def move_to_click(x, y): t('绝对移动 点击') move_to(x, y) time.sleep(random.random() / 21) km._left_button_down() time.sleep(random.random() / 5) km._left_button_up()
def loss_and_grad(Wf): """Returns cost, gradient for current parameter vector.""" global fs, X, global_cov_A, global_whitened_A W = u.unflatten(Wf, fs[1:]) # perftodo: this creates transposes W.insert(0, X) A = [None] * (n + 2) A[1] = W[0] for i in range(1, n + 1): A[i + 1] = nonlin(W[i] @ A[i]) err = (A[n + 1] - A[1]) B = [None] * (n + 1) B[n] = 2 * err * d_nonlin(A[n + 1]) for i in range(n - 1, -1, -1): backprop = t(W[i + 1]) @ B[i + 1] B[i] = backprop * d_nonlin(A[i + 1]) dW = [None] * (n + 1) for i in range(1, n + 1): dW[i] = (B[i] @ t(A[i])) loss = u.L2(err) grad = u.flatten(dW[1:]) return loss, grad
def move_rel_click(x, y): t('相对移动 点击') move_rel(x, y) time.sleep(random.random() / 20) km._left_button_down() time.sleep(random.random() / 5) km._left_button_up()
def model_fit(): t('开始训练') global model, epochs, train_data_gen, total_train, batch_size, val_data_gen, total_val history = model.fit_generator(train_data_gen, steps_per_epoch=total_train // batch_size, epochs=epochs, validation_data=val_data_gen, validation_steps=total_val // batch_size) acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) plt.figure(figsize=(8, 8)) plt.subplot(1, 2, 1) plt.plot(epochs_range, acc, label='Training Accuracy') plt.plot(epochs_range, val_acc, label='Validation Accuracy') plt.legend(loc='lower right') plt.title('Training and Validation Accuracy') plt.subplot(1, 2, 2) plt.plot(epochs_range, loss, label='Training Loss') plt.plot(epochs_range, val_loss, label='Validation Loss') plt.legend(loc='upper right') plt.title('Training and Validation Loss') plt.show()
def correct(self, grad): """Accepts IndexedGrad object, produces corrected version.""" s = self vars_ = [] grads_new = [] assert list(grad) == self.model.trainable_vars dsize = get_batch_size(grad) for var in grad: vars_.append(var) A = s.extract_A(grad, var) # extract activations B = s.extract_B(grad, var)*dsize # extract backprops if s.needs_correction(var): # correct the gradient. Assume op is left matmul A_svd = s[var].A.svd B2_svd = s[var].B2.svd if inverse_method == 'pseudo_inverse': A_new = u.pseudo_inverse2(A_svd) @ A B_new = u.pseudo_inverse2(B2_svd) @ B elif inverse_method == 'inverse': A_new = A_svd.inv @ A B_new = B2_svd.inv @ B else: assert False dW_new = (B_new @ t(A_new)) / dsize grads_new.append(dW_new) else: dW = B@t(A)/dsize grads_new.append(dW) return IndexedGrad(grads=grads_new, vars_=vars_)
def model_predict(paths): t('模型预测') global model imgs = [load_and_preprocess_image(path) for path in paths] imgs = tf.convert_to_tensor(imgs) predictions = model.predict(imgs) predictions = [row[0] for row in predictions] print(predictions) min_index = predictions.index(min(predictions)) print(f' 预测结果为 第 > {min_index + 1} < 张图片') return min_index
def count(): t('统计') global total_train, total_val, epochs total_train = sumNum(c.train_dir) total_val = sumNum(c.validation_dir) epochs = math.ceil(total_train / batch_size) print('训练集标签 :', os.listdir(c.train_dir)) print('训练集图片个数 :', total_train) print("验证集个数 :", total_val) print(f'每批次训练个数: {batch_size}, 共要进行 {epochs} 轮训练') if total_train == 0: print('样本为0 无法训练') return False return True
def natural_kfac(lr0, num_samples=1): init_dict[lr_holder] = lr0 np.random.seed(0) tf.set_random_seed(0) A = [0]*(n+2) A2 = [0]*(n+2) # augmented forward props for natural gradient A[0] = u.Identity(dsize) A2[0] = u.Identity(dsize*num_samples) for i in range(n+1): # fs is off by 2 from common notation, ie W[0] has shape f[0],f[-1] A[i+1] = tf.matmul(W[i], A[i], name="A"+str(i+1)) if i == 0: A2[i+1] = tf.concat([W[0]]*num_samples, axis=1) else: A2[i+1] = tf.matmul(W[i], A2[i], name="A2"+str(i+1)) # create backprop matrices # B[i] has backprop for matrix i B = [0]*(n+1) B2 = [0]*(n+1) B[n] = -err/dsize B2[n] = tf.random_normal((f(n), dsize*num_samples), 0, 1, seed=0, dtype=dtype) for i in range(n-1, -1, -1): B[i] = tf.matmul(tf.transpose(W[i+1]), B[i+1], name="B"+str(i)) B2[i] = tf.matmul(tf.transpose(W[i+1]), B2[i+1], name="B2"+str(i)) # Kronecker factored covariance blocks iblocks = u.empty_grid(n+1, n+1) for i in range(1, n+1): for j in range(1, n+1): if i == j: acov = A2[i] @ t(A2[j]) / (dsize*num_samples) bcov = B2[i] @ t(B2[j]) / (dsize*num_samples); term = kr(u.pseudo_inverse(acov), u.pseudo_inverse(bcov)) else: term = tf.zeros(shape=(f(i)*f(i-1), f(j)*f(j-1)), dtype=dtype) iblocks[i][j]=term # remove leftmost blocks (those are with respect to W[0] which is input) del iblocks[0] for row in iblocks: del row[0] ifisher = u.concat_blocks(iblocks) train_op = grad_update(Wf - lr * ifisher @ dWf) return do_run(train_op)
def __init__(self, data, var, prefix, Lambda): global numeric_inverse dsize = get_batch_size(data) # TODO: try adding regularizer later cov_op = data @ t(data) / dsize if regularize_covariances: #ii = u.Identity(cov_op.shape[0]) #regularizer = Lambda*ii regularizer = u.cachedGpuIdentityRegularizer(cov_op.shape[0], Lambda=u.args.Lambda) cov_op = cov_op + regularizer cov_name = "%s_cov_%s" %(prefix, var.op.name) svd_name = "%s_svd_%s" %(prefix, var.op.name) # hack # pp = u.args.kfac_polyak_factor pp = 1 if pp<1: self.cov = u.get_variable(name=cov_name, initializer=ii) else: self.cov = u.get_variable(name=cov_name, initializer=cov_op) self.svd = u.SvdWrapper(target=self.cov, name=svd_name, do_inverses=(inverse_method=='inverse')) # self.cov_update_op = self.cov.initializer if pp<1: self.cov_update_op = self.cov.assign(cov_op*(1-pp)+self.cov*pp).op else: self.cov_update_op = self.cov.assign(cov_op).op
def hessian_quadratic(delta): # update_covariances() W = u.unflatten(delta, fs[1:]) W.insert(0, None) total = 0 for l in range(1, n+1): decrement = tf.trace(t(W[l])@cov_B2[l]@W[l]@cov_A[l]) total+=decrement return (total/2).eval()
def loss_and_grad(Wf): """Returns cost, gradient for current parameter vector.""" global fs, X, global_cov_A, global_whitened_A W = u.unflatten(Wf, fs[1:]) # perftodo: this creates transposes W.insert(0, X) A = [None] * (n + 2) A[1] = W[0] for i in range(1, n + 1): A[i + 1] = tf.sigmoid(W[i] @ A[i]) err = (A[3] - A[1]) def d_sigmoid(y): return y * (1 - y) B = [None] * (n + 1) B2 = [None] * (n + 1) B[n] = err * d_sigmoid(A[n + 1]) sampled_labels = tf.random_normal((f(n), f(-1)), dtype=dtype, seed=0) B2[n] = sampled_labels * d_sigmoid(A[n + 1]) for i in range(n - 1, -1, -1): backprop = t(W[i + 1]) @ B[i + 1] backprop2 = t(W[i + 1]) @ B2[i + 1] B[i] = backprop * d_sigmoid(A[i + 1]) B2[i] = backprop2 * d_sigmoid(A[i + 1]) dW = [None] * (n + 1) pre_dW = [None] * (n + 1) # preconditioned dW cov_A = [None] * (n + 1) # covariance of activations[i] whitened_A = [None] * (n + 1) # covariance of activations[i] cov_B2 = [None] * (n + 1) # covariance of synthetic backprops[i] vars_svd_A = [None] * (n + 1) vars_svd_B2 = [None] * (n + 1) if global_cov_A is None: global_cov_A = A[1] @ t(A[1]) / dsize global_whitened_A = regularized_inverse(global_cov_A, lambda_) @ A[1] cov_A[1] = global_cov_A whitened_A[1] = global_whitened_A for i in range(1, n + 1): if i > 1: cov_A[i] = A[i] @ t(A[i]) / dsize whitened_A[i] = regularized_inverse(cov_A[i], lambda_) @ A[i] cov_B2[i] = B2[i] @ t(B2[i]) / dsize whitened_B = regularized_inverse(cov_B2[i], lambda_) @ B[i] pre_dW[i] = (whitened_B @ t(whitened_A[i])) / dsize dW[i] = (B[i] @ t(A[i])) / dsize reconstruction = u.L2(err) / (2 * dsize) loss = reconstruction grad = u.flatten(dW[1:]) kfac_grad = u.flatten(pre_dW[1:]) return loss, grad, kfac_grad
def data_generator(): t('数据生成器') global train_data_gen, val_data_gen train_image_generator = ImageDataGenerator( rescale=1. / 255) # Generator for our training data validation_image_generator = ImageDataGenerator( rescale=1. / 255) # Generator for our validation data train_data_gen = train_image_generator.flow_from_directory( batch_size=batch_size, directory=c.train_dir, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='binary') val_data_gen = validation_image_generator.flow_from_directory( batch_size=batch_size, directory=c.validation_dir, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='binary')
def hessian_quadratic_inv(delta): # update_covariances() W = u.unflatten(delta, fs[1:]) W.insert(0, None) total = 0 for l in range(1, n+1): invB2 = u.pseudo_inverse2(vars_svd_B2[l]) invA = u.pseudo_inverse2(vars_svd_A[l]) decrement = tf.trace(t(W[l])@invB2@W[l]@invA) total+=decrement return (total/2).eval()
