Beispiel #1
0
def test_spectrogram():
  # http://matplotlib.org/examples/pylab_examples/specgram_demo.html
  dt = 1./0.0005
  t = np.arange(0., 20., dt)
  #t = np.arange(0., 3., dt)
  s1 = np.sin((2*np.pi)*100*t)
  s2 = 2 * np.sin((2*np.pi)*400*t)
  s2[-((10 < t) & (t < 12))] = 0
  nse = 0.01 * np.random.randn(len(t))
  if 0:
    x = s1
  else:
    x = s1 + s2 + nse
  freqs, spec, spec_times = make_specgram(x, dt)

  pl.clf()

  ax1 = pl.subplot(211)
  ax1.plot(t, x)

  if 1:
    lsp = spec.copy()
    lsp[spec > 0] = np.log(spec[spec > 0])
    lsp = ut.clip_rescale(lsp, -10, np.percentile(lsp, 99))
  else:
    lsp = spec.copy()
    lsp = ut.clip_rescale(lsp, 0, np.percentile(lsp, 99))

  ax2 = pl.subplot(212, sharex = ax1)
  ax2.imshow(lsp.T, cmap = pl.cm.jet, 
             extent = (0., t[-1], np.min(freqs), np.max(freqs)), 
             aspect = 'auto')

  ig.show(vis_specgram(freqs, spec, spec_times))
  ut.toplevel_locals()
Beispiel #2
0
Datei: camo.py Projekt: jwgu/camo
def interior_mrf(scan,
                 mesh,
                 shift_dim=1,
                 shift_dist=30.,
                 data_weight=1.,
                 full_occ=0,
                 occ_border=None,
                 occ_weight=0.5):
    """ Runs the Interior MRF camouflage method """
    # controls the importance of smoothness vs. the local evidence
    data_weight = 1. / 4 * (64. / mesh.texsize)

    geom = Geom(scan, mesh)
    labels = make_labels(scan, shift_dim, shift_dist)
    label_color, label_valid = label_colors(scan,
                                            mesh,
                                            geom,
                                            labels,
                                            invisible_colors=True)
    stable_cost = stability_costs(scan, mesh, labels)

    occ_cost = occ_weight * occlusion_costs(scan, mesh, labels, geom)

    face_weight = np.ones(mesh.nfaces)
    node_visible = np.any(label_valid, axis=1)
    fw = face_weight[mesh.tex2juv[:, 0]][:, na]
    data_cost = np.array(fw * (occ_cost + stable_cost), 'float32')
    data_cost[-label_valid] = 1e5
    # no invalid label? any label will do
    data_cost[-node_visible] = 0
    data_cost *= data_weight

    m = MRF()
    m.edges = make_graph(mesh).edges()
    m.data_cost = data_cost
    m.labels = labels
    m.label_color = label_color
    m.node_visible = node_visible
    m.sameview_prior = np.zeros(mesh.ntexels, 'float32')
    m.smooth_prior = 1.

    results = mrf.solve_mrf(m)

    assert np.all(
        np.logical_or(-node_visible, label_valid[range(len(results)),
                                                 results]))
    colors = from_color_space_2d(label_color[range(len(results)), results])
    ut.toplevel_locals()

    occ_total = np.sum((fw * occ_cost)[range(len(results)), results])
    stable_total = np.sum((fw * stable_cost)[range(len(results)), results])
    print 'Occlusion cost:', occ_total
    print 'Stability cost:', stable_total

    return colors, results, labels, (occ_total, stable_total)
Beispiel #3
0
def test_box(path, inds = None, hires = 1, as_cycle = False, label_faces = False, mesh = None):
  scan = dset.Scan(path)
  if mesh is None:
    mesh = load_from_mat(os.path.join(path, 'cube.mat'))
  ut.toplevel_locals()
  if inds is None:
    inds = range(scan.length)
  ims = [draw_faces(mesh, scan, i, hires = hires, label_faces = label_faces) for i in inds]

