Beispiel #1
0
    def __init__(self, edges, n, emb=16, bases=None, **kwargs):

        super().__init__()

        self.emb = emb

        # vertical stack to find the normalization
        vindices, vsize = util.adj(edges, n, vertical=False)
        ih, iw = vindices.size()

        vals = torch.ones((ih, ), dtype=torch.float)
        vals = vals / util.sum_sparse(vindices, vals, vsize)

        # horizontal stack for the actual message passing
        indices, size = util.adj(edges, n, vertical=False)

        _, rn = size
        r = rn//n

        graph = torch.sparse.FloatTensor(indices=indices.t(), values=vals, size=size) # will this get cuda'd properly?
        self.register_buffer('graph', graph)

        if bases is None:
            self.weights = nn.Parameter(torch.FloatTensor(r, n, emb))
            nn.init.xavier_uniform_(self.weights, gain=nn.init.calculate_gain('relu'))

            self.bases = None
        else:
            self.comps = nn.Parameter(torch.FloatTensor(r, bases) )
            nn.init.xavier_uniform_(self.weights, gain=nn.init.calculate_gain('relu'))

            self.bases = nn.Parameter(torch.FloatTensor(bases, n, emb))
            nn.init.xavier_uniform_(self.weights, gain=nn.init.calculate_gain('relu'))
Beispiel #2
0
    def forward(self):

        ## Layer 1

        r, rn, n = self.r, self.rn, self.n
        b, c = self.bases, self.numcls

        values = self.edgeweights()  # * self.values
        if self.normalize:
            values = values / util.sum_sparse(self.ver_ind, values, (rn, n))

        if self.bases1 is not None:
            weights = torch.einsum('rb, bij -> rij', self.comps1, self.bases1)
        else:
            weights = self.weights1

        assert weights.size() == (r, self.emb, self.h)

        # apply weights first
        if self.separate_emb:
            xw = torch.einsum('rne, reh -> rnh', self.embeddings,
                              weights).contiguous()
            # xw = self.embeddings
        else:
            xw = torch.einsum('ne, reh -> rnh', self.embeddings,
                              weights).contiguous()

        # hidden1 = torch.mm(self.hor_graph, xw.view(r*n, self.h)) # sparse mm
        hidden1 = util.spmm(self.hor_indices, values, (n, n * r),
                            xw.view(r * n, self.h))

        assert hidden1.size() == (n, self.h)

        hidden1 = F.relu(hidden1 + self.bias1)

        ## Layer 2

        if self.bases2 is not None:
            weights = torch.einsum('rb, bij -> rij', self.comps2, self.bases2)
        else:
            weights = self.weights2

        # Multiply adjacencies by hidden
        # hidden2 = torch.mm(self.ver_graph, hidden1) # sparse mm
        hidden2 = util.spmm(self.ver_indices, values, (n * r, n), hidden1)

        hidden2 = hidden2.view(r, n, self.h)  # new dim for the relations

        # Apply weights, sum over relations
        hidden2 = torch.einsum('rhc, rnh -> nc', weights, hidden2)

        assert hidden2.size() == (n, c)

        return hidden2 + self.bias2  #-- softmax is applied in the loss
Beispiel #3
0
    def __init__(self, edges, n, emb=16, bases=None, unify='sum', **kwargs):

        super().__init__()

        indices, size = util.adj(edges, n)

        rn, n = size
        r = rn//n

        ih, iw = indices.size()
        vals = torch.ones((ih, ), dtype=torch.float)

        vals = vals / util.sum_sparse(indices, vals, size)

        graph = torch.sparse.FloatTensor(indices=indices.t(), values=vals, size=size) # will this get cuda'd properly?
        self.register_buffer('graph', graph)


        if bases is None:
            self.weights = nn.Parameter(torch.FloatTensor(r, emb, emb))
            nn.init.xavier_uniform_(self.weights, gain=nn.init.calculate_gain('relu'))

            self.bases = None
        else:
            self.comps = nn.Parameter(torch.FloatTensor(r, bases))
            self.bases = nn.Parameter(torch.FloatTensor(bases, emb, emb))
            nn.init.xavier_uniform_(self.comps, gain=nn.init.calculate_gain('relu'))
            nn.init.xavier_uniform_(self.bases, gain=nn.init.calculate_gain('relu'))