def newton_bd(lr0): init_dict[lr_holder] = lr0 # Create B's B = [0]*(n+1) B[n] = -err/dsize Bn = [0]*(n+1) # Newton-modified backprop Bn[n] = u.Identity(f(n)) for i in range(n-1, -1, -1): B[i] = t(W[i+1]) @ B[i+1] Bn[i] = t(W[i+1]) @ Bn[i+1] # Create U's U = [list(range(n+1)) for _ in range(n+1)] for bottom in range(n+1): for top in range(n+1): if bottom > top: prod = u.Identity(f(top)) else: prod = u.Identity(f(bottom-1)) for i in range(bottom, top+1): prod = prod@t(W[i]) U[bottom][top] = prod # Block i, j gives hessian block between layer i and layer j blocks = [list(range(n+1)) for _ in range(n+1)] for i in range(1, n+1): for j in range(1, n+1): term1 = kr(A[i] @ t(A[j]), Bn[i] @ t(Bn[j])) / dsize; if i == j: term2 = tf.zeros((f(i)*f(i-1), f(i)*f(i-1)), dtype=dtype) elif i < j: term2 = kr(A[i] @ t(B[j]), U[i+1][j-1]) else: term2 = kr(t(U[j+1][i-1]), B[i] @ t(A[j])) blocks[i][j]=term1 + term2 @ Kmat(f(j), f(j-1)) # remove leftmost blocks (those are with respect to W[0] which is input) del blocks[0] for row in blocks: del row[0] # todo -- figure out why this is not the same as block inversion # grads = tf.concat([u.khatri_rao(A[i], Bn[i]) for i in range(1, n+1)], axis=0) # hess = grads @ tf.transpose(grads) / dsize # blocks = u.partition_matrix_evenly(hess, 10) ihess = u.concat_blocks(u.block_diagonal_inverse(blocks)) train_op = grad_update(Wf - lr * ihess @ dWf) return do_run(train_op)
def model_summary(): t('模型编译统计') global model model = Sequential([ Conv2D(16, (3, 3), padding='same', activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)), MaxPooling2D((2, 2)), Conv2D(32, (3, 3), padding='same', activation='relu'), MaxPooling2D((2, 2)), Conv2D(64, (3, 3), padding='same', activation='relu'), MaxPooling2D(), Flatten(), Dense(64, activation='relu'), Dense(1) ]) model.compile(optimizer='adam', loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), metrics=['accuracy']) model.summary()
def newton_kfac(lr0): init_dict[lr_holder] = lr0 # Create B's B = [0]*(n+1) B[n] = -err/dsize Bn = [0]*(n+1) # Newton-modified backprop Bn[n] = u.Identity(f(n)) for i in range(n-1, -1, -1): B[i] = t(W[i+1]) @ B[i+1] Bn[i] = t(W[i+1]) @ Bn[i+1] # inverse Hessian blocks iblocks = u.empty_grid(n+1, n+1) for i in range(1, n+1): for j in range(1, n+1): # reuse Hess tensor calculation in order to get off-diag block sizes dummy_term = kr(A[i] @ t(A[j]), Bn[i] @ t(Bn[j])) / dsize; if i == j: acov = A[i] @ t(A[j]) bcov = (Bn[i] @ t(Bn[j]))/dsize term = kr(u.pseudo_inverse(acov), u.pseudo_inverse(bcov)) else: term = tf.zeros(shape=dummy_term.get_shape(), dtype=dtype) iblocks[i][j]=term # remove leftmost blocks (those are with respect to W[0] which is input) del iblocks[0] for row in iblocks: del row[0] ihess = u.concat_blocks(iblocks) train_op = grad_update(Wf - lr * ihess @ dWf) return do_run(train_op)
def newton(lr0): init_dict[lr_holder] = lr0 # todo, get rid of B's # Create B's B = [0]*(n+1) B[n] = -err/dsize Bn = [0]*(n+1) # Newton-modified backprop Bn[n] = u.Identity(f(n)) for i in range(n-1, -1, -1): B[i] = t(W[i+1]) @ B[i+1] Bn[i] = t(W[i+1]) @ Bn[i+1] # Create U's U = [list(range(n+1)) for _ in range(n+1)] for bottom in range(n+1): for top in range(n+1): if bottom > top: prod = u.Identity(f(top)) else: prod = u.Identity(f(bottom-1)) for i in range(bottom, top+1): prod = prod@t(W[i]) U[bottom][top] = prod # Block i, j gives hessian block between layer i and layer j blocks = [list(range(n+1)) for _ in range(n+1)] for i in range(1, n+1): for j in range(1, n+1): term1 = kr(A[i] @ t(A[j]), Bn[i] @ t(Bn[j])) / dsize; if i == j: term2 = tf.zeros((f(i)*f(i-1), f(i)*f(i-1)), dtype=dtype) elif i < j: term2 = kr(A[i] @ t(B[j]), U[i+1][j-1]) else: term2 = kr(t(U[j+1][i-1]), B[i] @ t(A[j])) blocks[i][j]=term1 + term2 @ Kmat(f(j), f(j-1)) # remove leftmost blocks (those are with respect to W[0] which is input) del blocks[0] for row in blocks: del row[0] hess = u.concat_blocks(blocks) ihess = u.pseudo_inverse(hess) train_op = grad_update(Wf - lr * ihess @ dWf) return do_run(train_op)
def rotations2_natural_sampled_kfac(num_samples=1): tf.reset_default_graph() np.random.seed(0) tf.set_random_seed(0) # override kr with no-shape-inferring version def kr(A, B): return u.kronecker(A, B, do_shape_inference=False) X0 = np.genfromtxt('data/large_rotations2_X0.csv', delimiter=",") Y0 = np.genfromtxt('data/large_rotations2_Y0.csv', delimiter=",") W0f = v2c_np(np.genfromtxt('data/large_rotations2_W0f.csv', delimiter=",")) fs = np.genfromtxt('data/large_rotations2_fs.csv', delimiter=",").astype(np.int32) n = len(fs) - 2 # number of layers def f(i): return fs[i + 1] # W[i] has shape f[i] x f[i-1] dsize = X0.shape[1] assert f(-1) == dsize # load W0f and do shape checks (can remove) W0s = u.unflatten_np(W0f, fs[1:]) # Wf doesn't have first layer (data matrix) W0s.insert(0, X0) Wf_holder = tf.placeholder(dtype, shape=W0f.shape) Wf = tf.Variable(Wf_holder, name="Wf") Wf_copy = tf.Variable(Wf_holder, name="Wf_copy") init_dict = {Wf_holder: W0f} # Create W's # initialize data + layers # W[0] is input matrix (X), W[n] is last matrix # A[1] has activations for W[1], equal to W[0]=X # A[n+1] has predictions # Create W's W = u.unflatten(Wf, fs[1:]) X = tf.constant(X0) Y = tf.constant(Y0) W.insert(0, X) A = [0] * (n + 2) A2 = [0] * (n + 2) # augmented forward props for natural gradient A[0] = u.Identity(dsize) A2[0] = u.Identity(dsize * num_samples) for i in range(n + 1): # fs is off by 2 from common notation, ie W[0] has shape f[0],f[-1] A[i + 1] = tf.matmul(W[i], A[i], name="A" + str(i + 1)) if i == 0: # replicate dataset multiple times corresponding to number of samples A2[i + 1] = tf.concat([W[0]] * num_samples, axis=1) else: A2[i + 1] = tf.matmul(W[i], A2[i], name="A2" + str(i + 1)) # input dimensions match assert W[0].get_shape() == X0.shape # output dimensions match assert W[-1].get_shape()[0], W[0].get_shape()[1] == Y0.shape assert A[n + 1].get_shape() == Y0.shape err = Y - A[n + 1] loss = tf.reduce_sum(tf.square(err)) / (2 * dsize) # lower learning rate by 10x lr = tf.Variable(0.01, dtype=dtype) # create backprop matrices # B[i] has backprop for matrix i B = [0] * (n + 1) B2 = [0] * (n + 1) B[n] = -err / dsize B2[n] = tf.random_normal((f(n), dsize * num_samples), 0, 1, seed=0, dtype=dtype) for i in range(n - 1, -1, -1): B[i] = tf.matmul(tf.transpose(W[i + 1]), B[i + 1], name="B" + str(i)) B2[i] = tf.matmul(tf.transpose(W[i + 1]), B2[i + 1], name="B2" + str(i)) # Create gradient update. Make copy of variables and split update into # two run calls. Using single set of variables will gives updates that # occasionally produce wrong results/NaN's because of data race dW = [0] * (n + 1) dW2 = [0] * (n + 1) updates1 = [0] * (n + 1) # compute updated value into Wcopy updates2 = [0] * (n + 1) # copy value back into W Wcopy = [0] * (n + 1) for i in range(n + 1): Wi_name = "Wcopy" + str(i) Wi_shape = (fs[i + 1], fs[i]) Wi_init = tf.zeros(dtype=dtype, shape=Wi_shape, name=Wi_name + "_init") Wcopy[i] = tf.Variable(Wi_init, name=Wi_name, trainable=False) dW[i] = tf.matmul(B[i], tf.transpose(A[i]), name="dW" + str(i)) dW2[i] = tf.matmul(B2[i], tf.transpose(A2[i]), name="dW2" + str(i)) del dW[0] # get rid of W[0] update del dW2[0] # get rid of W[0] update # construct flattened gradient update vector dWf = tf.concat([vec(grad) for grad in dW], axis=0) # todo: divide both activations and backprops by size for cov calc # Kronecker factored covariance blocks iblocks = u.empty_grid(n + 1, n + 1) for i in range(1, n + 1): for j in range(1, n + 1): if i == j: acov = A2[i] @ t(A2[j]) / (dsize * num_samples) bcov = B2[i] @ t(B2[j]) / (dsize * num_samples) term = kr(u.pseudo_inverse(acov), u.pseudo_inverse(bcov)) else: term = tf.zeros(shape=(f(i) * f(i - 1), f(j) * f(j - 1)), dtype=dtype) iblocks[i][j] = term # remove leftmost blocks (those are with respect to W[0] which is input) del iblocks[0] for row in iblocks: del row[0] ifisher = u.concat_blocks(iblocks) Wf_copy = tf.Variable(tf.zeros(dtype=dtype, shape=Wf.shape, name="Wf_copy_init"), name="Wf_copy") new_val_matrix = Wf - lr * (ifisher @ dWf) train_op1 = Wf_copy.assign(new_val_matrix) train_op2 = Wf.assign(Wf_copy) sess = tf.Session() sess.run(tf.global_variables_initializer(), feed_dict=init_dict) observed_losses = [] u.reset_time() for i in range(20): loss0 = sess.run(loss) print(loss0) observed_losses.append(loss0) sess.run(train_op1) sess.run(train_op2) u.record_time() u.summarize_time() u.summarize_graph()
