def pipeline(self): """ :return: the roc auc score and the accuracy """ self.train() y_pred = self.predict() roc_results(y_pred, self.y_test, 'XGBoost') return roc_auc_score(self.y_test, y_pred), results(y_pred, self.y_test)
def pipeline(self): """ :return: the roc auc score and the accuracy """ self.train() y_pred_class = self.predict(threshold=0.436) y_pred = self.predict_probability() roc_results(y_pred[:, 1], self.y_test, 'Logistic Regression') return roc_auc_score(self.y_test, y_pred[:, 1]), results(y_pred_class, self.y_test)
def pipeline(self): """ :return: the roc auc score and the accuracy """ self.train() y_pred_class = self.predict() y_pred = self.predict_probability() roc_results(y_pred[:, 1], self.y_test, 'Gaussian Naive Bayes') return roc_auc_score(self.y_test, y_pred[:, 1]), results(y_pred_class, self.y_test)
def rf_pipeline(x_train, y_train, x_test, y_test): """ :param x_train: the x-values we want to train on (2D numpy array) :param x_test: the y-values that correspond to x_train (1D numpy array) :param y_train: the x-values we want to test on (2D numpy array) :param y_test: the y-values that correspond to x_test (1D numpy array) :return: the roc auc score """ clf = rf_training(x_train, y_train) y_pred = rf_classification(clf, x_test) roc_results(y_pred, y_test, 'Random Forest') return roc_auc_score(y_test, y_pred), results(y_pred, y_test)
def lr_pipeline(x_train, y_train, x_test, y_test): """ :param x_train: the x-values we want to train on (2D numpy array) :param y_train: the y-values that correspond to x_train (1D numpy array) :param x_test: the x-values we want to test on (2D numpy array) :param y_test: the y-values that correspond to x_test (1D numpy array) :return: the roc auc score """ prob = lr_training(x_train, y_train) y_pred = lr_probability(prob, x_test) y_pred_class = lr_classification(np.copy(y_pred[:, 1]), threshold=0.436) roc_results(y_pred[:, 1], y_test, 'Logistic Regression') return roc_auc_score(y_test, y_pred[:, 1]), results(y_pred_class, y_test)
def nb_pipeline(x_train, y_train, x_test, y_test): """ :param x_train: the x-values we want to train on (2D numpy array) :param y_train: the y-values that correspond to x_train (1D numpy array) :param x_test: the x-values we want to test on (2D numpy array) :param y_test: the y-values that correspond to x_test (1D numpy array) :return: the roc auc score """ prob = nb_training(x_train, y_train) y_pred = nb_probability(prob, x_test) y_pred_class = nb_classification(np.copy(y_pred[:, 1])) roc_results(y_pred[:, 1], y_test, 'Gaussian Naive Bayes') return roc_auc_score(y_test, y_pred[:, 1]), results(y_pred_class, y_test)