss_direction(dd: torch.Tensor, eps): """loss improvement if we take step eps in direction dd""" return u.to_python_scalar(eps * (dd @ g.t()) - 0.5 * eps ** 2 * dd @ H @ dd.t()) def curv_direction(dd: torch.Tensor): """Curvature in direction dd""" return u.to_python_scalar(dd @ H @ dd.t() / (dd.flatten().norm() ** 2)) with u.timeit(f"pinvH-{i}"): pinvH = u.pinv(H) with u.timeit(f'curv-{i}'): s.grad_curv = curv_direction(g) # curvature (eigenvalue) in direction g ndir = g @ pinvH # newton direction s.newton_curv = curv_direction(ndir) setattr(layer.weight, 'pre', pinvH) # save Newton preconditioner s.step_openai = 1 / s.grad_curv if s.grad_curv else 1234567 s.step_div_inf = 2 / s.H_l2 # divegent step size for batch_size=infinity s.step_div_1 = torch.tensor(2) / torch.trace(H) # divergent step for batch_size=1 s.newton_fro = ndir.flatten().norm() # frobenius norm of Newton update s.regret_newton = u.to_python_scalar(g @ pinvH @ g.t() / 2) # replace with "quadratic_form" s.regret_gradient = loss_direction(g, s.step_openai) with u.timeit(f'rho-{i}'): s.rho, s.lyap_erank, lyap_evals = u.truncated_lyapunov_rho(H, sigma) s.step_div_1_adjusted = s.step_div_1/s.rho with u.timeit(f"batch-{i}"): s.batch_openai = torch.trace(H @ sigma) / (g @ H @ g.t()) s.diversity = torch.norm(G, "fro") ** 2 / torch.norm(g) ** 2 / n # Gradient diversity / n s.noise_variance_pinv = torch.trace(pinvH @ sigma) s.H_erank = torch.trace(H) / s.H_l2 s.batch_jain_simple = 1 + s.H_erank s.batch_jain_full = 1 + s.rho * s.H_erank param_name = f"{layer.name}={param_names[param]}" u.log_scalars(u.nest_stats(f"{param_name}", s)) H_evals = u.symeig_pos_evals(H) sigma_evals = u.symeig_pos_evals(sigma) u.log_spectrum(f'{param_name}/hess', H_evals) u.log_spectrum(f'{param_name}/sigma', sigma_evals) u.log_spectrum(f'{param_name}/lyap', lyap_evals) # gradient steps with u.timeit('inner'): for i in range(args.train_steps): optimizer.zero_grad() data, targets = next(train_iter) model.zero_grad() output = model(data) loss = loss_fn(output, targets) loss.backward() optimizer.step() if args.weight_decay: for group in optimizer.param_groups: for param in group['params']: param.data.mul_(1-args.weight_decay) gl.increment_global_step(data.shape[0]) gl.event_writer.close()
def compute_layer_stats(layer): refreeze = False if hasattr(layer, 'frozen') and layer.frozen: u.unfreeze(layer) refreeze = True s = AttrDefault(str, {}) n = args.stats_batch_size param = u.get_param(layer) _d = len(param.flatten()) # dimensionality of parameters layer_idx = model.layers.index(layer) # TODO: get layer type, include it in name assert layer_idx >= 0 assert stats_data.shape[0] == n def backprop_loss(): model.zero_grad() output = model( stats_data) # use last saved data batch for backprop loss = compute_loss(output, stats_targets) loss.backward() return loss, output def backprop_output(): model.zero_grad() output = model(stats_data) output.backward(gradient=torch.ones_like(output)) return output # per-example gradients, n, d _loss, _output = backprop_loss() At = layer.data_input Bt = layer.grad_output * n G = u.khatri_rao_t(At, Bt) g = G.sum(dim=0, keepdim=True) / n u.check_close(g, u.vec(param.grad).t()) s.diversity = torch.norm(G, "fro")**2 / g.flatten().norm()**2 s.grad_fro = g.flatten().norm() s.param_fro = param.data.flatten().norm() pos_activations = torch.sum(layer.data_output > 0) neg_activations = torch.sum(layer.data_output <= 0) s.a_sparsity = neg_activations.float() / ( pos_activations + neg_activations) # 1 sparsity means all 0's activation_size = len(layer.data_output.flatten()) s.a_magnitude = torch.sum(layer.data_output) / activation_size _output = backprop_output() B2t = layer.grad_output J = u.khatri_rao_t(At, B2t) # batch output Jacobian H = J.t() @ J / n s.hessian_l2 = u.l2_norm(H) s.jacobian_l2 = u.l2_norm(J) J1 = J.sum(dim=0) / n # single output Jacobian s.J1_l2 = J1.norm() # newton decrement def loss_direction(direction, eps): """loss improvement if we take step eps in direction dir""" return u.to_python_scalar(eps * (direction @ g.t()) - 0.5 * eps**2 * direction @ H @ direction.t()) s.regret_newton = u.to_python_scalar(g @ u.pinv(H) @ g.t() / 2) # TODO: gradient diversity is stuck at 1 # TODO: newton/gradient angle # TODO: newton step magnitude s.grad_curvature = u.to_python_scalar( g @ H @ g.t()) # curvature in direction of g s.step_openai = u.to_python_scalar( s.grad_fro**2 / s.grad_curvature) if s.grad_curvature else 999 s.regret_gradient = loss_direction(g, s.step_openai) if refreeze: u.freeze(layer) return s