def loss_and_output_and_grad(Wf): """Returns cost, gradient for current parameter vector.""" global fs, X, global_cov_A, global_whitened_A W = u.unflatten(Wf, fs[1:]) # perftodo: this creates transposes W.insert(0, X) A = [None] * (n + 2) A[1] = W[0] for i in range(1, n + 1): A[i + 1] = nonlin(W[i] @ A[i]) # print(A[i+1]) # # print(A[i+1]) err = (A[n + 1] - A[1]) B = [None] * (n + 1) B2 = [None] * (n + 1) B[n] = err * d_nonlin(A[n + 1]) # sampled_labels = tf.random_normal((f(n), f(-1)), dtype=dtype, seed=0) # print('random') # print(np.random.randn(*X.shape).astype(dtype)) noise = tf.constant(np.random.randn(*err.shape).astype(dtype)) # print(noise) B2[n] = noise * d_nonlin(A[n + 1]) # print("B2[n]", B2[n]) # print(B[n]) for i in range(n - 1, -1, -1): backprop = t(W[i + 1]) @ B[i + 1] backprop2 = t(W[i + 1]) @ B2[i + 1] B[i] = backprop * d_nonlin(A[i + 1]) B2[i] = backprop2 * d_nonlin(A[i + 1]) dW = [None] * (n + 1) pre_dW = [None] * (n + 1) # preconditioned dW cov_A = [None] * (n + 1) # covariance of activations[i] whitened_A = [None] * (n + 1) # covariance of activations[i] cov_B2 = [None] * (n + 1) # covariance of synthetic backprops[i] cov_B = [None] * (n + 1) # covariance of synthetic backprops[i] vars_svd_A = [None] * (n + 1) vars_svd_B2 = [None] * (n + 1) if global_cov_A is None: global_cov_A = A[1] @ t(A[1]) / dsize global_whitened_A = regularized_inverse(global_cov_A) @ A[1] cov_A[1] = global_cov_A whitened_A[1] = global_whitened_A for i in range(1, n + 1): if i > 1: cov_A[i] = A[i] @ t(A[i]) / dsize whitened_A[i] = regularized_inverse(cov_A[i]) @ A[i] cov_B2[i] = B2[i] @ t(B2[i]) / dsize cov_B[i] = B[i] @ t(B[i]) / dsize if SYNTHETIC_LABELS: whitened_B = regularized_inverse(cov_B2[i]) @ B[i] else: whitened_B = regularized_inverse(cov_B[i]) @ B[i] #regularized_inverse(cov_B[i]) # print("A", i, cov_A[i], regularized_inverse(cov_A[i])) # print("B", i, cov_B[i], regularized_inverse(cov_B[i])) # pre_dW[i] = (whitened_B @ t(whitened_A[i]))/dsize # print(i, 'A', A[i].numpy()) # print(regularized_inverse(cov_A[i]).numpy()) pre_dW[i] = (whitened_B @ t(whitened_A[i])) / dsize dW[i] = (B[i] @ t(A[i])) / dsize loss = u.L2(err) / 2 / dsize grad = u.flatten(dW[1:]) kfac_grad = u.flatten(pre_dW[1:]) return loss, A[n + 1], grad, kfac_grad
err = (A[3] - A[1]) rho_hat = tf.reduce_sum(A[2], axis=1, keep_dims=True)/dsize # B[i] = backprops needed to compute gradient of W[i] # B2[i] = backprops from sampled labels needed for natural gradient B = [None]*(n+1) B2 = [None]*(n+1) B[n] = err*d_sigmoid(A[n+1]) sampled_labels_live = tf.random_normal((f(n), f(-1)), dtype=dtype, seed=0) if use_fixed_labels: sampled_labels_live = tf.ones(shape=(f(n), f(-1)), dtype=dtype) sampled_labels = init_var(sampled_labels_live, "sampled_labels", noinit=True) B2[n] = sampled_labels*d_sigmoid(A[n+1]) for i in range(n-1, -1, -1): backprop = t(W[i+1]) @ B[i+1] backprop2 = t(W[i+1]) @ B2[i+1] if i == 1 and not drop_sparsity: backprop += beta*d_kl(rho, rho_hat) backprop2 += beta*d_kl(rho, rho_hat) B[i] = backprop*d_sigmoid(A[i+1]) B2[i] = backprop2*d_sigmoid(A[i+1]) # dW[i] = gradient of W[i] dW = [None]*(n+1) pre_dW = [None]*(n+1) # preconditioned dW pre_dW_stable = [None]*(n+1) # preconditioned stable dW cov_A = [None]*(n+1) # covariance of activations[i] cov_B2 = [None]*(n+1) # covariance of synthetic backprops[i] vars_svd_A = [None]*(n+1)
def rotations1_gradient_test(): # https://www.wolframcloud.com/objects/ff6ecaf0-fccd-44e3-b26f-970d8fc2a57c tf.reset_default_graph() X0 = np.genfromtxt('data/large_rotations1_X0.csv', delimiter=",") Y0 = np.genfromtxt('data/large_rotations1_Y0.csv', delimiter=",") W0f = v2c_np(np.genfromtxt('data/large_rotations1_W0f.csv', delimiter=",")) fs = np.genfromtxt('data/large_rotations1_fs.csv', delimiter=",").astype(np.int32) n = len(fs) - 2 # number of layers def f(i): return fs[i + 1] # W[i] has shape f[i] x f[i-1] dsize = X0.shape[1] assert f(-1) == dsize # load W0f and do shape checks (can remove) W0s = u.unflatten_np(W0f, fs[1:]) # Wf doesn't have first layer (data matrix) W0s.insert(0, X0) Wf_holder = tf.placeholder(dtype, shape=W0f.shape) Wf = tf.Variable(Wf_holder, name="Wf") Wf_copy = tf.Variable(Wf_holder, name="Wf_copy") init_dict = {Wf_holder: W0f} # Create W's W = u.unflatten(Wf, fs[1:]) X = tf.constant(X0) Y = tf.constant(Y0) W.insert(0, X) for (numpy_W, tf_W) in zip(W0s, W): u.check_equal(numpy_W.shape, u.fix_shape(tf_W.shape)) # Create A's # A[1] == X A = [0] * (n + 2) A[0] = u.Identity(dsize) for i in range(n + 1): A[i + 1] = tf.matmul(W[i], A[i], name="A" + str(i + 1)) assert W[0].get_shape() == X0.shape assert A[n + 1].get_shape() == X0.shape assert A[1].get_shape() == X0.shape err = Y - A[n + 1] loss = tf.reduce_sum(tf.square(err)) / (2 * dsize) lr0 = np.genfromtxt('data/large_rotations1_gradient_lr.csv') lr = tf.Variable(lr0, dtype=dtype) # Create B's B = [0] * (n + 1) B[n] = -err / dsize for i in range(n - 1, -1, -1): B[i] = t(W[i + 1]) @ B[i + 1] # create dW's dW = [0] * (n + 1) for i in range(n + 1): dW[i] = tf.matmul(B[i], tf.transpose(A[i]), name="dW" + str(i)) del dW[0] # get rid of W[0] update dWf = tf.concat([u.vec(dWi) for dWi in dW], axis=0) Wf_new = Wf - lr * dWf train_op1 = Wf_copy.assign(Wf_new) train_op2 = Wf.assign(Wf_copy) sess = tf.Session() sess.run(tf.global_variables_initializer(), feed_dict=init_dict) expected_losses = np.loadtxt("data/large_rotations1_gradient_losses.csv", delimiter=",") observed_losses = [] # from accompanying notebook # {0.102522, 0.028124, 0.00907214, 0.00418929, 0.00293379, for i in range(10): observed_losses.append(sess.run([loss])[0]) sess.run(train_op1) sess.run(train_op2) u.check_equal(observed_losses, expected_losses)
def model_creator(batch_size, name="default", dtype=np.float32): """Create MNIST autoencoder model. Dataset is part of model.""" model = Model(name) def get_batch_size(data): if isinstance(data, IndexedGrad): return int(data.live[0].shape[1]) else: return int(data.shape[1]) init_dict = {} global_vars = [] local_vars = [] # TODO: factor out to reuse between scripts # TODO: change feed_dict logic to reuse value provided to VarStruct # current situation makes reinitialization of global variable change # it's value, counterinituitive def init_var(val, name, is_global=False): """Helper to create variables with numpy or TF initial values.""" if isinstance(val, tf.Tensor): var = u.get_variable(name=name, initializer=val, reuse=is_global) else: val = np.array(val) assert u.is_numeric(val), "Non-numeric type." var_struct = u.get_var(name=name, initializer=val, reuse=is_global) holder = var_struct.val_ init_dict[holder] = val var = var_struct.var if is_global: global_vars.append(var) else: local_vars.append(var) return var # TODO: get rid of purely_relu def nonlin(x): if purely_relu: return tf.nn.relu(x) elif purely_linear: return tf.identity(x) else: return tf.sigmoid(x) # TODO: rename into "nonlin_d" def d_nonlin(y): if purely_relu: return u.relu_mask(y) elif purely_linear: return 1 else: return y * (1 - y) patches = train_images[:, :args.batch_size] test_patches = test_images[:, :args.batch_size] if args.dataset == 'cifar': input_dim = 3 * 32 * 32 elif args.dataset == 'mnist': input_dim = 28 * 28 else: assert False if release_name == 'kfac_tiny': fs = [args.batch_size, input_dim, 196, input_dim] else: fs = [ args.batch_size, input_dim, 1024, 1024, 1024, 196, 1024, 1024, 1024, input_dim ] def f(i): return fs[i + 1] # W[i] has shape f[i] x f[i-1] n = len(fs) - 2 # Full dataset from which new batches are sampled X_full = init_var(train_images, "X_full", is_global=True) X = init_var(patches, "X", is_global=False) # stores local batch per model W = [None] * n W.insert(0, X) A = [None] * (n + 2) A[1] = W[0] for i in range(1, n + 1): init_val = ng_init(f(i), f(i - 1)).astype(dtype) W[i] = init_var(init_val, "W_%d" % (i, ), is_global=True) A[i + 1] = nonlin(kfac_lib.matmul(W[i], A[i])) err = A[n + 1] - A[1] model.loss = u.L2(err) / (2 * get_batch_size(err)) # create test error eval layer0 = init_var(test_patches, "X_test", is_global=True) layer = layer0 for i in range(1, n + 1): layer = nonlin(W[i] @ layer) verr = (layer - layer0) model.vloss = u.L2(verr) / (2 * get_batch_size(verr)) # manually compute backprop to use for sanity checking B = [None] * (n + 1) B2 = [None] * (n + 1) B[n] = err * d_nonlin(A[n + 1]) _sampled_labels_live = tf.random_normal((f(n), f(-1)), dtype=dtype, seed=0) if args.fixed_labels: _sampled_labels_live = tf.ones(shape=(f(n), f(-1)), dtype=dtype) _sampled_labels = init_var(_sampled_labels_live, "to_be_deleted", is_global=False) B2[n] = _sampled_labels * d_nonlin(A[n + 1]) for i in range(n - 1, -1, -1): backprop = t(W[i + 1]) @ B[i + 1] B[i] = backprop * d_nonlin(A[i + 1]) backprop2 = t(W[i + 1]) @ B2[i + 1] B2[i] = backprop2 * d_nonlin(A[i + 1]) # cov_A = [None]*(n+1) # covariance of activations[i] # cov_B2 = [None]*(n+1) # covariance of synthetic backprops[i] # vars_svd_A = [None]*(n+1) # vars_svd_B2 = [None]*(n+1) # dW = [None]*(n+1) # pre_dW = [None]*(n+1) # preconditioned dW # todo: decouple initial value from covariance update # # maybe need start with identity and do running average # for