        if unify == 'sum':
            self.unify = SumUnify()
        elif unify == 'attention':
            self.unify = AttentionUnify(r, emb)
        elif unify == 'mlp':
            self.unify = MLPUnify(r, emb)
        else:
            raise Exception(f'unify {unify} not recognized')
Beispiel #4
0
    def __init__(self,
                 edges,
                 n,
                 numcls,
                 emb=128,
                 h=16,
                 bases=None,
                 separate_emb=False,
                 indep=False,
                 normalize=False,
                 sample=False):

        super().__init__()

        self.emb = emb
        self.h = h
        self.bases = bases
        self.numcls = numcls
        self.separate_emb = separate_emb
        self.normalize = normalize
        self.sample = sample

        # horizontally and vertically stacked versions of the adjacency graph
        hor_ind, hor_size = util.adj(edges, n, vertical=False)
        ver_ind, ver_size = util.adj(edges, n, vertical=True)

        rn, _ = ver_size
        r = rn // n

        self.r, self.rn, self.n = r, rn, n

        t = len(edges[0][0])

        vals = torch.ones(ver_ind.size(0), dtype=torch.float)
        vals = vals / util.sum_sparse(ver_ind, vals, ver_size)
        # -- the values are the same for the horizontal and the vertically stacked adjacency matrices
        #    so we can just normalize them by the vertically stacked one and reuse for the horizontal

        # hor_graph = torch.sparse.FloatTensor(indices=hor_ind.t(), values=vals, size=hor_size)
        self.register_buffer('hor_indices', hor_ind)

        #ver_graph = torch.sparse.FloatTensor(indices=ver_ind.t(), values=vals, size=ver_size)
        self.register_buffer('ver_indices', ver_ind)
        self.register_buffer('values', vals)

        if separate_emb:
            self.embeddings = nn.Parameter(torch.FloatTensor(
                r, n, emb))  # single embedding per node
            nn.init.xavier_uniform_(self.embeddings,
                                    gain=nn.init.calculate_gain('relu'))
        else:
            self.embeddings = nn.Parameter(torch.FloatTensor(
                n, emb))  # single embedding per node
            nn.init.xavier_uniform_(self.embeddings,
                                    gain=nn.init.calculate_gain('relu'))

        # layer 1 weights
        if bases is None:
            self.weights1 = nn.Parameter(torch.FloatTensor(r, emb, h))
            nn.init.xavier_uniform_(self.weights1,
                                    gain=nn.init.calculate_gain('relu'))

            self.bases1 = None
        else:
            self.comps1 = nn.Parameter(torch.FloatTensor(r, bases))
            nn.init.xavier_uniform_(self.comps1,
                                    gain=nn.init.calculate_gain('relu'))

            self.bases1 = nn.Parameter(torch.FloatTensor(bases, emb, h))
            nn.init.xavier_uniform_(self.bases1,
                                    gain=nn.init.calculate_gain('relu'))

        # layer 2 weights
        if bases is None:

            self.weights2 = nn.Parameter(torch.FloatTensor(r, h, numcls))
            nn.init.xavier_uniform_(self.weights2,
                                    gain=nn.init.calculate_gain('relu'))

            self.bases2 = None
        else:
            self.comps2 = nn.Parameter(torch.FloatTensor(r, bases))
            nn.init.xavier_uniform_(self.comps2,
                                    gain=nn.init.calculate_gain('relu'))

            self.bases2 = nn.Parameter(torch.FloatTensor(bases, h, numcls))
            nn.init.xavier_uniform_(self.bases2,
                                    gain=nn.init.calculate_gain('relu'))

        self.bias1 = nn.Parameter(torch.FloatTensor(h).zero_())
        self.bias2 = nn.Parameter(torch.FloatTensor(numcls).zero_())

        # convert the edges dict to a matrix of triples
        s, o, p = [], [], []
        for pred, (sub, obj) in edges.items():
            s.extend(sub)
            o.extend(obj)
            p.extend([pred] * len(sub))

        # graph as triples
        self.register_buffer('indices',
                             torch.tensor([s, p, o], dtype=torch.long).t())