  if as_cycle:
    ig.show([('cycle', ims)])
  else:
    ig.show(ims)
Beispiel #4
0
def test_plane_fitting():
  noise = 0.0
  plane1 = np.array([0., 1./2**0.5, 1/2**0.5, 1.])
  plane2 = np.array([1., 0., 0., 5.])
  pts1 = sample_plane(plane1, 100, 1, noise)
  pts2 = sample_plane(plane2, 20, 1, noise)
  pts = np.vstack([pts1, pts2])
  plane, _ = fit_plane_ransac(pts, 0.05)
  #plane = fit_plane(pts1)
  print plane, 'should be', np.array([0., 1., 1., 1.])
  true_ins = plane_inliers(plane, pts, 0.05)
  print 'ninliers', len(true_ins), 'should be', len(plane_inliers(plane1, pts, 0.05)), 'other hypothesis', len(plane_inliers(plane2, pts, 0.05))
  ut.toplevel_locals()
Beispiel #5
0
def interior_mrf(scan, mesh, shift_dim = 1, shift_dist = 30.,
                 data_weight = 1., full_occ = 0,
                 occ_border = None, occ_weight = 0.5):
  """ Runs the Interior MRF camouflage method """
  # controls the importance of smoothness vs. the local evidence
  data_weight = 1./4*(64./mesh.texsize)
  
  geom = Geom(scan, mesh)
  labels = make_labels(scan, shift_dim, shift_dist)
  label_color, label_valid = label_colors(scan, mesh, geom, labels, invisible_colors = True)
  stable_cost = stability_costs(scan, mesh, labels)

  occ_cost = occ_weight*occlusion_costs(scan, mesh, labels, geom)
  
  face_weight = np.ones(mesh.nfaces) 
  node_visible = np.any(label_valid, axis = 1)
  fw = face_weight[mesh.tex2juv[:, 0]][:, na]
  data_cost = np.array(fw*(occ_cost + stable_cost), 'float32')
  data_cost[-label_valid] = 1e5
  # no invalid label? any label will do
  data_cost[-node_visible] = 0
  data_cost *= data_weight

  m = MRF()
  m.edges = make_graph(mesh).edges()
  m.data_cost = data_cost
  m.labels = labels
  m.label_color = label_color
  m.node_visible = node_visible
  m.sameview_prior = np.zeros(mesh.ntexels, 'float32')
  m.smooth_prior = 1.

  results = mrf.solve_mrf(m)

  assert np.all(np.logical_or(-node_visible, label_valid[range(len(results)), results]))
  colors = from_color_space_2d(label_color[range(len(results)), results])
  ut.toplevel_locals()

  occ_total = np.sum((fw*occ_cost)[range(len(results)), results])
  stable_total = np.sum((fw*stable_cost)[range(len(results)), results])
  print 'Occlusion cost:', occ_total
  print 'Stability cost:', stable_total
  
  return colors, results, labels, (occ_total, stable_total)
Beispiel #6
0
Datei: box.py Projekt: jwgu/camo
def test_box(path,
             inds=None,
             hires=1,
             as_cycle=False,
             label_faces=False,
             mesh=None):
    scan = dset.Scan(path)
    if mesh is None:
        mesh = load_from_mat(os.path.join(path, 'cube.mat'))
    ut.toplevel_locals()
    if inds is None:
        inds = range(scan.length)
    ims = [
        draw_faces(mesh, scan, i, hires=hires, label_faces=label_faces)
        for i in inds
    ]

    if as_cycle:
        ig.show([('cycle', ims)])
    else:
        ig.show(ims)
Beispiel #7
0
def tour(scan,
         mesh,
         texel_colors,
         frames,
         n=40,
         im_wait=2.2,
         plane_idx=2,
         par=0,
         outline_start=np.inf,
         outline_end=np.inf,
         bad_pairs=[],
         other_planes=[],
         mesh_occ=None,
         start_scale=1.25,
         start_wo_outline=False):
    #def tour(scan, mesh, texel_colors, frames, n = 40, im_wait = 2.2, plane_idx = 2, par = 0, bad_pairs = [], other_planes = [], mesh_occ = None):
    if 0:
        idx = mesh.face_idx
        idx = idx[plane_idx:plane_idx + 1]
        only_plane = box.Mesh(idx, mesh.mesh_pts)
        ig.show(box.draw_faces(only_plane, scan, 0))
        return

    if mesh_occ is None:
        mesh_occ = figures.MeshOcc(scan, None)