i in range(1,n+1): # if regularized_svd: # cov_A[i] = init_var(A[i]@t(A[i])/args.batch_size+args.Lambda*u.Identity(f(i-1)), "cov_A%d"%(i,)) # cov_B2[i] = init_var(B2[i]@t(B2[i])/args.batch_size+args.Lambda*u.Identity(f(i)), "cov_B2%d"%(i,)) # else: # cov_A[i] = init_var(A[i]@t(A[i])/args.batch_size, "cov_A%d"%(i,)) # cov_B2[i] = init_var(B2[i]@t(B2[i])/args.batch_size, "cov_B2%d"%(i,)) # vars_svd_A[i] = u.SvdWrapper(cov_A[i],"svd_A_%d"%(i,), do_inverses=False) # vars_svd_B2[i] = u.SvdWrapper(cov_B2[i],"svd_B2_%d"%(i,), do_inverses=False) # whitened_A = u.cached_inverse(vars_svd_A[i], args.Lambda) @ A[i] # whitened_B = u.cached_inverse(vars_svd_B2[i], args.Lambda) @ B[i] # dW[i] = (B[i] @ t(A[i]))/args.batch_size # pre_dW[i] = (whitened_B @ t(whitened_A))/args.batch_size sampled_labels_live = A[n + 1] + tf.random_normal( (f(n), f(-1)), dtype=dtype, seed=0) if args.fixed_labels: sampled_labels_live = A[n + 1] + tf.ones(shape=(f(n), f(-1)), dtype=dtype) sampled_labels = init_var(sampled_labels_live, "sampled_labels", is_global=False) err2 = A[n + 1] - sampled_labels model.loss2 = u.L2(err2) / (2 * args.batch_size) model.global_vars = global_vars model.local_vars = local_vars model.trainable_vars = W[1:] # todo, we have 3 places where model step is tracked, reduce model.step = init_var(u.as_int32(0), "step", is_global=False) advance_step_op = model.step.assign_add(1) assert get_batch_size(X_full) % args.batch_size == 0 batches_per_dataset = (get_batch_size(X_full) // args.batch_size) batch_idx = tf.mod(model.step, batches_per_dataset) start_idx = batch_idx * args.batch_size advance_batch_op = X.assign(X_full[:, start_idx:start_idx + args.batch_size]) def advance_batch(): # print("Step for model(%s) is %s"%(model.name, u.eval(model.step))) sess = u.get_default_session() # TODO: get rid of _sampled_labels sessrun([sampled_labels.initializer, _sampled_labels.initializer]) if args.advance_batch: sessrun(advance_batch_op) sessrun(advance_step_op) model.advance_batch = advance_batch # TODO: refactor this to take initial values out of Var struct #global_init_op = tf.group(*[v.initializer for v in global_vars]) global_init_ops = [v.initializer for v in global_vars] global_init_op = tf.group(*[v.initializer for v in global_vars]) global_init_query_ops = [ tf.logical_not(tf.is_variable_initialized(v)) for v in global_vars ] def initialize_global_vars(verbose=False, reinitialize=False): """If reinitialize is false, will not reinitialize variables already initialized.""" sess = u.get_default_session() if not reinitialize: uninited = sessrun(global_init_query_ops) # use numpy boolean indexing to select list of initializers to run to_initialize = list(np.asarray(global_init_ops)[uninited]) else: to_initialize = global_init_ops if verbose: print("Initializing following:") for v in to_initialize: print(" " + v.name) sessrun(to_initialize, feed_dict=init_dict) model.initialize_global_vars = initialize_global_vars # didn't quite work (can't initialize var in same run call as deps likely) # enforce that batch is initialized before everything # except fake labels opa # for v in local_vars: # if v != X and v != sampled_labels and v != _sampled_labels: # print("Adding dep %s on %s"%(v.initializer.name, X.initializer.name)) # u.add_dep(v.initializer, on_op=X.initializer) local_init_op = tf.group(*[v.initializer for v in local_vars], name="%s_localinit" % (model.name)) print("Local vars:") for v in local_vars: print(v.name) def initialize_local_vars(): sess = u.get_default_session() sessrun(_sampled_labels.initializer, feed_dict=init_dict) sessrun(X.initializer, feed_dict=init_dict) sessrun(local_init_op, feed_dict=init_dict) model.initialize_local_vars = initialize_local_vars return model
def rotations2_newton_kfac(): tf.reset_default_graph() # override kr with no-shape-inferring version def kr(A, B): return u.kronecker(A, B, do_shape_inference=False) X0 = np.genfromtxt('data/large_rotations2_X0.csv', delimiter=",") Y0 = np.genfromtxt('data/large_rotations2_Y0.csv', delimiter=",") W0f = v2c_np(np.genfromtxt('data/large_rotations2_W0f.csv', delimiter=",")) fs = np.genfromtxt('data/large_rotations2_fs.csv', delimiter=",").astype(np.int32) n = len(fs) - 2 # number of layers def f(i): return fs[i + 1] # W[i] has shape f[i] x f[i-1] dsize = X0.shape[1] assert f(-1) == dsize def f(i): return fs[i + 1] # W[i] has shape f[i] x f[i-1] dsize = X0.shape[1] assert f(-1) == dsize # load W0f and do shape checks (can remove) W0s = u.unflatten_np(W0f, fs[1:]) # Wf doesn't have first layer (data matrix) W0s.insert(0, X0) Wf_holder = tf.placeholder(dtype, shape=W0f.shape) Wf = tf.Variable(Wf_holder, name="Wf") Wf_copy = tf.Variable(Wf_holder, name="Wf_copy") init_dict = {Wf_holder: W0f} # Create W's W = u.unflatten(Wf, fs[1:]) X = tf.constant(X0) Y = tf.constant(Y0) W.insert(0, X) for (numpy_W, tf_W) in zip(W0s, W): u.check_equal(numpy_W.shape, u.fix_shape(tf_W.shape)) # Create A's # A[1] == X A = [0] * (n + 2) A[0] = u.Identity(dsize) for i in range(n + 1): A[i + 1] = tf.matmul(W[i], A[i], name="A" + str(i + 1)) assert W[0].get_shape() == X0.shape assert A[n + 1].get_shape() == X0.shape assert A[1].get_shape() == X0.shape err = Y - A[n + 1] loss = tf.reduce_sum(tf.square(err)) / (2 * dsize) lr = tf.Variable(0.1, dtype=dtype, name="learning_rate") # Create B's B = [0] * (n + 1) B[n] = -err / dsize Bn = [0] * (n + 1) # Newton-modified backprop Bn[n] = u.Identity(f(n)) for i in range(n - 1, -1, -1): B[i] = t(W[i + 1]) @ B[i + 1] Bn[i] = t(W[i + 1]) @ Bn[i + 1] # inverse Hessian blocks iblocks = u.empty_grid(n + 1, n + 1) for i in range(1, n + 1): for j in range(1, n + 1): # reuse Hess tensor calculation in order to get off-diag block sizes dummy_term = kr(A[i] @ t(A[j]), Bn[i] @ t(Bn[j])) / dsize if i == j: acov = A[i] @ t(A[j]) bcov = (Bn[i] @ t(Bn[j])) / dsize term = kr(u.pseudo_inverse(acov), u.pseudo_inverse(bcov)) else: term = tf.zeros(shape=dummy_term.get_shape(), dtype=dtype) iblocks[i][j] = term # remove leftmost blocks (those are with respect to W[0] which is input) del iblocks[0] for row in iblocks: del row[0] ihess = u.concat_blocks(iblocks) sess = tf.Session() sess.run(tf.global_variables_initializer(), feed_dict=init_dict) # create dW's dW = [0] * (n + 1) for i in range(n + 1): dW[i] = tf.matmul(B[i], tf.transpose(A[i]), name="dW" + str(i)) del dW[0] # get rid of W[0] update dWf = tf.concat([u.vec(dWi) for dWi in dW], axis=0) Wf_new = Wf - lr * ihess @ dWf train_op1 = Wf_copy.assign(Wf_new) train_op2 = Wf.assign(Wf_copy) observed_losses = [] elapsed_times = [] u.reset_time() for i in range(10): loss0 = sess.run([loss])[0] print(loss0) observed_losses.append(loss0) sess.run(train_op1) sess.run(train_op2) u.record_time() u.summarize_time() u.summarize_graph()
def rotations2_newton_bd(): # override kr with no-shape-inferring version def kr(A, B): return u.kronecker(A, B, do_shape_inference=False) tf.reset_default_graph() X0 = np.genfromtxt('data/large_rotations2_X0.csv', delimiter=",") Y0 = np.genfromtxt('data/large_rotations2_Y0.csv', delimiter=",") W0f = v2c_np(np.genfromtxt('data/large_rotations2_W0f.csv', delimiter=",")) fs = np.genfromtxt('data/large_rotations2_fs.csv', delimiter=",").astype(np.int32) n = len(fs) - 2 # number of layers def f(i): return fs[i + 1] # W[i] has shape f[i] x f[i-1] dsize = X0.shape[1] assert f(-1) == dsize # load W0f and do shape checks (can remove) W0s = u.unflatten_np(W0f, fs[1:]) # Wf doesn't have first layer (data matrix) W0s.insert(0, X0) Wf_holder = tf.placeholder(dtype, shape=W0f.shape) Wf = tf.Variable(Wf_holder, name="Wf") Wf_copy = tf.Variable(Wf_holder, name="Wf_copy") init_dict = {Wf_holder: W0f} # Create W's W = u.unflatten(Wf, fs[1:]) X = tf.constant(X0) Y = tf.constant(Y0) W.insert(0, X) for (numpy_W, tf_W) in zip(W0s, W): u.check_equal(numpy_W.shape, u.fix_shape(tf_W.shape)) # Create A's # A[1] == X A = [0] * (n + 2) A[0] = u.Identity(dsize) for i in range(n + 1): A[i + 1] = tf.matmul(W[i], A[i], name="A" + str(i + 1)) assert W[0].get_shape() == X0.shape assert A[n + 1].get_shape() == X0.shape assert A[1].get_shape() == X0.shape err = Y - A[n + 1] loss = tf.reduce_sum(tf.square(err)) / (2 * dsize) lr = tf.Variable(0.1, dtype=dtype, name="learning_rate") # Create B's B = [0] * (n + 1) B[n] = -err / dsize Bn = [0] * (n + 1) # Newton-modified backprop Bn[n] = u.Identity(f(n)) for i in range(n - 1, -1, -1): B[i] = t(W[i + 1]) @ B[i + 1] Bn[i] = t(W[i + 1]) @ Bn[i + 1] # Create U's U = [list(range(n + 1)) for _ in range(n + 1)] for bottom in range(n + 1): for top in range(n + 1): if bottom > top: prod = u.Identity(f(top)) else: prod = u.Identity(f(bottom - 1)) for i in range(bottom, top + 1): prod = prod @ t(W[i]) U[bottom][top] = prod # Block i, j gives hessian block between layer i and layer j blocks = [list(range(n + 1)) for _ in range(n + 1)] for i in range(1, n + 1): for j in range(1, n + 1): term1 = kr(A[i] @ t(A[j]), Bn[i] @ t(Bn[j])) / dsize if i == j: term2 = tf.zeros((f(i) * f(i - 1), f(i) * f(i - 1)), dtype=dtype) elif i < j: term2 = kr(A[i] @ t(B[j]), U[i + 1][j - 1]) else: term2 = kr(t(U[j + 1][i - 1]), B[i] @ t(A[j])) blocks[i][j] = term1 + term2 @ Kmat(f(j), f(j - 1)) # remove leftmost blocks (those are with respect to W[0] which is input) del blocks[0] for row in blocks: del row[0] ihess = u.concat_blocks(u.block_diagonal_inverse(blocks)) sess = tf.Session() sess.run(tf.global_variables_initializer(), feed_dict=init_dict) # create dW's dW = [0] * (n + 1) for i in range(n + 1): dW[i] = tf.matmul(B[i], tf.transpose(A[i]), name="dW" + str(i)) del dW[0] # get rid of W[0] update dWf = tf.concat([u.vec(dWi) for dWi in dW], axis=0) Wf_new = Wf - lr * ihess @ dWf train_op1 = Wf_copy.assign(Wf_new) train_op2 = Wf.assign(Wf_copy) observed_losses = [] u.reset_time() for i in range(20): loss0 = sess.run([loss])[0] print(loss0) observed_losses.append(loss0) sess.run(train_op1) sess.run(train_op2) u.record_time() u.summarize_time() u.summarize_graph()