def main(): parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 10)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') parser.add_argument('--wandb', type=int, default=0, help='log to weights and biases') parser.add_argument('--autograd_check', type=int, default=0, help='autograd correctness checks') parser.add_argument('--logdir', type=str, default='/tmp/runs/curv_train_tiny/run') parser.add_argument('--nonlin', type=int, default=1, help="whether to add ReLU nonlinearity between layers") parser.add_argument('--bias', type=int, default=1, help="whether to add bias between layers") parser.add_argument('--layer', type=int, default=-1, help="restrict updates to this layer") parser.add_argument('--data_width', type=int, default=28) parser.add_argument('--targets_width', type=int, default=28) parser.add_argument('--hess_samples', type=int, default=1, help='number of samples when sub-sampling outputs, 0 for exact hessian') parser.add_argument('--hess_kfac', type=int, default=0, help='whether to use KFAC approximation for hessian') parser.add_argument('--compute_rho', type=int, default=0, help='use expensive method to compute rho') parser.add_argument('--skip_stats', type=int, default=0, help='skip all stats collection') parser.add_argument('--dataset_size', type=int, default=60000) parser.add_argument('--train_steps', type=int, default=100, help="this many train steps between stat collection") parser.add_argument('--stats_steps', type=int, default=1000000, help="total number of curvature stats collections") parser.add_argument('--full_batch', type=int, default=0, help='do stats on the whole dataset') parser.add_argument('--lr', type=float, default=1e-3) parser.add_argument('--weight_decay', type=float, default=0) parser.add_argument('--momentum', type=float, default=0.9) parser.add_argument('--dropout', type=int, default=0) parser.add_argument('--swa', type=int, default=0) parser.add_argument('--lmb', type=float, default=1e-3) parser.add_argument('--train_batch_size', type=int, default=64) parser.add_argument('--stats_batch_size', type=int, default=10000) parser.add_argument('--stats_num_batches', type=int, default=1) parser.add_argument('--run_name', type=str, default='noname') parser.add_argument('--launch_blocking', type=int, default=0) parser.add_argument('--sampled', type=int, default=0) parser.add_argument('--curv', type=str, default='kfac', help='decomposition to use for curvature estimates: zero_order, kfac, isserlis or full') parser.add_argument('--log_spectra', type=int, default=0) u.seed_random(1) gl.args = parser.parse_args() args = gl.args u.seed_random(1) gl.project_name = 'train_ciresan' u.setup_logdir_and_event_writer(args.run_name) print(f"Logging to {gl.logdir}") d1 = 28 * 28 d = [784, 2500, 2000, 1500, 1000, 500, 10] # number of samples per datapoint. Used to normalize kfac model = u.SimpleFullyConnected2(d, nonlin=args.nonlin, bias=args.bias, dropout=args.dropout) model = model.to(gl.device) autograd_lib.register(model) assert args.dataset_size >= args.stats_batch_size optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) dataset = u.TinyMNIST(data_width=args.data_width, targets_width=args.targets_width, original_targets=True, dataset_size=args.dataset_size) train_loader = torch.utils.data.DataLoader(dataset, batch_size=args.train_batch_size, shuffle=True, drop_last=True) train_iter = u.infinite_iter(train_loader) assert not args.full_batch, "fixme: validation still uses stats_iter" if not args.full_batch: stats_loader = torch.utils.data.DataLoader(dataset, batch_size=args.stats_batch_size, shuffle=True, drop_last=True) stats_iter = u.infinite_iter(stats_loader) else: stats_iter = None test_dataset = u.TinyMNIST(data_width=args.data_width, targets_width=args.targets_width, train=False, original_targets=True, dataset_size=args.dataset_size) test_eval_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.stats_batch_size, shuffle=False, drop_last=False) train_eval_loader = torch.utils.data.DataLoader(dataset, batch_size=args.stats_batch_size, shuffle=False, drop_last=False) loss_fn = torch.nn.CrossEntropyLoss() autograd_lib.add_hooks(model) autograd_lib.disable_hooks() gl.token_count = 0 last_outer = 0 for step in range(args.stats_steps): epoch = gl.token_count // 60000 lr = optimizer.param_groups[0]['lr'] print('token_count', gl.token_count) if last_outer: u.log_scalars({"time/outer": 1000 * (time.perf_counter() - last_outer)}) print(f'time: {time.perf_counter() - last_outer:.2f}') last_outer = time.perf_counter() with u.timeit("validate"): val_accuracy, val_loss = validate(model, test_eval_loader, f'test (epoch {epoch})') train_accuracy, train_loss = validate(model, train_eval_loader, f'train (epoch {epoch})') # save log metrics = {'epoch': epoch, 'val_accuracy': val_accuracy, 'val_loss': val_loss, 'train_loss': train_loss, 'train_accuracy': train_accuracy, 'lr': optimizer.param_groups[0]['lr'], 'momentum': optimizer.param_groups[0].get('momentum', 0)} u.log_scalars(metrics) def mom_update(buffer, val): buffer *= 0.9 buffer += val * 0.1 if not args.skip_stats: # number of samples passed through n = args.stats_batch_size * args.stats_num_batches # quanti forward_stats = defaultdict(lambda: AttrDefault(float)) hessians = defaultdict(lambda: AttrDefault(float)) jacobians = defaultdict(lambda: AttrDefault(float)) fishers = defaultdict(lambda: AttrDefault(float)) # empirical fisher/gradient quad_fishers = defaultdict(lambda: AttrDefault(float)) # gradient statistics that depend on fisher (4th order moments) train_regrets = defaultdict(list) test_regrets1 = defaultdict(list) test_regrets2 = defaultdict(list) train_regrets_opt = defaultdict(list) test_regrets_opt = defaultdict(list) cosines = defaultdict(list) dot_products = defaultdict(list) hessians_histograms = defaultdict(lambda: AttrDefault(u.MyList)) jacobians_histograms = defaultdict(lambda: AttrDefault(u.MyList)) fishers_histograms = defaultdict(lambda: AttrDefault(u.MyList)) quad_fishers_histograms = defaultdict(lambda: AttrDefault(u.MyList)) current = None current_histograms = None for i in range(args.stats_num_batches): activations = {} backprops = {} def save_activations(layer, A, _): activations[layer] = A forward_stats[layer].AA += torch.einsum("ni,nj->ij", A, A) print('forward') with u.timeit("stats_forward"): with autograd_lib.module_hook(save_activations): data, targets = next(stats_iter) output = model(data) loss = loss_fn(output, targets) * len(output) def compute_stats(layer, _, B): A = activations[layer] if current == fishers: backprops[layer] = B # about 27ms per layer with u.timeit('compute_stats'): current[layer].BB += torch.einsum("ni,nj->ij", B, B) # TODO(y): index consistency current[layer].diag += torch.einsum("ni,nj->ij", B * B, A * A) current[layer].BA += torch.einsum("ni,nj->ij", B, A) current[layer].a += torch.einsum("ni->i", A) current[layer].b += torch.einsum("nk->k", B) current[layer].norm2 += ((A * A).sum(dim=1) * (B * B).sum(dim=1)).sum() # compute curvatures in direction of all gradiennts if current is fishers: assert args.stats_num_batches == 1, "not tested on more than one stats step, currently reusing aggregated moments" hess = hessians[layer] jac = jacobians[layer] Bh, Ah = B @ hess.BB / n, A @ forward_stats[layer].AA / n Bj, Aj = B @ jac.BB / n, A @ forward_stats[layer].AA / n norms = ((A * A).sum(dim=1) * (B * B).sum(dim=1)) current[layer].min_norm2 = min(norms) current[layer].median_norm2 = torch.median(norms) current[layer].max_norm2 = max(norms) norms2_hess = ((Ah * A).sum(dim=1) * (Bh * B).sum(dim=1)) norms2_jac = ((Aj * A).sum(dim=1) * (Bj * B).sum(dim=1)) current[layer].norm += norms.sum() current_histograms[layer].norms.extend(torch.sqrt(norms)) current[layer].curv_hess += (skip_nans(norms2_hess / norms)).sum() current_histograms[layer].curv_hess.extend(skip_nans(norms2_hess / norms)) current[layer].curv_hess_max += (skip_nans(norms2_hess / norms)).max() current[layer].curv_hess_median += (skip_nans(norms2_hess / norms)).median() current_histograms[layer].curv_jac.extend(skip_nans(norms2_jac / norms)) current[layer].curv_jac += (skip_nans(norms2_jac / norms)).sum() current[layer].curv_jac_max += (skip_nans(norms2_jac / norms)).max() current[layer].curv_jac_median += (skip_nans(norms2_jac / norms)).median() current[layer].a_sparsity += torch.sum(A <= 0).float() / A.numel() current[layer].b_sparsity += torch.sum(B <= 0).float() / B.numel() current[layer].mean_activation += torch.mean(A) current[layer].mean_activation2 += torch.mean(A*A) current[layer].mean_backprop = torch.mean(B) current[layer].mean_backprop2 = torch.mean(B*B) current[layer].norms_hess += torch.sqrt(norms2_hess).sum() current_histograms[layer].norms_hess.extend(torch.sqrt(norms2_hess)) current[layer].norms_jac += norms2_jac.sum() current_histograms[layer].norms_jac.extend(torch.sqrt(norms2_jac)) normalized_moments = copy.copy(hessians[layer]) normalized_moments.AA = forward_stats[layer].AA normalized_moments = u.divide_attributes(normalized_moments, n) train_regrets_ = autograd_lib.offset_losses(A, B, alpha=lr, offset=0, m=normalized_moments, approx=args.curv) test_regrets1_ = autograd_lib.offset_losses(A, B, alpha=lr, offset=1, m=normalized_moments, approx=args.curv) test_regrets2_ = autograd_lib.offset_losses(A, B, alpha=lr, offset=2, m=normalized_moments, approx=args.curv) test_regrets_opt_ = autograd_lib.offset_losses(A, B, alpha=None, offset=2, m=normalized_moments, approx=args.curv) train_regrets_opt_ = autograd_lib.offset_losses(A, B, alpha=None, offset=0, m=normalized_moments, approx=args.curv) cosines_ = autograd_lib.offset_cosines(A, B) train_regrets[layer].extend(train_regrets_) test_regrets1[layer].extend(test_regrets1_) test_regrets2[layer].extend(test_regrets2_) train_regrets_opt[layer].extend(train_regrets_opt_) test_regrets_opt[layer].extend(test_regrets_opt_) cosines[layer].extend(cosines_) dot_products[layer].extend(autograd_lib.offset_dotprod(A, B)) # statistics of the form g.Sigma.g elif current == quad_fishers: hess = hessians[layer] sigma = fishers[layer] jac = jacobians[layer] Bs, As = B @ sigma.BB / n, A @ forward_stats[layer].AA / n Bh, Ah = B @ hess.BB / n, A @ forward_stats[layer].AA / n Bj, Aj = B @ jac.BB / n, A @ forward_stats[layer].AA / n norms = ((A * A).sum(dim=1) * (B * B).sum(dim=1)) norms2_hess = ((Ah * A).sum(dim=1) * (Bh * B).sum(dim=1)) norms2_jac = ((Aj * A).sum(dim=1) * (Bj * B).sum(dim=1)) norms_sigma = ((As * A).sum(dim=1) * (Bs * B).sum(dim=1)) current[layer].norm += norms.sum() # TODO(y) remove, redundant with norm2 above current[layer].curv_sigma += (skip_nans(norms_sigma / norms)).sum() current[layer].curv_sigma_max = skip_nans(norms_sigma / norms).max() current[layer].curv_sigma_median = skip_nans(norms_sigma / norms).median() current[layer].curv_hess += skip_nans(norms2_hess / norms).sum() current[layer].curv_hess_max += skip_nans(norms2_hess / norms).max() current[layer].lyap_hess_mean += skip_nans(norms_sigma / norms2_hess).mean() current[layer].lyap_hess_max = max(skip_nans(norms_sigma/norms2_hess)) current[layer].lyap_jac_mean += skip_nans(norms_sigma / norms2_jac).mean() current[layer].lyap_jac_max = max(skip_nans(norms_sigma/norms2_jac)) print('backward') with u.timeit("backprop_H"): with autograd_lib.module_hook(compute_stats): current = hessians current_histograms = hessians_histograms autograd_lib.backward_hessian(output, loss='CrossEntropy', sampled=args.sampled, retain_graph=True) # 600 ms current = jacobians current_histograms = jacobians_histograms autograd_lib.backward_jacobian(output, sampled=args.sampled, retain_graph=True) # 600 ms current = fishers current_histograms = fishers_histograms model.zero_grad() loss.backward(retain_graph=True) # 60 ms current = quad_fishers current_histograms = quad_fishers_histograms model.zero_grad() loss.backward() # 60 ms print('summarize') for (i, layer) in enumerate(model.layers): stats_dict = {'hessian': hessians, 'jacobian': jacobians, 'fisher': fishers} # evaluate stats from # https://app.wandb.ai/yaroslavvb/train_ciresan/runs/425pu650?workspace=user-yaroslavvb for stats_name in stats_dict: s = AttrDict() stats = stats_dict[stats_name][layer] for key in forward_stats[layer]: # print(f'copying {key} in {stats_name}, {layer}') try: assert stats[key] == float() except: f"Trying to overwrite {key} in {stats_name}, {layer}" stats[key] = forward_stats[layer][key] diag: torch.Tensor = stats.diag / n # jacobian: # curv in direction of gradient goes down to roughly 0.3-1 # maximum curvature goes up to 1000-2000 # # Hessian: # max curv goes down to 1, in direction of gradient 0.0001 s.diag_l2 = torch.max(diag) # 40 - 3000 smaller than kfac l2 for jac s.diag_fro = torch.norm( diag) # jacobian grows to 0.5-1.5, rest falls, layer-5 has phase transition, layer-4 also s.diag_trace = diag.sum() # jacobian grows 0-1000 (first), 0-150 (last). Almost same as kfac_trace (771 vs 810 kfac). Jacobian has up/down phase transition s.diag_average = diag.mean() # normalize for mean loss BB = stats.BB / n AA = stats.AA / n # A_evals, _ = torch.symeig(AA) # averaging 120ms per hit, 90 hits # B_evals, _ = torch.symeig(BB) # s.kfac_l2 = torch.max(A_evals) * torch.max(B_evals) # 60x larger than diag_l2. layer0/hess has down/up phase transition. layer5/jacobian has up/down phase transition s.kfac_trace = torch.trace(AA) * torch.trace(BB) # 0/hess down/up tr, 5/jac sharp phase transition s.kfac_fro = torch.norm(stats.AA) * torch.norm( stats.BB) # 0/hess has down/up tr, 5/jac up/down transition # s.kfac_erank = s.kfac_trace / s.kfac_l2 # first layer has 25, rest 15, all layers go down except last, last noisy # s.kfac_erank_fro = s.kfac_trace / s.kfac_fro / max(stats.BA.shape) s.diversity = (stats.norm2 / n) / u.norm_squared( stats.BA / n) # gradient diversity. Goes up 3x. Bottom layer has most diversity. Jacobian diversity much less noisy than everythingelse # discrepancy of KFAC based on exact values of diagonal approximation # average difference normalized by average diagonal magnitude diag_kfac = torch.einsum('ll,ii->li', BB, AA) s.kfac_error = (torch.abs(diag_kfac - diag)).mean() / torch.mean(diag.abs()) u.log_scalars(u.nest_stats(f'layer-{i}/{stats_name}', s)) # openai batch size stat s = AttrDict() hess = hessians[layer] jac = jacobians[layer] fish = fishers[layer] quad_fish = quad_fishers[layer] # the following check passes, but is expensive # if args.stats_num_batches == 1: # u.check_close(fisher[layer].BA, layer.weight.grad) def trsum(A, B): return (A * B).sum() # computes tr(AB') grad = fishers[layer].BA / n s.grad_fro = torch.norm(grad) # get norms s.lyap_hess_max = quad_fish.lyap_hess_max s.lyap_hess_ave = quad_fish.lyap_hess_sum / n s.lyap_jac_max = quad_fish.lyap_jac_max s.lyap_jac_ave = quad_fish.lyap_jac_sum / n s.hess_trace = hess.diag.sum() / n s.jac_trace = jac.diag.sum() / n # Version 1 of Jain stochastic rates, use Hessian for curvature b = args.train_batch_size s.hess_curv = trsum((hess.BB / n) @ grad @ (hess.AA / n), grad) / trsum(grad, grad) s.jac_curv = trsum((jac.BB / n) @ grad @ (jac.AA / n), grad) / trsum(grad, grad) # compute gradient noise statistics # fish.BB has /n factor twice, hence don't need extra /n on fish.AA # after sampling, hess_noise,jac_noise became 100x smaller, but normalized is unaffected s.hess_noise = (trsum(hess.AA / n, fish.AA / n) * trsum(hess.BB / n, fish.BB / n)) s.jac_noise = (trsum(jac.AA / n, fish.AA / n) * trsum(jac.BB / n, fish.BB / n)) s.hess_noise_centered = s.hess_noise - trsum(hess.BB / n @ grad, grad @ hess.AA / n) s.jac_noise_centered = s.jac_noise - trsum(jac.BB / n @ grad, grad @ jac.AA / n) s.openai_gradient_noise = (fish.norms_hess / n) / trsum(hess.BB / n @ grad, grad @ hess.AA / n) s.mean_norm = torch.sqrt(fish.norm2) / n s.min_norm = torch.sqrt(fish.min_norm2) s.median_norm = torch.sqrt(fish.median_norm2) s.max_norm = torch.sqrt(fish.max_norm2) s.enorms = u.norm_squared(grad) s.a_sparsity = fish.a_sparsity s.b_sparsity = fish.b_sparsity s.mean_activation = fish.mean_activation s.msr_activation = torch.sqrt(fish.mean_activation2) s.mean_backprop = fish.mean_backprop s.msr_backprop = torch.sqrt(fish.mean_backprop2) s.norms_centered = fish.norm2 / n - u.norm_squared(grad) s.norms_hess = fish.norms_hess / n s.norms_jac = fish.norms_jac / n s.hess_curv_grad = fish.curv_hess / n # phase transition, hits minimum loss in layer 1, then starts going up. Other layers take longer to reach minimum. Decreases with depth. s.hess_curv_grad_max = fish.curv_hess_max # phase transition, hits minimum loss in layer 1, then starts going up. Other layers take longer to reach minimum. Decreases with depth. s.hess_curv_grad_median = fish.curv_hess_median # phase transition, hits minimum loss in layer 1, then starts going up. Other layers take longer to reach minimum. Decreases with depth. s.sigma_curv_grad = quad_fish.curv_sigma / n s.sigma_curv_grad_max = quad_fish.curv_sigma_max s.sigma_curv_grad_median = quad_fish.curv_sigma_median s.band_bottou = 0.5 * lr * s.sigma_curv_grad / s.hess_curv_grad s.band_bottou_stoch = 0.5 * lr * quad_fish.curv_ratio / n s.band_yaida = 0.25 * lr * s.mean_norm**2 s.band_yaida_centered = 0.25 * lr * s.norms_centered s.jac_curv_grad = fish.curv_jac / n # this one has much lower variance than jac_curv. Reaches peak at 10k steps, also kfac error reaches peak there. Decreases with depth except for last layer. s.jac_curv_grad_max = fish.curv_jac_max # this one has much lower variance than jac_curv. Reaches peak at 10k steps, also kfac error reaches peak there. Decreases with depth except for last layer. s.jac_curv_grad_median = fish.curv_jac_median # this one has much lower variance than jac_curv. Reaches peak at 10k steps, also kfac error reaches peak there. Decreases with depth except for last layer. # OpenAI gradient noise statistics s.hess_noise_normalized = s.hess_noise_centered / (fish.norms_hess / n) s.jac_noise_normalized = s.jac_noise / (fish.norms_jac / n) train_regrets_, test_regrets1_, test_regrets2_, train_regrets_opt_, test_regrets_opt_, cosines_, dot_products_ = (torch.stack(r[layer]) for r in (train_regrets, test_regrets1, test_regrets2, train_regrets_opt, test_regrets_opt, cosines, dot_products)) s.train_regret = train_regrets_.median() # use median because outliers make it hard to see the trend s.test_regret1 = test_regrets1_.median() s.test_regret2 = test_regrets2_.median() s.test_regret_opt = test_regrets_opt_.median() s.train_regret_opt = train_regrets_opt_.median() s.mean_dot_product = torch.mean(dot_products_) s.median_dot_product = torch.median(dot_products_) a = [1, 2, 3] s.median_cosine = cosines_.median() s.mean_cosine = cosines_.mean() # get learning rates L1 = s.hess_curv_grad / n L2 = s.jac_curv_grad / n diversity = (fish.norm2 / n) / u.norm_squared(grad) robust_diversity = (fish.norm2 / n) / fish.median_norm2 dotprod_diversity = fish.median_norm2 / s.median_dot_product s.lr1 = 2 / (L1 * diversity) s.lr2 = 2 / (L2 * diversity) s.lr3 = 2 / (L2 * robust_diversity) s.lr4 = 2 / (L2 * dotprod_diversity) hess_A = u.symeig_pos_evals(hess.AA / n) hess_B = u.symeig_pos_evals(hess.BB / n) fish_A = u.symeig_pos_evals(fish.AA / n) fish_B = u.symeig_pos_evals(fish.BB / n) jac_A = u.symeig_pos_evals(jac.AA / n) jac_B = u.symeig_pos_evals(jac.BB / n) u.log_scalars({f'layer-{i}/hessA_erank': erank(hess_A)}) u.log_scalars({f'layer-{i}/hessB_erank': erank(hess_B)}) u.log_scalars({f'layer-{i}/fishA_erank': erank(fish_A)}) u.log_scalars({f'layer-{i}/fishB_erank': erank(fish_B)}) u.log_scalars({f'layer-{i}/jacA_erank': erank(jac_A)}) u.log_scalars({f'layer-{i}/jacB_erank': erank(jac_B)}) gl.event_writer.add_histogram(f'layer-{i}/hist_hess_eig', u.outer(hess_A, hess_B).flatten(), gl.get_global_step()) gl.event_writer.add_histogram(f'layer-{i}/hist_fish_eig', u.outer(hess_A, hess_B).flatten(), gl.get_global_step()) gl.event_writer.add_histogram(f'layer-{i}/hist_jac_eig', u.outer(hess_A, hess_B).flatten(), gl.get_global_step()) s.hess_l2 = max(hess_A) * max(hess_B) s.jac_l2 = max(jac_A) * max(jac_B) s.fish_l2 = max(fish_A) * max(fish_B) s.hess_trace = hess.diag.sum() / n s.jain1_sto = 1/(s.hess_trace + 2 * s.hess_l2) s.jain1_det = 1/s.hess_l2 s.jain1_lr = (1 / b) * (1/s.jain1_sto) + (b - 1) / b * (1/s.jain1_det) s.jain1_lr = 2 / s.jain1_lr s.regret_ratio = ( train_regrets_opt_ / test_regrets_opt_).median() # ratio between train and test regret, large means overfitting u.log_scalars(u.nest_stats(f'layer-{i}', s)) # compute stats that would let you bound rho if i == 0: # only compute this once, for output layer hhh = hessians[model.layers[-1]].BB / n fff = fishers[model.layers[-1]].BB / n d = fff.shape[0] L = u.lyapunov_spectral(hhh, 2 * fff, cond=1e-8) L_evals = u.symeig_pos_evals(L) Lcheap = fff @ u.pinv(hhh, cond=1e-8) Lcheap_evals = u.eig_real(Lcheap) u.log_scalars({f'mismatch/rho': d/erank(L_evals)}) u.log_scalars({f'mismatch/rho_cheap': d/erank(Lcheap_evals)}) u.log_scalars({f'mismatch/diagonalizability': erank(L_evals)/erank(Lcheap_evals)}) # 1 means diagonalizable