    def f(frame1,
          frame2,
          n=n,
          im_wait=im_wait,
          plane_idx=plane_idx,
          texel_colors=[texel_colors],
          scan=scan,
          mesh=mesh,
          other_planes=other_planes,
          bad_pairs=bad_pairs,
          frames=frames,
          mesh_occ=mesh_occ,
          outline_start=outline_start,
          outline_end=outline_end,
          start_scale=start_scale,
          start_wo_outline=start_wo_outline):
        texel_colors = texel_colors[0]

        ims = []
        ps = np.linspace(0, 1, n)

        frame1_idx = frames.index(frame1)
        frame2_idx = frames.index(frame2)

        for pi, p in enumerate(ps):
            print p

            p1 = 1 - p
            p2 = p

            R1, c1 = scan.R(frame1), scan.center(frame1)
            R2, c2 = scan.R(frame2), scan.center(frame2)

            Rp = slerp_R(R1, R2, p)

            cp = p1 * c1 + p2 * c2
            Kp = p1 * scan.K(frame1) + p2 * scan.K(frame2)
            tp = -np.dot(Rp, cp)
            Pp = mvg.compose_P(Kp, Rp, tp)

            tc = texel_colors.copy()
            if outline_start <= frame1_idx < outline_end:  # or outline_start <= frame2_idx < outline_end:
                if frame2_idx == outline_end:
                    interp_occ = p1
                else:
                    interp_occ = 1.

                print 'interp_occ =', interp_occ

                scan_with_interp, frame_interp = scan.add_virtual_camera(
                    Kp, Rp, dset.t_from_Rc(Rp, cp), scan.im(frame1))

                frame_round = (frame1 if p <= 0.5 else frame1)
                tc = texel_colors.copy()
                tc = figures.mark_occlusion_texels(
                    tc,
                    scan_with_interp,
                    mesh,
                    frame_interp,
                    thresh=2,
                    p=interp_occ,
                    mesh_occ_mask=np.array(
                        np.round(mesh_occ.mask(frame_round)), 'bool'))

            if pi == 0 or pi == len(ps) - 1:
                frame = (frame1 if pi == 0 else frame2)
                #tc = figures.mark_occlusion_texels(tc, scan, mesh, frame, mesh_occ_mask = np.array(np.round(mesh_occ.mask(frame)), 'bool'), thresh = 2)

                if frame == frames[0]:
                    # 2x brings it on par with a normal frame (which are counted twice); add another factor to
                    # give people a chance to scan
                    wait_time = int(start_scale * 2 * im_wait * n)
                elif frame == frames[-1]:
                    wait_time = int(2 * im_wait * n)
                else:
                    wait_time = int(im_wait * n)

                if start_wo_outline:
                    ims += ([mesh.render(scan, frame, texel_colors)] * 3)
                im = mesh.render(scan, frame, tc)
                im0 = scan.im(frame)
                ims += [mesh_occ.apply_mask(im, im0, mesh_occ.mask(frame))
                        ] * wait_time

            else:
                im1 = scan.im(frame1)
                im2 = scan.im(frame2)

                planes = [mesh.face_planes[plane_idx]] + other_planes

                #print other_planes
                best_dists = None
                for plane in planes:
                    # backproject pixel into both frames, using the plane as the geometry
                    # average the colors
                    im = np.zeros_like(im1)

                    #print plane
                    ray_dirs = ut.col_from_im(
                        ut.mult_im(Rp.T, mvg.ray_directions(Kp, im.shape)))
                    dists = (-plane[3] - np.dot(cp, plane[:3])) / np.dot(
                        ray_dirs, plane[:3])

                    if best_dists is None:
                        best_dists = dists
                    else:
                        # asdf
                        #best_dists[dists < best_dists] = 0
                        if 1:
                            ok = ((best_dists < 0) &
                                  (dists >= 0)) | ((dists >= 0) &
                                                   (dists < best_dists))
                            best_dists[ok] = dists[ok]

                    pts = cp + ray_dirs * best_dists[:, np.newaxis]

                proj1 = scan.project(frame1, pts)
                proj2 = scan.project(frame2, pts)

                color1 = ig.lookup_bilinear(im1, proj1[:, 0], proj1[:, 1])
                color2 = ig.lookup_bilinear(im2, proj2[:, 0], proj2[:, 1])

                in_bounds1 = ig.lookup_bilinear(np.ones(im1.shape[:2]),
                                                proj1[:, 0], proj1[:, 1]) > 0
                in_bounds2 = ig.lookup_bilinear(np.ones(im2.shape[:2]),
                                                proj2[:, 0], proj2[:, 1]) > 0

                p1s = np.array([p1] * len(proj1))
                p1s[-in_bounds1] = 0

                p2s = np.array([p2] * len(proj2))
                p2s[-in_bounds2] = 0

                s = p1s + p2s
                p1s = p1s / np.maximum(s, 0.00001)
                p2s = p2s / np.maximum(s, 0.00001)