def cost_and_grad(W0f=None, fs=None, lambda_=3e-3, rho=0.1, beta=3, X0=None, lr=0.1): """Construct sparse autoencoder loss and gradient. Args: W0f: initial value of weights (flattened representation) fs: list of sizes [dsize, visible, hidden, visible] sparsity_param: global feature sparsity target beta: weight on sparsity penalty X0: value of X (aka W[0]) Returns: cost, train_step """ np.random.seed(0) tf.set_random_seed(0) dtype = np.float32 if not fs: fs = [dsize, 28 * 28, 196, 28 * 28] if not W0f: W0f = W_uniform(fs[2], fs[3]) rho = tf.constant(rho, dtype=dtype) def f(i): return fs[i + 1] # W[i] has shape f[i] x f[i-1] dsize = f(-1) n = len(fs) - 2 init_dict = {} def init_var(val, name, trainable=True): holder = tf.placeholder(dtype, shape=val.shape, name=name + "_holder") var = tf.Variable(holder, name=name + "_var", trainable=trainable) init_dict[holder] = val return var Wf = init_var(W0f, "Wf") Wf_copy = init_var(W0f, "Wf_copy") W = u.unflatten(Wf, fs[1:]) X = init_var(X0, "X", False) W.insert(0, X) def sigmoid(x): return tf.sigmoid(x) def d_sigmoid(y): return y * (1 - y) def kl(x, y): return x * tf.log(x / y) + (1 - x) * tf.log((1 - x) / (1 - y)) def d_kl(x, y): return (1 - x) / (1 - y) - x / y # A[i] = activations needed to compute gradient of W[i] # A[n+1] = network output A = [None] * (n + 2) A[0] = u.Identity(dsize, dtype=dtype) A[1] = W[0] for i in range(1, n + 1): A[i + 1] = sigmoid(W[i] @ A[i]) # reconstruction error and sparsity error err = (A[3] - A[1]) rho_hat = tf.reduce_sum(A[2], axis=1, keep_dims=True) / dsize # B[i] = backprops needed to compute gradient of W[i] B = [None] * (n + 1) B[n] = err * d_sigmoid(A[n + 1]) for i in range(n - 1, -1, -1): backprop = t(W[i + 1]) @ B[i + 1] if i == 1: backprop += beta * d_kl(rho, rho_hat) B[i] = backprop * d_sigmoid(A[i + 1]) # dW[i] = gradient of W[i] dW = [None] * (n + 1) for i in range(n + 1): dW[i] = (B[i] @ t(A[i])) / dsize # Cost function reconstruction = u.L2(err) / (2 * dsize) sparsity = beta * tf.reduce_sum(kl(rho, rho_hat)) L2 = (lambda_ / 2) * (u.L2(W[1]) + u.L2(W[1])) cost = reconstruction + sparsity + L2 grad = u.flatten(dW[1:]) copy_op = Wf_copy.assign(Wf - lr * grad) with tf.control_dependencies([copy_op]): train_op = Wf.assign(Wf_copy) sess = tf.InteractiveSession() sess.run(tf.global_variables_initializer(), feed_dict=init_dict) return cost, train_op
def model_creator(batch_size, name='defaultmodel', dtype=np.float32): """Create MNIST autoencoder model. Dataset is part of model.""" global hack_global_init_dict model = Model(name) # TODO: actually use batch_size init_dict = {} # todo: rename to feed_dict? global_vars = [] local_vars = [] # TODO: rename to make_var def init_var(val, name, is_global=False): """Helper to create variables with numpy or TF initial values.""" if isinstance(val, tf.Tensor): var = u.get_variable(name=name, initializer=val, reuse=is_global) else: val = np.array(val) assert u.is_numeric(val), "Non-numeric type." var_struct = u.get_var(name=name, initializer=val, reuse=is_global) holder = var_struct.val_ init_dict[holder] = val var = var_struct.var if is_global: global_vars.append(var) else: local_vars.append(var) return var # TODO: get rid of purely_relu def nonlin(x): if purely_relu: return tf.nn.relu(x) elif purely_linear: return tf.identity(x) else: return tf.sigmoid(x) # TODO: rename into "nonlin_d" def d_nonlin(y): if purely_relu: return u.relu_mask(y) elif purely_linear: return 1 else: return y * (1 - y) train_images = load_MNIST.load_MNIST_images( 'data/train-images-idx3-ubyte').astype(dtype) patches = train_images[:, :batch_size] fs = [batch_size, 28 * 28, 196, 28 * 28] def f(i): return fs[i + 1] # W[i] has shape f[i] x f[i-1] n = len(fs) - 2 X = init_var(patches, "X", is_global=False) W = [None] * n W.insert(0, X) A = [None] * (n + 2) A[1] = W[0] W0f_old = W_uniform(fs[2], fs[3]).astype(dtype) # to match previous generation W0s_old = u.unflatten(W0f_old, fs[1:]) # perftodo: this creates transposes for i in range(1, n + 1): # temp = init_var(ng_init(f(i), f(i-1)), "W_%d"%(i,), is_global=True) # init_val1 = W0s_old[i-1] init_val = ng_init(f(i), f(i - 1)).astype(dtype) W[i] = init_var(init_val, "W_%d" % (i, ), is_global=True) A[i + 1] = nonlin(kfac_lib.matmul(W[i], A[i])) err = A[n + 1] - A[1] # manually compute backprop to use for sanity checking B = [None] * (n + 1) B2 = [None] * (n + 1) B[n] = err * d_nonlin(A[n + 1]) _sampled_labels_live = tf.random_normal((f(n), f(-1)), dtype=dtype, seed=0) if use_fixed_labels: _sampled_labels_live = tf.ones(shape=(f(n), f(-1)), dtype=dtype) _sampled_labels = init_var(_sampled_labels_live, "to_be_deleted", is_global=False) B2[n] = _sampled_labels * d_nonlin(A[n + 1]) for i in range(n - 1, -1, -1): backprop = t(W[i + 1]) @ B[i + 1] B[i] = backprop * d_nonlin(A[i + 1]) backprop2 = t(W[i + 1]) @ B2[i + 1] B2[i] = backprop2 * d_nonlin(A[i + 1]) cov_A = [None] * (n + 1) # covariance of activations[i] cov_B2 = [None] * (n + 1) # covariance of synthetic backprops[i] vars_svd_A = [None] * (n + 1) vars_svd_B2 = [None] * (n + 1) dW = [None] * (n + 1) dW2 = [None] * (n + 1) pre_dW = [None] * (n + 1) # preconditioned dW for i in range(1, n + 1): if regularized_svd: cov_A[i] = init_var( A[i] @ t(A[i]) / batch_size + LAMBDA * u.Identity(f(i - 1)), "cov_A%d" % (i, )) cov_B2[i] = init_var( B2[i] @ t(B2[i]) / batch_size + LAMBDA * u.Identity(f(i)), "cov_B2%d" % (i, )) else: cov_A[i] = init_var(A[i] @ t(A[i]) / batch_size, "cov_A%d" % (i, )) cov_B2[i] = init_var(B2[i] @ t(B2[i]) / batch_size, "cov_B2%d" % (i, )) vars_svd_A[i] = u.SvdWrapper(cov_A[i], "svd_A_%d" % (i, )) vars_svd_B2[i] = u.SvdWrapper(cov_B2[i], "svd_B2_%d" % (i, )) if use_tikhonov: whitened_A = u.regularized_inverse3(vars_svd_A[i], L=LAMBDA) @ A[i] whitened_B2 = u.regularized_inverse3(vars_svd_B2[i], L=LAMBDA) @ B[i] else: whitened_A = u.pseudo_inverse2(vars_svd_A[i]) @ A[i] whitened_B2 = u.pseudo_inverse2(vars_svd_B2[i]) @ B[i] dW[i] = (B[i] @ t(A[i])) / batch_size dW2[i] = B[i] @ t(A[i]) pre_dW[i] = (whitened_B2 @ t(whitened_A)) / batch_size # model.extra['A'] = A # model.extra['B'] = B # model.extra['B2'] = B2 # model.extra['cov_A'] = cov_A # model.extra['cov_B2'] = cov_B2 # model.extra['vars_svd_A'] = vars_svd_A # model.extra['vars_svd_B2'] = vars_svd_B2 # model.extra['W'] = W # model.extra['dW'] = dW # model.extra['dW2'] = dW2 # model.extra['pre_dW'] = pre_dW model.loss = u.L2(err) / (2 * batch_size) sampled_labels_live = A[n + 1] + tf.random_normal( (f(n), f(-1)), dtype=dtype, seed=0) if use_fixed_labels: sampled_labels_live = A[n + 1] + tf.ones(shape=(f(n), f(-1)), dtype=dtype) sampled_labels = init_var(sampled_labels_live, "sampled_labels", is_global=False) err2 = A[n + 1] - sampled_labels model.loss2 = u.L2(err2) / (2 * batch_size) model.global_vars = global_vars model.local_vars = local_vars model.trainable_vars = W[1:] def advance_batch(): sess = tf.get_default_session() # TODO: get rid of _sampled_labels sess.run([sampled_labels.initializer, _sampled_labels.initializer]) model.advance_batch = advance_batch global_init_op = tf.group(*[v.initializer for v in global_vars]) def initialize_global_vars(): sess = tf.get_default_session() sess.run(global_init_op, feed_dict=init_dict) model.initialize_global_vars = initialize_global_vars local_init_op = tf.group(*[v.initializer for v in local_vars]) def initialize_local_vars(): sess = tf.get_default_session() sess.run(X.initializer, feed_dict=init_dict) # A's depend on X sess.run(_sampled_labels.initializer, feed_dict=init_dict) sess.run(local_init_op, feed_dict=init_dict) model.initialize_local_vars = initialize_local_vars hack_global_init_dict = init_dict return model