        # for computing the attention weights
        self.indep = indep
        if indep:
            self.weights = nn.Parameter(torch.randn(self.indices.size(0)))
        else:
            self.sscore = nn.Linear(emb, h)
            self.pscore = nn.Parameter(torch.FloatTensor(r, h))
            nn.init.xavier_uniform_(self.pscore,
                                    gain=nn.init.calculate_gain('relu'))
            self.oscore = nn.Linear(emb, h)
Beispiel #5
0
    def __init__(self,
                 edges,
                 n,
                 numcls,
                 emb=128,
                 h=16,
                 bases=None,
                 separate_emb=False):

        super().__init__()

        self.emb = emb
        self.h = h
        self.bases = bases
        self.numcls = numcls
        self.separate_emb = separate_emb

        # horizontally and vertically stacked versions of the adjacency graph
        hor_ind, hor_size = util.adj(edges, n, vertical=False)
        ver_ind, ver_size = util.adj(edges, n, vertical=True)

        rn, _ = ver_size
        r = rn // n

        t = len(edges[0][0])

        vals = torch.ones(ver_ind.size(0), dtype=torch.float)
        vals = vals / util.sum_sparse(ver_ind, vals, ver_size)
        # -- the values are the same for the horizontal and the vertically stacked adjacency matrices
        #    so we can just normalize them by the vertically stacked one and reuse for the horizontal

        hor_graph = torch.sparse.FloatTensor(indices=hor_ind.t(),
                                             values=vals,
                                             size=hor_size)
        self.register_buffer('hor_graph', hor_graph)

        ver_graph = torch.sparse.FloatTensor(indices=ver_ind.t(),
                                             values=vals,
                                             size=ver_size)
        self.register_buffer('ver_graph', ver_graph)

        if separate_emb:
            self.embeddings = nn.Parameter(torch.FloatTensor(
                r, n, emb))  # single embedding per node
            nn.init.xavier_uniform_(self.embeddings,
                                    gain=nn.init.calculate_gain('relu'))
        else:
            self.embeddings = nn.Parameter(torch.FloatTensor(
                n, emb))  # single embedding per node
            nn.init.xavier_uniform_(self.embeddings,
                                    gain=nn.init.calculate_gain('relu'))

        # layer 1 weights
        if bases is None:
            self.weights1 = nn.Parameter(torch.FloatTensor(r, emb, h))
            nn.init.xavier_uniform_(self.weights1,
                                    gain=nn.init.calculate_gain('relu'))

            self.bases1 = None
        else:
            self.comps1 = nn.Parameter(torch.FloatTensor(r, bases))
            nn.init.xavier_uniform_(self.comps1,
                                    gain=nn.init.calculate_gain('relu'))

            self.bases1 = nn.Parameter(torch.FloatTensor(bases, emb, h))
            nn.init.xavier_uniform_(self.bases1,
                                    gain=nn.init.calculate_gain('relu'))

        # layer 2 weights
        if bases is None:

            self.weights2 = nn.Parameter(torch.FloatTensor(r, h, numcls))
            nn.init.xavier_uniform_(self.weights2,
                                    gain=nn.init.calculate_gain('relu'))

            self.bases2 = None
        else:
            self.comps2 = nn.Parameter(torch.FloatTensor(r, bases))
            nn.init.xavier_uniform_(self.comps2,
                                    gain=nn.init.calculate_gain('relu'))

            self.bases2 = nn.Parameter(torch.FloatTensor(bases, h, numcls))
            nn.init.xavier_uniform_(self.bases2,
                                    gain=nn.init.calculate_gain('relu'))

        self.bias1 = nn.Parameter(torch.FloatTensor(h).zero_())
        self.bias2 = nn.Parameter(torch.FloatTensor(numcls).zero_())
Beispiel #6
0
    def forward(self):
        LACT = torch.relu

        rp, r, n, nt = self.rp, self.r, self.n, self.nt

        latents1 = self.to_latent1(self.nhots)
        assert latents1.size() == (nt, rp)
        latents1 = torch.softmax(latents1, dim=1)
        latents1 = latents1.t().reshape(-1)

        # column normalize
        latents1 = latents1 / util.sum_sparse(
            self.hindices, latents1, (n, n * rp), row=False)

        assert self.hindices.size(0) == latents1.size(
            0), f'{self.indices.size()} {latents1.size()}'