                #mask = p1*mesh_occ.mask(frame1) + p2*mesh_occ.mask(frame2)
                #mask = p1*mesh_occ.mask(frame1) + p2*mesh_occ.mask(frame2)
                mask1 = ig.lookup_bilinear(mesh_occ.mask(frame1), proj1[:, 0],
                                           proj1[:, 1])
                mask2 = ig.lookup_bilinear(mesh_occ.mask(frame2), proj2[:, 0],
                                           proj2[:, 1])
                mask = ut.im_from_col(im.shape[:2], mask1 * p1s + mask2 * p2s)

                #mask = p1*mesh_occ.mask(frame1) + p2*mesh_occ.mask(frame2)
                #mask[mask >= 0.5] = 1

                if (frame1, frame2) in bad_pairs:
                    assert mesh_occ.path is None
                    ims.append(p1 * mesh.render(scan, frame1, tc, mask=mask) +
                               p2 * mesh.render(scan, frame2, tc, mask=mask))
                else:
                    im = ut.im_from_col(
                        im.shape, color1 * p1s[:, np.newaxis] +
                        color2 * p2s[:, np.newaxis])
                    ims.append(
                        mesh.render(scan, (Rp, Pp, Kp, cp),
                                    tc,
                                    im=im,
                                    mask=mask))

        return ims

    ims = ut.flatten(ip.map(par, f, (frames[:-1], frames[1:])))

    #ut.toplevel_locals()

    #ig.show([('animation', ims, 100*10./n)])
    #ig.show([('animation', ims, 8*10./n)])
    #ig.show([imtable.Video(ims, fps = 0.25*float(im_wait*n))])
    #ig.show([imtable.Video(ims, fps = 0.75*float(im_wait*n))])

    ut.toplevel_locals()
    url = ig.show([imtable.Video(ims, fps=0.75 * float(im_wait * n))])

    del ims
    return url
Beispiel #8
0
def boundary_mrf(scan, mesh, shift_dim = 0, shift_dist = 1, max_stable = MAX_STABLE,
                  occ_weight = 0.5, stable_weight = 1.,
                  per_term_stable = np.inf, use_face_mrf = True):
  """ Run the Boundary MRF model """
  geom = Geom(scan, mesh)
  labels = make_labels(scan, shift_dim, shift_dist)
  label_color, label_valid = label_colors(scan, mesh, geom, labels)
  
  stable_cost = stable_weight*stability_costs(scan, mesh, labels)

  if occ_weight == 0:
    print 'no occ cost!'
    occ_cost = np.zeros((mesh.ntexels, len(labels)))
  else:
    occ_cost = occ_weight*occlusion_costs(scan, mesh, labels, geom)

  node_visible = np.any(label_valid, axis = 1)

  data_cost = np.array(occ_cost + stable_cost, 'float32')
  
  data_cost[-label_valid] = 1e5
  # no valid label? any label will do
  data_cost[-node_visible] = 0

  assert np.max(data_cost[label_valid]) <= 1e3

  mismatch_cost = 1e5
  sameview_prior = 1e7 + np.zeros(mesh.ntexels, 'float32')
  sameview_prior[mesh.on_border] = mismatch_cost

  m = MRF()
  m.edges = make_graph(mesh).edges()
  m.data_cost = data_cost
  m.labels = labels
  m.label_color = label_color
  m.node_visible = node_visible
  m.sameview_prior = sameview_prior
  m.smooth_prior = 0.
  