def simple_newton_kfac_test(): tf.reset_default_graph() X0 = np.genfromtxt('data/rotations_simple_X0.csv', delimiter= ",") Y0 = np.genfromtxt('data/rotations_simple_Y0.csv', delimiter= ",") W0f = v2c_np(np.genfromtxt('data/rotations_simple_W0f.csv', delimiter= ",")) assert W0f.shape == (8, 1) fs = np.genfromtxt('data/rotations_simple_fs.csv', delimiter= ",").astype(np.int32) n = len(fs)-2 # number of layers u.check_equal(fs, [10,2,2,2]) def f(i): return fs[i+1] # W[i] has shape f[i] x f[i-1] dsize = X0.shape[1] assert f(-1) == dsize # load W0f and do shape checks (can remove) W0s = u.unflatten_np(W0f, fs[1:]) # Wf doesn't have first layer (data matrix) W0s.insert(0, X0) Wf_holder = tf.placeholder(dtype, shape=W0f.shape) Wf = tf.Variable(Wf_holder, name="Wf") Wf_copy = tf.Variable(Wf_holder, name="Wf_copy") init_dict = {Wf_holder: W0f} # Create W's W = u.unflatten(Wf, fs[1:]) X = tf.constant(X0) Y = tf.constant(Y0) W.insert(0, X) for (numpy_W, tf_W) in zip(W0s, W): u.check_equal(numpy_W.shape, u.fix_shape(tf_W.shape)) # Create A's # A[1] == X A = [0]*(n+2) A[0] = u.Identity(dsize) for i in range(n+1): A[i+1] = tf.matmul(W[i], A[i], name="A"+str(i+1)) assert W[0].get_shape() == X0.shape assert A[n+1].get_shape() == X0.shape assert A[1].get_shape() == X0.shape err = Y - A[n+1] loss = tf.reduce_sum(tf.square(err))/(2*dsize) lr = tf.Variable(0.5, dtype=dtype, name="learning_rate") # Create B's B = [0]*(n+1) B[n] = -err/dsize Bn = [0]*(n+1) # Newton-modified backprop Bn[n] = u.Identity(f(n)) for i in range(n-1, -1, -1): B[i] = t(W[i+1]) @ B[i+1] Bn[i] = t(W[i+1]) @ Bn[i+1] # inverse Hessian blocks iblocks = u.empty_grid(n+1, n+1) for i in range(1, n+1): for j in range(1, n+1): # reuse Hess tensor calculation in order to get off-diag block sizes dummy_term = kr(A[i] @ t(A[j]), Bn[i] @ t(Bn[j])) / dsize; if i == j: acov = A[i] @ t(A[j]) bcov = Bn[i] @ t(Bn[j]) / dsize; term = kr(u.pseudo_inverse(acov), u.pseudo_inverse(bcov)) else: term = tf.zeros(shape=dummy_term.get_shape(), dtype=dtype) iblocks[i][j]=term # remove leftmost blocks (those are with respect to W[0] which is input) del iblocks[0] for row in iblocks: del row[0] ihess = u.concat_blocks(iblocks) sess = tf.Session() sess.run(tf.global_variables_initializer(), feed_dict=init_dict) # create dW's dW = [0]*(n+1) for i in range(n+1): dW[i] = tf.matmul(B[i], tf.transpose(A[i]), name="dW"+str(i)) del dW[0] # get rid of W[0] update dWf = tf.concat([u.vec(dWi) for dWi in dW], axis=0) Wf_new = Wf - lr * ihess @ dWf train_op1 = Wf_copy.assign(Wf_new) train_op2 = Wf.assign(Wf_copy) expected_losses = np.loadtxt("data/rotations_simple_newtonkfac_losses.csv", delimiter= ",") observed_losses = [] # from accompanying notebook # {0.0111498, 0.0000171591, 4.11445*10^-11, 2.33653*10^-22, # 6.88354*10^-33, for i in range(10): observed_losses.append(sess.run([loss])[0]) sess.run(train_op1) sess.run(train_op2) u.check_equal(observed_losses, expected_losses)
def simple_newton_bd_test(): tf.reset_default_graph() X0 = np.genfromtxt('data/rotations_simple_X0.csv', delimiter= ",") Y0 = np.genfromtxt('data/rotations_simple_Y0.csv', delimiter= ",") W0f = v2c_np(np.genfromtxt('data/rotations_simple_W0f.csv', delimiter= ",")) assert W0f.shape == (8, 1) fs = np.genfromtxt('data/rotations_simple_fs.csv', delimiter= ",").astype(np.int32) n = len(fs)-2 # number of layers u.check_equal(fs, [10,2,2,2]) def f(i): return fs[i+1] # W[i] has shape f[i] x f[i-1] dsize = X0.shape[1] assert f(-1) == dsize # load W0f and do shape checks (can remove) W0s = u.unflatten_np(W0f, fs[1:]) # Wf doesn't have first layer (data matrix) W0s.insert(0, X0) Wf_holder = tf.placeholder(dtype, shape=W0f.shape) Wf = tf.Variable(Wf_holder, name="Wf") Wf_copy = tf.Variable(Wf_holder, name="Wf_copy") init_dict = {Wf_holder: W0f} # Create W's W = u.unflatten(Wf, fs[1:]) X = tf.constant(X0) Y = tf.constant(Y0) W.insert(0, X) for (numpy_W, tf_W) in zip(W0s, W): u.check_equal(numpy_W.shape, u.fix_shape(tf_W.shape)) # Create A's # A[1] == X A = [0]*(n+2) A[0] = u.Identity(dsize) for i in range(n+1): A[i+1] = tf.matmul(W[i], A[i], name="A"+str(i+1)) assert W[0].get_shape() == X0.shape assert A[n+1].get_shape() == X0.shape assert A[1].get_shape() == X0.shape err = Y - A[n+1] loss = tf.reduce_sum(tf.square(err))/(2*dsize) lr = tf.Variable(0.5, dtype=dtype, name="learning_rate") # Create B's B = [0]*(n+1) B[n] = -err/dsize Bn = [0]*(n+1) # Newton-modified backprop Bn[n] = u.Identity(f(n)) for i in range(n-1, -1, -1): B[i] = t(W[i+1]) @ B[i+1] Bn[i] = t(W[i+1]) @ Bn[i+1] # Create U's U = [list(range(n+1)) for _ in range(n+1)] for bottom in range(n+1): for top in range(n+1): if bottom > top: prod = u.Identity(f(top)) else: prod = u.Identity(f(bottom-1)) for i in range(bottom, top+1): prod = prod@t(W[i]) U[bottom][top] = prod # Block i, j gives hessian block between layer i and layer j blocks = [list(range(n+1)) for _ in range(n+1)] for i in range(1, n+1): for j in range(1, n+1): term1 = kr(A[i] @ t(A[j]), Bn[i] @ t(Bn[j])) / dsize; if i == j: term2 = tf.zeros((f(i)*f(i-1), f(i)*f(i-1)), dtype=dtype) elif i < j: term2 = kr(A[i] @ t(B[j]), U[i+1][j-1]) else: term2 = kr(t(U[j+1][i-1]), B[i] @ t(A[j])) blocks[i][j]=term1 + term2 @ Kmat(f(j), f(j-1)) # remove leftmost blocks (those are with respect to W[0] which is input) del blocks[0] for row in blocks: del row[0] #hess = u.concat_blocks(blocks) ihess = u.concat_blocks(u.block_diagonal_inverse(blocks)) # ihess = u.pseudo_inverse(hess) sess = tf.Session() sess.run(tf.global_variables_initializer(), feed_dict=init_dict) # create dW's dW = [0]*(n+1) for i in range(n+1): dW[i] = tf.matmul(B[i], tf.transpose(A[i]), name="dW"+str(i)) del dW[0] # get rid of W[0] update dWf = tf.concat([u.vec(dWi) for dWi in dW], axis=0) Wf_new = Wf - lr * ihess @ dWf train_op1 = Wf_copy.assign(Wf_new) train_op2 = Wf.assign(Wf_copy) expected_losses = np.loadtxt("data/rotations_simple_newtonbd_losses.csv", delimiter= ",") observed_losses = [] # from accompanying notebook # 0.0111498, 0.0000171591, 4.11445*10^-11, 2.33652*10^-22, # 1.21455*10^-32, for i in range(10): observed_losses.append(sess.run([loss])[0]) sess.run(train_op1) sess.run(train_op2) u.check_equal(observed_losses, expected_losses)
def relu_gradient_test(): tf.reset_default_graph() X0 = np.genfromtxt('data/rotations_X0.csv', delimiter= ",") Y0 = np.genfromtxt('data/rotations_Y0.csv', delimiter= ",") W0f = v2c_np(np.genfromtxt('data/rotations_W0f.csv', delimiter= ",")) assert W0f.shape == (8, 1) fs = np.genfromtxt('data/rotations_relu_fs.csv', delimiter= ",").astype(np.int32) n = len(fs)-2 # number of layers u.check_equal(fs, [4,2,2,2]) def f(i): return fs[i+1] # W[i] has shape f[i] x f[i-1] dsize = X0.shape[1] assert f(-1) == dsize # load W0f and do shape checks (can remove) W0s = u.unflatten_np(W0f, fs[1:]) # Wf doesn't have first layer (data matrix) W0s.insert(0, X0) Wf_holder = tf.placeholder(dtype, shape=W0f.shape) Wf = tf.Variable(Wf_holder, name="Wf") Wf_copy = tf.Variable(Wf_holder, name="Wf_copy") init_dict = {Wf_holder: W0f} # Create W's W = u.unflatten(Wf, fs[1:]) X = tf.constant(X0, name="X0") Y = tf.constant(Y0, name="Y0") W.insert(0, X) for (numpy_W, tf_W) in zip(W0s, W): u.check_equal(numpy_W.shape, u.fix_shape(tf_W.shape)) # Create A's # A[1] == X A = [0]*(n+2) A[0] = u.Identity(dsize) for i in range(n+1): if i == 0: A[i+1] = X else: A[i+1] = tf.nn.relu(tf.matmul(W[i], A[i], name="A"+str(i+1))) assert W[0].get_shape() == X0.shape assert A[n+1].get_shape() == X0.shape assert A[1].get_shape() == X0.shape err = Y - A[n+1] loss = tf.reduce_sum(tf.square(err))/(2*dsize) lr = tf.Variable(0.1, dtype=dtype) # Create B's B = [0]*(n+1) B[n] = (-err/dsize)*u.relu_mask(A[n+1]) for i in range(n-1, -1, -1): B[i] = t(W[i+1]) @ B[i+1] if i > 0: # there's no relu on first matrix B[i] = B[i]*u.relu_mask(A[i+1]) # create dW's dW = [0]*(n+1) for i in range(n+1): dW[i] = tf.matmul(B[i], tf.transpose(A[i]), name="dW"+str(i)) del dW[0] # get rid of W[0] update dWf = tf.concat([u.vec(dWi) for dWi in dW], axis=0) Wf_new = Wf - lr * dWf train_op1 = Wf_copy.assign(Wf_new) train_op2 = Wf.assign(Wf_copy) sess = tf.Session() sess.run(tf.global_variables_initializer(), feed_dict=init_dict) expected_losses = np.loadtxt("data/rotations_relu_gradient_losses.csv", delimiter= ",") observed_losses = [] # From accompanying notebook # {0.407751, 0.0683822, 0.0138657, 0.0039221, 0.00203637, 0.00164892, # 0.00156137, 0.00153857, 0.00153051, 0.00152593} for i in range(10): observed_losses.append(sess.run([loss])[0]) sess.run(train_op1) sess.run(train_op2) u.check_equal(observed_losses, expected_losses)