u.log_spectrum(f'mismatch/sigma', u.symeig_pos_evals(fff), loglog=False) u.log_spectrum(f'mismatch/hess', u.symeig_pos_evals(hhh), loglog=False) u.log_spectrum(f'mismatch/lyapunov', L_evals, loglog=True) u.log_spectrum(f'mismatch/lyapunov_cheap', Lcheap_evals, loglog=True) gl.event_writer.add_histogram(f'layer-{i}/hist_grad_norms', u.to_numpy(fishers_histograms[layer].norms.value()), gl.get_global_step()) gl.event_writer.add_histogram(f'layer-{i}/hist_grad_norms_hess', u.to_numpy(fishers_histograms[layer].norms_hess.value()), gl.get_global_step()) gl.event_writer.add_histogram(f'layer-{i}/hist_curv_jac', u.to_numpy(fishers_histograms[layer].curv_jac.value()), gl.get_global_step()) gl.event_writer.add_histogram(f'layer-{i}/hist_curv_hess', u.to_numpy(fishers_histograms[layer].curv_hess.value()), gl.get_global_step()) gl.event_writer.add_histogram(f'layer-{i}/hist_cosines', u.to_numpy(cosines[layer]), gl.get_global_step()) if args.log_spectra: with u.timeit('spectrum'): # 2/alpha # s.jain1_lr = (1 / b) * s.jain1_sto + (b - 1) / b * s.jain1_det # s.jain1_lr = 1 / s.jain1_lr # hess.diag_trace, jac.diag_trace # Version 2 of Jain stochastic rates, use Jacobian squared for curvature s.jain2_sto = s.lyap_jac_max * s.jac_trace / s.lyap_jac_ave s.jain2_det = s.jac_l2 s.jain2_lr = (1 / b) * s.jain2_sto + (b - 1) / b * s.jain2_det s.jain2_lr = 1 / s.jain2_lr u.log_spectrum(f'layer-{i}/hess_A', hess_A) u.log_spectrum(f'layer-{i}/hess_B', hess_B) u.log_spectrum(f'layer-{i}/hess_AB', u.outer(hess_A, hess_B).flatten()) u.log_spectrum(f'layer-{i}/jac_A', jac_A) u.log_spectrum(f'layer-{i}/jac_B', jac_B) u.log_spectrum(f'layer-{i}/fish_A', fish_A) u.log_spectrum(f'layer-{i}/fish_B', fish_B) u.log_scalars({f'layer-{i}/trace_ratio': fish_B.sum()/hess_B.sum()}) L = torch.eig(u.lyapunov_spectral(hess.BB, 2*fish.BB, cond=1e-8))[0] L = L[:, 0] # extract real part L = L.sort()[0] L = torch.flip(L, [0]) L_cheap = torch.eig(fish.BB @ u.pinv(hess.BB, cond=1e-8))[0] L_cheap = L_cheap[:, 0] # extract real part L_cheap = L_cheap.sort()[0] L_cheap = torch.flip(L_cheap, [0]) d = len(hess_B) u.log_spectrum(f'layer-{i}/Lyap', L) u.log_spectrum(f'layer-{i}/Lyap_cheap', L_cheap) u.log_scalars({f'layer-{i}/dims': d}) u.log_scalars({f'layer-{i}/L_erank': erank(L)}) u.log_scalars({f'layer-{i}/L_cheap_erank': erank(L_cheap)}) u.log_scalars({f'layer-{i}/rho': d/erank(L)}) u.log_scalars({f'layer-{i}/rho_cheap': d/erank(L_cheap)}) model.train() with u.timeit('train'): for i in range(args.train_steps): optimizer.zero_grad() data, targets = next(train_iter) model.zero_grad() output = model(data) loss = loss_fn(output, targets) loss.backward() optimizer.step() if args.weight_decay: for group in optimizer.param_groups: for param in group['params']: param.data.mul_(1 - args.weight_decay) gl.token_count += data.shape[0] gl.event_writer.close()
def main(): attemp_count = 0 while os.path.exists(f"{args.logdir}{attemp_count:02d}"): attemp_count += 1 logdir = f"{args.logdir}{attemp_count:02d}" run_name = os.path.basename(logdir) gl.event_writer = SummaryWriter(logdir) print(f"Logging to {run_name}") u.seed_random(1) d1 = args.data_width**2 d2 = 10 d3 = args.targets_width**2 o = d3 n = args.stats_batch_size d = [d1, d2, d3] model = u.SimpleFullyConnected(d, nonlin=args.nonlin) model = model.to(gl.device) try: # os.environ['WANDB_SILENT'] = 'true' if args.wandb: wandb.init(project='curv_train_tiny', name=run_name) wandb.tensorboard.patch(tensorboardX=False) wandb.config['train_batch'] = args.train_batch_size wandb.config['stats_batch'] = args.stats_batch_size wandb.config['method'] = args.method wandb.config['d1'] = d1 wandb.config['d2'] = d2 wandb.config['d3'] = d3 wandb.config['n'] = n except Exception as e: print(f"wandb crash with {e}") optimizer = torch.optim.SGD(model.parameters(), lr=0.03, momentum=0.9) dataset = u.TinyMNIST(data_width=args.data_width, targets_width=args.targets_width, dataset_size=args.dataset_size) train_loader = torch.utils.data.DataLoader( dataset, batch_size=args.train_batch_size, shuffle=False, drop_last=True) train_iter = u.infinite_iter(train_loader) stats_loader = torch.utils.data.DataLoader( dataset, batch_size=args.stats_batch_size, shuffle=False, drop_last=True) stats_iter = u.infinite_iter(stats_loader) test_dataset = u.TinyMNIST(data_width=args.data_width, targets_width=args.targets_width, dataset_size=args.dataset_size, train=False) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.stats_batch_size, shuffle=True, drop_last=True) test_iter = u.infinite_iter(test_loader) skip_forward_hooks = False skip_backward_hooks = False def capture_activations(module: nn.Module, input: List[torch.Tensor], output: torch.Tensor): if skip_forward_hooks: return assert not hasattr( module, 'activations' ), "Seeing results of previous autograd, call util.zero_grad to clear" assert len(input) == 1, "this was tested for single input layers only" setattr(module, "activations", input[0].detach()) setattr(module, "output", output.detach()) def capture_backprops(module: nn.Module, _input, output): if skip_backward_hooks: return assert len(output) == 1, "this works for single variable layers only" if gl.backward_idx == 0: assert not hasattr( module, 'backprops' ), "Seeing results of previous autograd, call util.zero_grad to clear" setattr(module, 'backprops', []) assert gl.backward_idx == len(module.backprops) module.backprops.append(output[0]) def save_grad(param: nn.Parameter) -> Callable[[torch.Tensor], None]: """Hook to save gradient into 'param.saved_grad', so it can be accessed after model.zero_grad(). Only stores gradient if the value has not been set, call util.zero_grad to clear it.""" def save_grad_fn(grad): if not hasattr(param, 'saved_grad'): setattr(param, 'saved_grad', grad) return save_grad_fn for layer in model.layers: layer.register_forward_hook(capture_activations) layer.register_backward_hook(capture_backprops) layer.weight.register_hook(save_grad(layer.weight)) def loss_fn(data, targets): err = data - targets.view(-1, data.shape[1]) assert len(data) == len(targets) return torch.sum(err * err) / 2 / len(data) gl.token_count = 0 last_outer = 0 for step in range(args.stats_steps): if last_outer: u.log_scalars( {"time/outer": 1000 * (time.perf_counter() - last_outer)}) last_outer = time.perf_counter() # compute validation loss skip_forward_hooks = True skip_backward_hooks = True with u.timeit("val_loss"): test_data, test_targets = next(test_iter) test_output = model(test_data) val_loss = loss_fn(test_output, test_targets) print("val_loss", val_loss.item()) u.log_scalar(val_loss=val_loss.item()) # compute stats data, targets = next(stats_iter) skip_forward_hooks = False skip_backward_hooks = False # get gradient values with u.timeit("backprop_g"): gl.backward_idx = 0 u.zero_grad(model) output = model(data) loss = loss_fn(output, targets) loss.backward(retain_graph=True) # get Hessian values skip_forward_hooks = True id_mat = torch.eye(o).to(gl.device) u.log_scalar(loss=loss.item()) with u.timeit("backprop_H"): # optionally use randomized low-rank approximation of Hessian hess_rank = args.hess_samples if args.hess_samples else o for out_idx in range(hess_rank): model.zero_grad() # backprop to get section of batch output jacobian for output at position out_idx output = model( data ) # opt: using autograd.grad means I don't have to zero_grad if args.hess_samples: bval = torch.LongTensor(n, o).to(gl.device).random_( 0, 2) * 2 - 1 bval = bval.float() else: ei = id_mat[out_idx] bval = torch.stack([ei] * n) gl.backward_idx = out_idx + 1 output.backward(bval) skip_backward_hooks = True # for (i, layer) in enumerate(model.layers): s = AttrDefault(str, {}) # dictionary-like object for layer stats ############################# # Gradient stats ############################# A_t = layer.activations assert A_t.shape == (n, d[i]) # add factor of n because backprop takes loss averaged over batch, while we need per-example loss B_t = layer.backprops[0] * n assert B_t.shape == (n, d[i + 1]) with u.timeit(f"khatri_g-{i}"): G = u.khatri_rao_t(B_t, A_t) # batch loss Jacobian assert G.shape == (n, d[i] * d[i + 1]) g = G.sum(dim=0, keepdim=True) / n # average gradient assert g.shape == (1, d[i] * d[i + 1]) if args.autograd_check: u.check_close(B_t.t() @ A_t / n, layer.weight.saved_grad) u.check_close(g.reshape(d[i + 1], d[i]), layer.weight.saved_grad) s.sparsity = torch.sum(layer.output <= 0) / layer.output.numel() s.mean_activation = torch.mean(A_t) s.mean_backprop = torch.mean(B_t) # empirical Fisher with u.timeit(f'sigma-{i}'): efisher = G.t() @ G / n sigma = efisher - g.t() @ g s.sigma_l2 = u.sym_l2_norm(sigma) s.sigma_erank = torch.trace(sigma) / s.sigma_l2 ############################# # Hessian stats ############################# A_t = layer.activations Bh_t = [ layer.backprops[out_idx + 1] for out_idx in range(hess_rank) ] Amat_t = torch.cat([A_t] * hess_rank, dim=0) Bmat_t = torch.cat(Bh_t, dim=0) assert Amat_t.shape == (n * hess_rank, d[i]) assert Bmat_t.shape == (n * hess_rank, d[i + 1]) lambda_regularizer = args.lmb * torch.eye(d[i] * d[i + 1]).to( gl.device) with u.timeit(f"khatri_H-{i}"): Jb = u.khatri_rao_t( Bmat_t, Amat_t) # batch Jacobian, in row-vec format with u.timeit(f"H-{i}"): H = Jb.t() @ Jb / n with u.timeit(f"invH-{i}"): invH = torch.cholesky_inverse(H + lambda_regularizer) with u.timeit(f"H_l2-{i}"): s.H_l2 = u.sym_l2_norm(H) s.iH_l2 = u.sym_l2_norm(invH) with u.timeit(f"norms-{i}"): s.H_fro = H.flatten().norm() s.iH_fro = invH.flatten().norm() s.jacobian_fro = Jb.flatten().norm() s.grad_fro = g.flatten().norm() s.param_fro = layer.weight.data.flatten().norm() u.nan_check(H) if args.autograd_check: model.zero_grad() output = model(data) loss = loss_fn(output, targets) H_autograd = u.hessian(loss, layer.weight) H_autograd = H_autograd.reshape(d[i] * d[i + 1], d[i] * d[i + 1]) u.check_close(H, H_autograd) # u.dump(sigma, f'/tmp/sigmas/H-{step}-{i}') def loss_direction(dd: torch.Tensor, eps): """loss improvement if we take step eps in direction dd""" return u.to_python_scalar(eps * (dd @ g.t()) - 0.5 * eps**2 * dd @ H @ dd.t()) def curv_direction(dd: torch.Tensor): """Curvature in direction dd""" return u.to_python_scalar(dd @ H @ dd.t() / (dd.flatten().norm()**2)) with u.timeit("pinvH"): pinvH = u.pinv(H) with u.timeit(f'curv-{i}'): s.regret_newton = u.to_python_scalar(g @ pinvH @ g.t() / 2) s.grad_curv = curv_direction(g) ndir = g @ pinvH # newton direction s.newton_curv = curv_direction(ndir) setattr(layer.weight, 'pre', pinvH) # save