  def en(r):
    u = np.sum(np.array(data_cost, 'd')[range(len(r)), r])
    s = np.sum(mismatched(m, r)*mismatch_cost)
    # 2* is to deal w/ bug in gc energy estimate
    print u + 2*s, (u, 2*s)
  
  if use_face_mrf:
    # Use a brute-force solver (written in Cython)
    results = mrf.solve_face_mrf(mesh, m)
    print 'Energy for brute-force solver', en(results)
    assert len(np.unique(results[m.node_visible])) <= 2
    if 0:
      # verify that the brute-force solver gets a better result than alpha-expansion
      results2 = mrf.solve_mrf(m)
      print 'Energy for alpha-expansion solver:', en(results2)
      assert en(results) <= en(results2)
  else:
    # Solve using alpha-expansion (requires gco)
    results = mrf.solve_mrf(m)

  colors = from_color_space_2d(label_color[range(len(results)), results])
  ut.toplevel_locals()

  occ_total = np.sum(occ_cost[range(len(results)), results])
  stable_total = np.sum(stable_cost[range(len(results)), results])
  print 'Occlusion cost:', occ_total
  print 'Stability cost:', stable_total
  
  return colors, results, labels, (occ_total, stable_total)
Beispiel #9
0
Datei: camo.py Projekt: jwgu/camo
def boundary_mrf(scan,
                 mesh,
                 shift_dim=0,
                 shift_dist=1,
                 max_stable=MAX_STABLE,
                 occ_weight=0.5,
                 stable_weight=1.,
                 per_term_stable=np.inf,
                 use_face_mrf=True):
    """ Run the Boundary MRF model """
    geom = Geom(scan, mesh)
    labels = make_labels(scan, shift_dim, shift_dist)
    label_color, label_valid = label_colors(scan, mesh, geom, labels)

    stable_cost = stable_weight * stability_costs(scan, mesh, labels)

    if occ_weight == 0:
        print 'no occ cost!'
        occ_cost = np.zeros((mesh.ntexels, len(labels)))
    else:
        occ_cost = occ_weight * occlusion_costs(scan, mesh, labels, geom)

    node_visible = np.any(label_valid, axis=1)

    data_cost = np.array(occ_cost + stable_cost, 'float32')

    data_cost[-label_valid] = 1e5
    # no valid label? any label will do
    data_cost[-node_visible] = 0

    assert np.max(data_cost[label_valid]) <= 1e3

    mismatch_cost = 1e5
    sameview_prior = 1e7 + np.zeros(mesh.ntexels, 'float32')
    sameview_prior[mesh.on_border] = mismatch_cost

    m = MRF()
    m.edges = make_graph(mesh).edges()
    m.data_cost = data_cost
    m.labels = labels
    m.label_color = label_color
    m.node_visible = node_visible
    m.sameview_prior = sameview_prior
    m.smooth_prior = 0.

    def en(r):
        u = np.sum(np.array(data_cost, 'd')[range(len(r)), r])
        s = np.sum(mismatched(m, r) * mismatch_cost)
        # 2* is to deal w/ bug in gc energy estimate
        print u + 2 * s, (u, 2 * s)

    if use_face_mrf:
        # Use a brute-force solver (written in Cython)
        results = mrf.solve_face_mrf(mesh, m)
        print 'Energy for brute-force solver', en(results)
        assert len(np.unique(results[m.node_visible])) <= 2
        if 0:
            # verify that the brute-force solver gets a better result than alpha-expansion
            results2 = mrf.solve_mrf(m)
            print 'Energy for alpha-expansion solver:', en(results2)
            assert en(results) <= en(results2)
    else:
        # Solve using alpha-expansion (requires gco)
        results = mrf.solve_mrf(m)

    colors = from_color_space_2d(label_color[range(len(results)), results])
    ut.toplevel_locals()

    occ_total = np.sum(occ_cost[range(len(results)), results])
    stable_total = np.sum(stable_cost[range(len(results)), results])
    print 'Occlusion cost:', occ_total
    print 'Stability cost:', stable_total

    return colors, results, labels, (occ_total, stable_total)
Beispiel #10
0
def tour(scan, mesh, texel_colors, frames, n = 40, im_wait = 2.2,
         plane_idx = 2, par = 0, outline_start = np.inf, outline_end = np.inf, bad_pairs = [], other_planes = [],
         mesh_occ = None, start_scale = 1.25, start_wo_outline = False):
#def tour(scan, mesh, texel_colors, frames, n = 40, im_wait = 2.2, plane_idx = 2, par = 0, bad_pairs = [], other_planes = [], mesh_occ = None):
  if 0:
    idx = mesh.face_idx
    idx = idx[plane_idx:plane_idx+1]
    only_plane = box.Mesh(idx, mesh.mesh_pts)
    ig.show(box.draw_faces(only_plane, scan, 0))
    return