def model_creator(batch_size, name="default", dtype=np.float32): """Create MNIST autoencoder model. Dataset is part of model.""" model = Model(name) def get_batch_size(data): if isinstance(data, IndexedGrad): return int(data.live[0].shape[1]) else: return int(data.shape[1]) init_dict = {} global_vars = [] local_vars = [] # TODO: factor out to reuse between scripts # TODO: change feed_dict logic to reuse value provided to VarStruct # current situation makes reinitialization of global variable change # it's value, counterinituitive def init_var(val, name, is_global=False): """Helper to create variables with numpy or TF initial values.""" if isinstance(val, tf.Tensor): var = u.get_variable(name=name, initializer=val, reuse=is_global) else: val = np.array(val) assert u.is_numeric(val), "Non-numeric type." var_struct = u.get_var(name=name, initializer=val, reuse=is_global) holder = var_struct.val_ init_dict[holder] = val var = var_struct.var if is_global: global_vars.append(var) else: local_vars.append(var) return var # TODO: get rid of purely_relu def nonlin(x): if purely_relu: return tf.nn.relu(x) elif purely_linear: return tf.identity(x) else: return tf.sigmoid(x) # TODO: rename into "nonlin_d" def d_nonlin(y): if purely_relu: return u.relu_mask(y) elif purely_linear: return 1 else: return y*(1-y) patches = train_images[:,:args.batch_size]; test_patches = test_images[:,:args.batch_size]; if args.dataset == 'cifar': input_dim = 3*32*32 elif args.dataset == 'mnist': input_dim = 28*28 else: assert False fs = [args.batch_size, input_dim, 1024, 1024, 1024, 196, 1024, 1024, 1024, input_dim] def f(i): return fs[i+1] # W[i] has shape f[i] x f[i-1] n = len(fs) - 2 # Full dataset from which new batches are sampled X_full = init_var(train_images, "X_full", is_global=True) X = init_var(patches, "X", is_global=False) # stores local batch per model W = [None]*n W.insert(0, X) A = [None]*(n+2) A[1] = W[0] for i in range(1, n+1): init_val = ng_init(f(i), f(i-1)).astype(dtype) W[i] = init_var(init_val, "W_%d"%(i,), is_global=True) A[i+1] = nonlin(kfac_lib.matmul(W[i], A[i])) err = A[n+1] - A[1] model.loss = u.L2(err) / (2 * get_batch_size(err)) # create test error eval layer0 = init_var(test_patches, "X_test", is_global=True) layer = layer0 for i in range(1, n+1): layer = nonlin(W[i] @ layer) verr = (layer - layer0) model.vloss = u.L2(verr) / (2 * get_batch_size(verr)) # manually compute backprop to use for sanity checking B = [None]*(n+1) B2 = [None]*(n+1) B[n] = err*d_nonlin(A[n+1]) _sampled_labels_live = tf.random_normal((f(n), f(-1)), dtype=dtype, seed=0) if args.fixed_labels: _sampled_labels_live = tf.ones(shape=(f(n), f(-1)), dtype=dtype) _sampled_labels = init_var(_sampled_labels_live, "to_be_deleted", is_global=False) B2[n] = _sampled_labels*d_nonlin(A[n+1]) for i in range(n-1, -1, -1): backprop = t(W[i+1]) @ B[i+1] B[i] = backprop*d_nonlin(A[i+1]) backprop2 = t(W[i+1]) @ B2[i+1] B2[i] = backprop2*d_nonlin(A[i+1]) cov_A = [None]*(n+1) # covariance of activations[i] cov_B2 = [None]*(n+1) # covariance of synthetic backprops[i] vars_svd_A = [None]*(n+1) vars_svd_B2 = [None]*(n+1) dW = [None]*(n+1) dW2 = [None]*(n+1) pre_dW = [None]*(n+1) # preconditioned dW # todo: decouple initial value from covariance update # maybe need start with identity and do running average for i in range(1,n+1): if regularized_svd: cov_A[i] = init_var(A[i]@t(A[i])/args.batch_size+args.Lambda*u.Identity(f(i-1)), "cov_A%d"%(i,)) cov_B2[i] = init_var(B2[i]@t(B2[i])/args.batch_size+args.Lambda*u.Identity(f(i)), "cov_B2%d"%(i,)) else: cov_A[i] = init_var(A[i]@t(A[i])/args.batch_size, "cov_A%d"%(i,)) cov_B2[i] = init_var(B2[i]@t(B2[i])/args.batch_size, "cov_B2%d"%(i,)) vars_svd_A[i] = u.SvdWrapper(cov_A[i],"svd_A_%d"%(i,)) vars_svd_B2[i] = u.SvdWrapper(cov_B2[i],"svd_B2_%d"%(i,)) if use_tikhonov: whitened_A = u.regularized_inverse3(vars_svd_A[i],L=args.Lambda) @ A[i] whitened_B2 = u.regularized_inverse3(vars_svd_B2[i],L=args.Lambda) @ B[i] else: whitened_A = u.pseudo_inverse2(vars_svd_A[i]) @ A[i] whitened_B2 = u.pseudo_inverse2(vars_svd_B2[i]) @ B[i] dW[i] = (B[i] @ t(A[i]))/args.batch_size dW2[i] = B[i] @ t(A[i]) pre_dW[i] = (whitened_B2 @ t(whitened_A))/args.batch_size sampled_labels_live = A[n+1] + tf.random_normal((f(n), f(-1)), dtype=dtype, seed=0) if args.fixed_labels: sampled_labels_live = A[n+1]+tf.ones(shape=(f(n), f(-1)), dtype=dtype) sampled_labels = init_var(sampled_labels_live, "sampled_labels", is_global=False) err2 = A[n+1] - sampled_labels model.loss2 = u.L2(err2) / (2 * args.batch_size) model.global_vars = global_vars model.local_vars = local_vars model.trainable_vars = W[1:] # todo, we have 3 places where model step is tracked, reduce model.step = init_var(u.as_int32(0), "step", is_global=False) advance_step_op = model.step.assign_add(1) assert get_batch_size(X_full) % args.batch_size == 0 batches_per_dataset = (get_batch_size(X_full) // args.batch_size) batch_idx = tf.mod(model.step, batches_per_dataset) start_idx = batch_idx * args.batch_size advance_batch_op = X.assign(X_full[:,start_idx:start_idx + args.batch_size]) def advance_batch(): print("Step for model(%s) is %s"%(model.name, u.eval(model.step))) sess = u.get_default_session() # TODO: get rid of _sampled_labels sessrun([sampled_labels.initializer, _sampled_labels.initializer]) if args.advance_batch: with u.timeit("advance_batch"): sessrun(advance_batch_op) sessrun(advance_step_op) model.advance_batch = advance_batch # TODO: refactor this to take initial values out of Var struct #global_init_op = tf.group(*[v.initializer for v in global_vars]) global_init_ops = [v.initializer for v in global_vars] global_init_op = tf.group(*[v.initializer for v in global_vars]) global_init_query_ops = [tf.logical_not(tf.is_variable_initialized(v)) for v in global_vars] def initialize_global_vars(verbose=False, reinitialize=False): """If reinitialize is false, will not reinitialize variables already initialized.""" sess = u.get_default_session() if not reinitialize: uninited = sessrun(global_init_query_ops) # use numpy boolean indexing to select list of initializers to run to_initialize = list(np.asarray(global_init_ops)[uninited]) else: to_initialize = global_init_ops if verbose: print("Initializing following:") for v in to_initialize: print(" " + v.name) sessrun(to_initialize, feed_dict=init_dict) model.initialize_global_vars = initialize_global_vars # didn't quite work (can't initialize var in same run call as deps likely) # enforce that batch is initialized before everything # except fake labels opa # for v in local_vars: # if v != X and v != sampled_labels and v != _sampled_labels: # print("Adding dep %s on %s"%(v.initializer.name, X.initializer.name)) # u.add_dep(v.initializer, on_op=X.initializer) local_init_op = tf.group(*[v.initializer for v in local_vars], name="%s_localinit"%(model.name)) print("Local vars:") for v in local_vars: print(v.name) def initialize_local_vars(): sess = u.get_default_session() sessrun(_sampled_labels.initializer, feed_dict=init_dict) sessrun(X.initializer, feed_dict=init_dict) sessrun(local_init_op, feed_dict=init_dict) model.initialize_local_vars = initialize_local_vars return model
A[0] = u.Identity(dsize) for i in range(n+1): A[i+1] = tf.matmul(W[i], A[i], name="A"+str(i+1)) assert W[0].get_shape() == X0.shape assert A[n+1].get_shape() == X0.shape assert A[1].get_shape() == X0.shape err = Y - A[n+1] loss = tf.reduce_sum(tf.square(err))/(2*dsize) # Create B's B = [0]*(n+1) B[n] = -err/dsize for i in range(n-1, -1, -1): B[i] = t(W[i+1]) @ B[i+1] # create dW's dW = [0]*(n+1) for i in range(n+1): dW[i] = tf.matmul(B[i], tf.transpose(A[i]), name="dW"+str(i)) del dW[0] # get rid of W[0] update dWf = tf.concat([u.vec(dWi) for dWi in dW], axis=0) lr_holder = tf.placeholder(dtype=dtype, shape=()) lr = tf.Variable(lr_holder, dtype=dtype) # run tests do_run_iters = 5 result = newton(1.0) expected_result = [8.9023744225439743e-05, 0.060120791316053412, 0.0059295249954177918, 1.9856240803246437e-05, 2.7125563957575423e-10]