Newton preconditioner s.step_openai = 1 / s.grad_curv if s.grad_curv else 999 s.step_max = 2 / u.sym_l2_norm(H) s.step_min = torch.tensor(2) / torch.trace(H) s.newton_fro = ndir.flatten().norm( ) # frobenius norm of Newton update s.regret_gradient = loss_direction(g, s.step_openai) with u.timeit(f'rho-{i}'): p_sigma = u.lyapunov_svd(H, sigma) if u.has_nan( p_sigma) and args.compute_rho: # use expensive method H0 = H.cpu().detach().numpy() sigma0 = sigma.cpu().detach().numpy() p_sigma = scipy.linalg.solve_lyapunov(H0, sigma0) p_sigma = torch.tensor(p_sigma).to(gl.device) if u.has_nan(p_sigma): s.psigma_erank = H.shape[0] s.rho = 1 else: s.psigma_erank = u.sym_erank(p_sigma) s.rho = H.shape[0] / s.psigma_erank with u.timeit(f"batch-{i}"): s.batch_openai = torch.trace(H @ sigma) / (g @ H @ g.t()) print('openai batch', s.batch_openai) s.diversity = torch.norm(G, "fro")**2 / torch.norm(g)**2 # s.noise_variance = torch.trace(H.inverse() @ sigma) # try: # # this fails with singular sigma # s.noise_variance = torch.trace(torch.solve(sigma, H)[0]) # # s.noise_variance = torch.trace(torch.lstsq(sigma, H)[0]) # pass # except RuntimeError as _: s.noise_variance_pinv = torch.trace(pinvH @ sigma) s.H_erank = torch.trace(H) / s.H_l2 s.batch_jain_simple = 1 + s.H_erank s.batch_jain_full = 1 + s.rho * s.H_erank u.log_scalars(u.nest_stats(layer.name, s)) # gradient steps last_inner = 0 for i in range(args.train_steps): if last_inner: u.log_scalars( {"time/inner": 1000 * (time.perf_counter() - last_inner)}) last_inner = time.perf_counter() optimizer.zero_grad() data, targets = next(train_iter) model.zero_grad() output = model(data) loss = loss_fn(output, targets) loss.backward() u.log_scalar(train_loss=loss.item()) if args.method != 'newton': optimizer.step() else: for (layer_idx, layer) in enumerate(model.layers): param: torch.nn.Parameter = layer.weight param_data: torch.Tensor = param.data param_data.copy_(param_data - 0.1 * param.grad) if layer_idx != 1: # only update 1 layer with Newton, unstable otherwise continue u.nan_check(layer.weight.pre) u.nan_check(param.grad.flatten()) u.nan_check(u.v2r(param.grad.flatten()) @ layer.weight.pre) param_new_flat = u.v2r(param_data.flatten()) - u.v2r( param.grad.flatten()) @ layer.weight.pre u.nan_check(param_new_flat) param_data.copy_(param_new_flat.reshape(param_data.shape)) gl.token_count += data.shape[0] gl.event_writer.close()
def compute_layer_stats(layer): stats = AttrDefault(str, {}) n = stats_batch_size param = u.get_param(layer) d = len(param.flatten()) layer_idx = model.layers.index(layer) assert layer_idx >= 0 assert stats_data.shape[0] == n def backprop_loss(): model.zero_grad() output = model( stats_data) # use last saved data batch for backprop loss = compute_loss(output, stats_targets) loss.backward() return loss, output def backprop_output(): model.zero_grad() output = model(stats_data) output.backward(gradient=torch.ones_like(output)) return output # per-example gradients, n, d loss, output = backprop_loss() At = layer.data_input Bt = layer.grad_output * n G = u.khatri_rao_t(At, Bt) g = G.sum(dim=0, keepdim=True) / n u.check_close(g, u.vec(param.grad).t()) stats.diversity = torch.norm(G, "fro")**2 / g.flatten().norm()**2 stats.gradient_norm = g.flatten().norm() stats.parameter_norm = param.data.flatten().norm() pos_activations = torch.sum(layer.data_output > 0) neg_activations = torch.sum(layer.data_output <= 0) stats.sparsity = pos_activations.float() / (pos_activations + neg_activations) output = backprop_output() At2 = layer.data_input u.check_close(At, At2) B2t = layer.grad_output J = u.khatri_rao_t(At, B2t) H = J.t() @ J / n model.zero_grad() output = model(stats_data) # use last saved data batch for backprop loss = compute_loss(output, stats_targets) hess = u.hessian(loss, param) hess = hess.transpose(2, 3).transpose(0, 1).reshape(d, d) u.check_close(hess, H) u.check_close(hess, H) stats.hessian_norm = u.l2_norm(H) stats.jacobian_norm = u.l2_norm(J) Joutput = J.sum(dim=0) / n stats.jacobian_sensitivity = Joutput.norm() # newton decrement stats.loss_newton = u.to_python_scalar(g @ u.pinv(H) @ g.t() / 2) u.check_close(stats.loss_newton, loss) # do line-search to find optimal step def line_search(directionv, start, end, steps=10): """Takes steps between start and end, returns steps+1 loss entries""" param0 = param.data.clone() param0v = u.vec(param0).t() losses = [] for i in range(steps + 1): output = model( stats_data) # use last saved data batch for backprop loss = compute_loss(output, stats_targets) losses.append(loss) offset = start + i * ((end - start) / steps) param1v = param0v + offset * directionv param1 = u.unvec(param1v.t(), param.data.shape[0]) param.data.copy_(param1) output = model( stats_data) # use last saved data batch for backprop loss = compute_loss(output, stats_targets) losses.append(loss) param.data.copy_(param0) return losses # try to take a newton step gradv = g line_losses = line_search(-gradv @ u.pinv(H), 0, 2, steps=10) u.check_equal(line_losses[0], loss) u.check_equal(line_losses[6], 0) assert line_losses[5] > line_losses[6] assert line_losses[7] > line_losses[6] return stats