Beispiel #1
0
    def scoreClassifications(self):
        total = 0
        scores = []
        for uid, actual in self.hand_classified_set.iteritems():
            guess = self.algo_classified_set[uid]
            scores.append(util.score_prediction(guess, actual))
        total = sum(scores)
        max_potential = len(self.hand_classified_set.keys()) * 6.0
        unique, counts = np.unique(scores, return_counts=True)
        frequencies = np.asarray((unique, counts)).T

        return total, max_potential, frequencies
Beispiel #2
0
    def scoreClassifications(self):
        total = 0
        scores = []
        for uid, actual in self.hand_classified_set.iteritems():
            guess = self.algo_classified_set[uid]
            scores.append(util.score_prediction(guess, actual))
        total = sum(scores)
        max_potential = len(self.hand_classified_set.keys()) * 6.0
        unique, counts = np.unique(scores, return_counts=True)
        frequencies = np.asarray((unique, counts)).T

        return total, max_potential, frequencies
Beispiel #3
0
def getPredictionScoreOfTrainingSet():
    """
    Returns the score of the classifications on the validation set.
    """
    hand_classified_set = loader.get_hand_classifiedset()
    algo_classified_set = loader.get_algo_classifiedset()
    total = 0
    scores = []
    for uid, actual in hand_classified_set.iteritems():
        guess = algo_classified_set[uid]
        scores.append(util.score_prediction(guess, actual))
    total = sum(scores)
    max_potential = len(hand_classified_set.keys()) * 6
    return total / float(max_potential)
Beispiel #4
0
def getPredictionScoreOfTrainingSet():
    """
    Returns the score of the classifications on the validation set.
    """
    hand_classified_set = loader.get_hand_classifiedset()
    algo_classified_set = loader.get_algo_classifiedset()
    total = 0
    scores = []
    for uid, actual in hand_classified_set.iteritems():
        guess = algo_classified_set[uid]
        scores.append(util.score_prediction(guess, actual))
    total = sum(scores)
    max_potential = len(hand_classified_set.keys()) * 6
    return total / float(max_potential)
    test = pd.read_csv(pred_file, dtype=np.int32)
    test['pred'] = test['ad_id'].map(ad_pos_cnt).fillna(0) / (
        test['ad_id'].map(ad_cnt).fillna(0) + reg)

    return test


## Validating

print "Running on validation split..."

pred = fit_predict(val_split[0], val_split[1])

print "Scoring..."

present_score, future_score, total_score = score_prediction(pred)
name = gen_prediction_name('ad-mean', total_score)

print "  Present score: %.5f" % present_score
print "  Future score: %.5f" % future_score
print "  Total score: %.5f" % total_score

pred[['display_id', 'ad_id', 'pred']].to_pickle('preds/%s-val.pickle' % name)

## Predicting

print "Running on full split..."

pred = fit_predict(full_split[0], full_split[1])
pred[['display_id', 'ad_id', 'pred']].to_pickle('preds/%s-test.pickle' % name)