# A[n+1] = network output A = [None] * (n + 2) A[0] = u.Identity(dsize, dtype=dtype) A[1] = W[0] for i in range(1, n + 1): A[i + 1] = sigmoid(W[i] @ A[i]) # reconstruction error and sparsity error err = (A[3] - A[1]) rho_hat = tf.reduce_sum(A[2], axis=1, keep_dims=True) / dsize # B[i] = backprops needed to compute gradient of W[i] B = [None] * (n + 1) B[n] = err * d_sigmoid(A[n + 1]) for i in range(n - 1, -1, -1): backprop = t(W[i + 1]) @ B[i + 1] if i == 1: backprop += beta * d_kl(rho, rho_hat) B[i] = backprop * d_sigmoid(A[i + 1]) # dW[i] = gradient of W[i] dW = [None] * (n + 1) for i in range(n + 1): dW[i] = (B[i] @ t(A[i])) / dsize # Cost function reconstruction = u.L2(err) / (2 * dsize) sparsity = beta * tf.reduce_sum(kl(rho, rho_hat)) L2 = (lambda_ / 2) * (u.L2(W[1]) + u.L2(W[1])) cost = reconstruction + sparsity + L2
A[1] = W[0] for i in range(1, n + 1): A[i + 1] = sigmoid(W[i] @ A[i]) # reconstruction error and sparsity error err = (A[3] - A[1]) rho_hat = tf.reduce_sum(A[2], axis=1, keep_dims=True) / dsize # B[i] = backprops needed to compute gradient of W[i] # B2[i] = synthetic backprops for natural gradient B = [None] * (n + 1) B2 = [None] * (n + 1) B[n] = err * d_sigmoid(A[n + 1]) B2[n] = tf.random_normal((f(n), f(-1)), dtype=dtype) * d_sigmoid(A[n + 1]) for i in range(n - 1, -1, -1): backprop = t(W[i + 1]) @ B[i + 1] backprop2 = t(W[i + 1]) @ B2[i + 1] if i == 1: backprop += beta * d_kl(rho, rho_hat) backprop2 += beta * d_kl(rho, rho_hat) B[i] = backprop * d_sigmoid(A[i + 1]) B2[i] = backprop2 * d_sigmoid(A[i + 1]) # dW[i] = gradient of W[i] dW = [None] * (n + 1) dW2 = [None] * (n + 1) Acov = [None] * (n + 1) Bcov = [None] * (n + 1) # empirical covariances Bcov2 = [None] * (n + 1) # natural gradient sampled covariances whitenA = [None] * (n + 1) whitenB = [None] * (n + 1)
A[i+1] = sigmoid(W[i] @ A[i]) # reconstruction error and sparsity error err = (A[3] - A[1]) rho_hat = tf.reduce_sum(A[2], axis=1, keep_dims=True)/dsize # B[i] = backprops needed to compute gradient of W[i] # B2[i] = backprops from sampled labels needed for natural gradient B = [None]*(n+1) B2 = [None]*(n+1) B[n] = err*d_sigmoid(A[n+1]) sampled_labels_live = tf.random_normal((f(n), f(-1)), dtype=dtype, seed=0) sampled_labels = init_var(sampled_labels_live, "sampled_labels", noinit=True) B2[n] = sampled_labels*d_sigmoid(A[n+1]) for i in range(n-1, -1, -1): backprop = t(W[i+1]) @ B[i+1] backprop2 = t(W[i+1]) @ B2[i+1] if i == 1 and not drop_sparsity: backprop += beta*d_kl(rho, rho_hat) backprop2 += beta*d_kl(rho, rho_hat) B[i] = backprop*d_sigmoid(A[i+1]) B2[i] = backprop2*d_sigmoid(A[i+1]) # dW[i] = gradient of W[i] dW = [None]*(n+1) pre_dW = [None]*(n+1) # preconditioned dW pre_dW_stable = [None]*(n+1) # preconditioned stable dW cov_A = [None]*(n+1) # covariance of activations[i] cov_B2 = [None]*(n+1) # covariance of synthetic backprops[i] vars_svd_A = [None]*(n+1)
def kfac_optimizer(model_creator): stats_batch_size = 10000 main_batch_size = 10000 stats_model, loss, labels = model_creator(stats_batch_size) # replace labels_node with synthetic labels main_model, _, _ = model_creator(main_batch_size) opt = tf.GradientDescentOptimizer(0.2) grads_and_vars = opt.compute_gradients(loss) trainable_vars = tf.trainable_variables() # create SVD and preconditioning variables for matmul vars for var in trainable_vars: if var not in matmul_registry: continue dW = u.extract_grad(grads_and_vars, var) A[var] = get_activations(var) B[var] = get_backprops(var) B2[var] = get_backprops2(var) # get backprops with synthetic labels dW[var] = B[var] @ t(A[var]) # todo: sort out dsize division cov_A[var] = init_var(A[var] @ t(A[var]) / dsize, "cov_A_%s" % (var.name, )) cov_B2[var] = init_var(B2[var] @ t(B2[var]) / dsize, "cov_B2_%s" % (var.name, )) vars_svd_A[var] = SvdWrapper(cov_A[var], "svd_A_%d" % (var.name, )) vars_svd_B2[var] = SvdWrapper(cov_B2[var], "svd_B2_%d" % (var.name, )) whitened_A = u.pseudo_inverse2(vars_svd_A[var]) @ A[var] whitened_B2 = u.pseudo_inverse2(vars_svd_B2[var]) @ B[var] whitened_A_stable = u.pseudo_inverse_sqrt2(vars_svd_A[var]) @ A[var] whitened_B2_stable = u.pseudo_inverse_sqrt2(vars_svd_B2[var]) @ B[var] pre_dW[var] = (whitened_B2 @ t(whitened_A)) / dsize pre_dW_stable[var] = ( whitened_B2_stable @ t(whitened_A_stable)) / dsize dW[var] = (B[var] @ t(A[var])) / dsize # create update params ops # new_grads_and_vars = [] # for grad, var in grads_and_vars: # if var in kfac_registry: # pre_A, pre_B = kfac_registry[var] # new_grad_live = pre_B @ grad @ t(pre_A) # new_grads_and_vars.append((new_grad, var)) # print("Preconditioning %s"%(var.name)) # else: # new_grads_and_vars.append((grad, var)) # train_op = opt.apply_gradients(new_grads_and_vars) # Each variable has an associated gradient, pre_gradient, variable save op def update_grad(): ops = [grad_update_ops[var] for var in trainable_vars] sess.run(ops) def update_pre_grad(): ops = [pre_grad_update_ops[var] for var in trainable_vars] sess.run(ops) def update_pre_grad2(): ops = [pre_grad2_update_ops[var] for var in trainable_vars] sess.run(ops) def save_params(): ops = [var_save_ops[var] for var in trainable_vars] sess.run(ops) for step in range(num_steps): update_covariances() if step % whitened_every_n_steps == 0: update_svds() update_grad() update_pre_grad() # perf todo: update one of these update_pre_grad2() # stable alternative lr0, loss0 = sess.run([lr, loss]) save_params() # when grad norm<1, Fisher is unstable, switch to Sqrt(Fisher) # TODO: switch to per-matrix normalization stabilized_mode = grad_norm.eval() < 1 if stabilized_mode: update_params2() else: update_params() loss1 = loss.eval() advance_batch() # line search stuff target_slope = (-pre_grad_dot_grad.eval() if stabilized_mode else -pre_grad_stable_dot_grad.eval()) target_delta = lr0 * target_slope actual_delta = loss1 - loss0 actual_slope = actual_delta / lr0 slope_ratio = actual_slope / target_slope # between 0 and 1.01 losses.append(loss0) step_lengths.append(lr0) ratios.append(slope_ratio) if step % report_frequency == 0: print( "Step %d loss %.2f, target decrease %.3f, actual decrease, %.3f ratio %.2f grad norm: %.2f pregrad norm: %.2f" % (step, loss0, target_delta, actual_delta, slope_ratio, grad_norm.eval(), pre_grad_norm.eval())) u.record_time()
def simple_gradient_test(): tf.reset_default_graph() X0 = np.genfromtxt('data/rotations_simple_X0.csv', delimiter= ",") Y0 = np.genfromtxt('data/rotations_simple_Y0.csv', delimiter= ",") W0f = v2c_np(np.genfromtxt('data/rotations_simple_W0f.csv', delimiter= ",")) assert W0f.shape == (8, 1) fs = np.genfromtxt('data/rotations_simple_fs.csv', delimiter= ",").astype(np.int32) n = len(fs)-2 # number of layers u.check_equal(fs, [10,2,2,2]) def f(i): return fs[i+1] # W[i] has shape f[i] x f[i-1] dsize = X0.shape[1] assert f(-1) == dsize # load W0f and do shape checks (can remove) W0s = u.unflatten_np(W0f, fs[1:]) # Wf doesn't have first layer (data matrix) W0s.insert(0, X0) Wf_holder = tf.placeholder(dtype, shape=W0f.shape) Wf = tf.Variable(Wf_holder, name="Wf") Wf_copy = tf.Variable(Wf_holder, name="Wf_copy") init_dict = {Wf_holder: W0f} # Create W's W = u.unflatten(Wf, fs[1:]) X = tf.constant(X0) Y = tf.constant(Y0) W.insert(0, X) for (numpy_W, tf_W) in zip(W0s, W): u.check_equal(numpy_W.shape, u.fix_shape(tf_W.shape)) # Create A's # A[1] == X A = [0]*(n+2) A[0] = u.Identity(dsize) for i in range(n+1): A[i+1] = tf.matmul(W[i], A[i], name="A"+str(i+1)) assert W[0].get_shape() == X0.shape assert A[n+1].get_shape() == X0.shape assert A[1].get_shape() == X0.shape err = Y - A[n+1] loss = tf.reduce_sum(tf.square(err))/(2*dsize) lr = tf.Variable(1.0, dtype=dtype) # Create B's B = [0]*(n+1) B[n] = -err/dsize for i in range(n-1, -1, -1): B[i] = t(W[i+1]) @ B[i+1] # create dW's dW = [0]*(n+1) for i in range(n+1): dW[i] = tf.matmul(B[i], tf.transpose(A[i]), name="dW"+str(i)) del dW[0] # get rid of W[0] update dWf = tf.concat([u.vec(dWi) for dWi in dW], axis=0) Wf_new = Wf - lr * dWf train_op1 = Wf_copy.assign(Wf_new) train_op2 = Wf.assign(Wf_copy) sess = tf.Session() sess.run(tf.global_variables_initializer(), feed_dict=init_dict) expected_losses = np.loadtxt("data/rotations_simple_gradient_losses.csv", delimiter= ",") observed_losses = [] # from accompanying notebook # {0.0111498, 0.00694816, 0.00429464, 0.00248228, 0.00159361, # 0.000957424, 0.000651653, 0.000423802, 0.000306749, 0.00021772, for i in range(20): observed_losses.append(sess.run([loss])[0]) sess.run(train_op1) sess.run(train_op2) u.check_equal(observed_losses, expected_losses)
A = [None]*(n+2) A[0] = u.Identity(dsize, dtype=dtype) A[1] = W[0] for i in range(1, n+1): A[i+1] = sigmoid(W[i] @ A[i]) # reconstruction error and sparsity error err = (A[3] - A[1]) rho_hat = tf.reduce_sum(A[2], axis=1, keep_dims=True)/dsize # B[i] = backprops needed to compute gradient of W[i] B = [None]*(n+1) B[n] = err*d_sigmoid(A[n+1]) for i in range(n-1, -1, -1): backprop = t(W[i+1]) @ B[i+1] if i == 1: backprop += beta*d_kl(rho, rho_hat) B[i] = backprop*d_sigmoid(A[i+1]) # dW[i] = gradient of W[i] dW = [None]*(n+1) for i in range(n+1): dW[i] = (B[i] @ t(A[i]))/dsize # Cost function reconstruction = u.L2(err) / (2 * dsize) sparsity = beta * tf.reduce_sum(kl(rho, rho_hat)) L2 = (lambda_ / 2) * (u.L2(W[1]) + u.L2(W[1])) cost = reconstruction + sparsity + L2