        ## Layer 1
        e = self.emb
        b, c = self.bases, self.numcls

        if self.bases1 is not None:
            # weights = torch.einsum('rb, bij -> rij', self.comps1, self.bases1)
            weights = torch.mm(self.comps1,
                               self.bases1.view(b, n * e)).view(rp, n, e)
        else:
            weights = self.weights1

        assert weights.size() == (rp, n, e)

        # Apply weights and sum over relations
        # h = torch.mm(hor_graph, )
        h = util.spmm(indices=self.hindices,
                      values=latents1,
                      size=(n, n * rp),
                      xmatrix=weights.view(rp * n, e))
        assert h.size() == (n, e)

        h = F.relu(h + self.bias1)

        ## Layer 2

        latents2 = self.to_latent2(self.nhots)
        assert latents2.size() == (nt, rp)
        latents2 = torch.softmax(latents2, dim=1)
        latents2 = latents2.t().reshape(-1)
        # latents2 = LACT(latents2)

        # row normalize
        latents2 = latents2 / util.sum_sparse(
            self.vindices, latents2, (n * rp, n), row=True)

        # Multiply adjacencies by hidden
        # h = torch.mm(ver_graph, h) # sparse mm
        h = util.spmm(indices=self.vindices,
                      values=latents2,
                      size=(n * rp, n),
                      xmatrix=h)

        h = h.view(rp, n, e)  # new dim for the relations

        if self.bases2 is not None:
            # weights = torch.einsum('rb, bij -> rij', self.comps2, self.bases2)
            weights = torch.mm(self.comps2,
                               self.bases2.view(b, e * c)).view(rp, e, c)
        else:
            weights = self.weights2

        # Apply weights, sum over relations
        h = torch.einsum('rhc, rnh -> nc', weights, h)
        # h = torch.bmm(h, weights).sum(dim=0)

        assert h.size() == (n, c)

        return h + self.bias2  #-- softmax is applied in the loss
Beispiel #7
0
    def __init__(self,
                 edges,
                 n,
                 numcls,
                 emb=16,
                 bases=None,
                 softmax=False,
                 triples=None,
                 num_rels=None):

        super().__init__()

        self.emb = emb
        self.bases = bases
        self.numcls = numcls
        self.softmax = softmax

        assert (edges is None or
                triples is None), 'Pass graph as edges or triples, not both.'
        assert (edges is not None or triples is not None), 'No graph passed.'

        if edges is not None:

            # horizontally and vertically stacked versions of the adjacency graph
            hor_ind, hor_size = util.adj(edges, n, vertical=False)
            ver_ind, ver_size = util.adj(edges, n, vertical=True)
        else:
            hor_ind, hor_size = util.adj_triples(triples,
                                                 n,
                                                 num_rels=num_rels,
                                                 vertical=False)
            ver_ind, ver_size = util.adj_triples(triples,
                                                 n,
                                                 num_rels=num_rels,
                                                 vertical=True)

        _, rn = hor_size
        r = rn // n

        vals = torch.ones(ver_ind.size(0), dtype=torch.float)
        vals = vals / util.sum_sparse(ver_ind, vals, ver_size)
        # -- the values are the same for the horizontal and the vertically stacked adjacency matrices
        #    so we can just normalize them by the vertically stacked one and reuse for the horizontal

        hor_graph = torch.sparse.FloatTensor(indices=hor_ind.t(),
                                             values=vals,
                                             size=hor_size)
        self.register_buffer('hor_graph', hor_graph)

        ver_graph = torch.sparse.FloatTensor(indices=ver_ind.t(),
                                             values=vals,
                                             size=ver_size)
        self.register_buffer('ver_graph', ver_graph)

        # layer 1 weights
        if bases is None:
            self.weights1 = nn.Parameter(torch.FloatTensor(r, n, emb))
            nn.init.xavier_uniform_(self.weights1,
                                    gain=nn.init.calculate_gain('relu'))

            self.bases1 = None
        else:
            self.comps1 = nn.Parameter(torch.FloatTensor(r, bases))
            nn.init.xavier_uniform_(self.comps1,
                                    gain=nn.init.calculate_gain('relu'))

            self.bases1 = nn.Parameter(torch.FloatTensor(bases, n, emb))
            nn.init.xavier_uniform_(self.bases1,
                                    gain=nn.init.calculate_gain('relu'))

        # layer 2 weights
        if bases is None:

            self.weights2 = nn.Parameter(torch.FloatTensor(r, emb, numcls))
            nn.init.xavier_uniform_(self.weights2,
                                    gain=nn.init.calculate_gain('relu'))

            self.bases2 = None
        else:
            self.comps2 = nn.Parameter(torch.FloatTensor(r, bases))
            nn.init.xavier_uniform_(self.comps2,
                                    gain=nn.init.calculate_gain('relu'))

            self.bases2 = nn.Parameter(torch.FloatTensor(bases, emb, numcls))
            nn.init.xavier_uniform_(self.bases2,
                                    gain=nn.init.calculate_gain('relu'))

        self.bias1 = nn.Parameter(torch.FloatTensor(emb).zero_())
        self.bias2 = nn.Parameter(torch.FloatTensor(numcls).zero_())
Beispiel #8
0
    def forward(self, triples, nodes=None):

        n, r = self.n, self.r
        rn = r * n

        ## Construct the graph

        # horizontally and vertically stacked versions of the adjacency graph
        # (the vertical is always necessary to normalize the adjacencies)

        if self.hor:
            hor_ind, hor_size = util.adj_triples_tensor(triples,
                                                        n,
                                                        r,
                                                        vertical=False)

        ver_ind, ver_size = util.adj_triples_tensor(triples,
                                                    n,
                                                    r,
                                                    vertical=True)

        rn, _ = ver_size

        # compute values of row-normalized adjacency matrices (same for hor and ver)
        vals = torch.ones(ver_ind.size(0),
                          dtype=torch.float,
                          device=d(triples))
        vals = vals / util.sum_sparse(ver_ind, vals, ver_size)

        if self.hor:
            self.adj = torch.sparse.FloatTensor(indices=hor_ind.t(),
                                                values=vals,
                                                size=hor_size)
        else:
            self.adj = torch.sparse.FloatTensor(indices=ver_ind.t(),
                                                values=vals,
                                                size=ver_size)

        if triples.is_cuda:
            self.adj = self.adj.to('cuda')

        ## Perform message passing
        assert (nodes is None) == (self.insize is None)

        h0 = n if self.insize is None else self.insize
        h1 = self.outsize

        if self.decomp is None:
            weights = self.weights

        elif self.decomp == 'basis':
            weights = torch.einsum('rb, bij -> rij', self.comps, self.bases)

        elif self.decomp == 'block':
            weights = util.block_diag(self.blocks)
            # TODO: multiply in block form (more efficient, but implementation differs per layer type)

        assert weights.size() == (r, h0, h1)

        if self.insize is None:
            # -- input is the identity matrix, just multiply the weights by the adjacencies
            out = torch.mm(self.adj, weights.view(r * h0, h1))

        elif self.hor:
            # -- input is high-dim and output is low dim, multiply h0 x weights first
            nodes = nodes[None, :, :].expand(r, n, h0)
            nw = torch.einsum('rni, rio -> rno', nodes, weights).contiguous()
            out = torch.mm(self.adj, nw.view(r * n, h1))

        else:
            # -- adj x h0 first, then weights
            out = torch.mm(self.adj, nodes)  # sparse mm
            out = out.view(r, n, h0)  # new dim for the relations
            out = torch.einsum('rio, rni -> no', weights, out)

        assert out.size() == (n, h1)

        return out + self.bias
Beispiel #9
0
    def forward(self, nodes=None):

        n, r = self.n, self.r
        rn = r * n

        ## Perform message passing
        assert (nodes is None) == (self.insize is None)

        h0 = n if self.insize is None else self.insize
        h1 = self.outsize

        if self.decomp is None:
            weights = self.weights

        elif self.decomp == 'basis':
            weights = torch.einsum('rb, bij -> rij', self.comps, self.bases)

        elif self.decomp == 'block':
            weights = util.block_diag(self.blocks)
            # TODO: multiply in block form (more efficient, but implementation differs per layer type)

        assert weights.size() == (r, h0, h1)

        if self.edo is not None and self.training:
            # apply edge dropout

            p, pid = self.edo

            nt = self.indices.size(0) - n

            mask = torch.bernoulli(
                torch.empty(size=(nt, ),
                            dtype=torch.float,
                            device=d(self.bias)).fill_(1.0 - p))
            maskid = torch.bernoulli(
                torch.empty(size=(n, ), dtype=torch.float,
                            device=d(self.bias)).fill_(1.0 - pid))

            vals = torch.cat([mask, maskid], dim=0)

        else:
            vals = torch.ones(self.indices.size(0),
                              dtype=torch.float,
                              device=d(self.bias))

        # Row- or column normalize the values of the adjacency matrix
        vals = vals / util.sum_sparse(
            self.indices, vals, self.adjsize, row=not self.hor)

        adj = torch.sparse.FloatTensor(indices=self.indices.t(),
                                       values=vals,
                                       size=self.adjsize)
        if self.bias.is_cuda:
            adj = adj.to('cuda')

        if self.insize is None:
            # -- input is the identity matrix, just multiply the weights by the adjacencies
            out = torch.mm(adj, weights.view(r * h0, h1))

        elif self.hor:
            # -- input is high-dim and output is low dim, multiply h0 x weights first
            nodes = nodes[None, :, :].expand(r, n, h0)
            nw = torch.einsum('rni, rio -> rno', nodes, weights).contiguous()
            out = torch.mm(adj, nw.view(r * n, h1))

        else:
            # -- adj x h0 first, then weights
            out = torch.mm(adj, nodes)  # sparse mm
            out = out.view(r, n, h0)  # new dim for the relations
            out = torch.einsum('rio, rni -> no', weights, out)

        assert out.size() == (n, h1)

        return out + self.bias
Beispiel #10
0
    def forward(self, triples, depth=2):

        assert triples.size(-1) == 3

        n, r = self.n, self.r

        dims = triples.size()[:-1]
        triples = triples.reshape(-1, 3)

        b, _ = triples.size()
        batch = Batch(triples=triples,
                      graph=self.graph,
                      inv_graph=self.inv_graph)

        # Sample
        if depth > 0:
            batch = self.sample0(batch)
        if depth > 1:
            batch = self.sample1(batch)

        # extract batch node embeddings

        bind = batch.indices()
        nodes = self.embeddings[flatten(bind), :]

        if self.dropout is not None:
            nodes = self.dropout(nodes)

        # Message passing
        if depth > 0:

            # compute the edge weights
            dtriples = torch.tensor(list(batch.edges()),
                                    device=d(),
                                    dtype=torch.long)
            btriples = torch.tensor(batch.batch_triples(),
                                    device=d(),
                                    dtype=torch.long)

            # adjacency matrix indices
            # -- repeans R times, vertically
            bn = batch.num_nodes()

            fr = btriples[:, 0] + bn * btriples[:, 1]
            to = btriples[:, 2]

            indices = torch.cat([fr[:, None], to[:, None]], dim=1)

            si, pi, oi = dtriples[:, 0], dtriples[:, 1], dtriples[:, 2]
            semb, pemb, oemb = self.embeddings[si, :], self.relations[
                pi, :], self.embeddings[oi, :]

            # compute the score (bilinear dot product)
            semb = self.tokeys(semb)
            oemb = self.toqueries(oemb)

            dots = (semb * pemb * oemb).sum(dim=1)

            values = torch.ones((indices.size(0), ),
                                device=d(),
                                dtype=torch.float)
            # values = (dots).abs()
            values = values / util.sum_sparse(indices, values, (r * bn, bn))

            # values *= ACTIVATION(dots)  # F.softplus(dots)

            nodes = nodes + self.rgcn0(nodes, indices, values)

            if depth > 1:
                nodes = nodes + self.rgcn1(nodes, indices, values)

        _, tind = batch.target_indices(bind)
        # -- indices of the target nodes in the list `bind`

        subjects, objects = [t[0] for t in tind], [t[1] for t in tind]

        assert len(subjects) == len(objects) == triples.size(0)
        # print(nodes.size())

        # extract embeddings for target nodes
        try:
            s = nodes[subjects, :]
            o = nodes[objects, :]
            p = self.relations[triples[:, 1], :]
        except Exception as e:
            print(triples.size())
            print(batch.size())
            print(nodes.size())
            print(len(batch.indices()))
            print(batch.entities)

            raise (e)

        scores = self.decoder(s, p, o)

        assert scores.size() == (util.prod(dims), )

        return scores.view(*dims)