  if mesh_occ is None:
    mesh_occ = figures.MeshOcc(scan, None)
    
  def f(frame1, frame2, n = n, im_wait = im_wait, plane_idx = plane_idx, texel_colors = [texel_colors], scan = scan, mesh = mesh,
        other_planes = other_planes, bad_pairs = bad_pairs, frames = frames, mesh_occ = mesh_occ, outline_start = outline_start,
        outline_end = outline_end, start_scale = start_scale, start_wo_outline = start_wo_outline):
    texel_colors = texel_colors[0]
    
    ims = []
    ps = np.linspace(0, 1, n)

    frame1_idx = frames.index(frame1)
    frame2_idx = frames.index(frame2)


    for pi, p in enumerate(ps):
      print p
      
      p1 = 1-p
      p2 = p

      R1, c1 = scan.R(frame1), scan.center(frame1)
      R2, c2 = scan.R(frame2), scan.center(frame2)

      Rp = slerp_R(R1, R2, p)

      cp = p1*c1 + p2*c2
      Kp = p1*scan.K(frame1) + p2*scan.K(frame2)
      tp = -np.dot(Rp, cp)
      Pp = mvg.compose_P(Kp, Rp, tp)

      tc = texel_colors.copy()
      if outline_start <= frame1_idx < outline_end:# or outline_start <= frame2_idx < outline_end:
          if frame2_idx == outline_end:
            interp_occ = p1
          else:
            interp_occ = 1.

          print 'interp_occ =', interp_occ
          
          scan_with_interp, frame_interp = scan.add_virtual_camera(Kp, Rp, dset.t_from_Rc(Rp, cp), scan.im(frame1))

          frame_round = (frame1 if p <= 0.5 else frame1)
          tc = texel_colors.copy()
          tc = figures.mark_occlusion_texels(tc, scan_with_interp, mesh, frame_interp, thresh = 2,
                                             p = interp_occ, mesh_occ_mask = np.array(np.round(mesh_occ.mask(frame_round)), 'bool'))

        
      if pi == 0 or pi == len(ps)-1:
        frame = (frame1 if pi == 0 else frame2)
        #tc = figures.mark_occlusion_texels(tc, scan, mesh, frame, mesh_occ_mask = np.array(np.round(mesh_occ.mask(frame)), 'bool'), thresh = 2) 

        if frame == frames[0]:
          # 2x brings it on par with a normal frame (which are counted twice); add another factor to
          # give people a chance to scan
          wait_time = int(start_scale*2*im_wait*n)
        elif frame == frames[-1]:
          wait_time = int(2*im_wait*n)
        else:
          wait_time = int(im_wait*n)

        if start_wo_outline:
          ims += ([mesh.render(scan, frame, texel_colors)]*3)
        im = mesh.render(scan, frame, tc)
        im0 = scan.im(frame)
        ims += [mesh_occ.apply_mask(im, im0, mesh_occ.mask(frame))]*wait_time
        
      else:
        im1 = scan.im(frame1)
        im2 = scan.im(frame2)

        planes = [mesh.face_planes[plane_idx]] + other_planes

        #print other_planes
        best_dists = None
        for plane in planes:
          # backproject pixel into both frames, using the plane as the geometry
          # average the colors
          im = np.zeros_like(im1)

          #print plane
          ray_dirs = ut.col_from_im(ut.mult_im(Rp.T, mvg.ray_directions(Kp, im.shape)))
          dists = (-plane[3] - np.dot(cp, plane[:3]))/np.dot(ray_dirs, plane[:3])

          if best_dists is None:
            best_dists = dists
          else:
            # asdf 
            #best_dists[dists < best_dists] = 0
            if 1:
              ok = ((best_dists < 0) & (dists >= 0)) | ((dists >= 0) & (dists < best_dists))
              best_dists[ok] = dists[ok]
            
          pts = cp + ray_dirs*best_dists[:, np.newaxis]
          
        proj1 = scan.project(frame1, pts)
        proj2 = scan.project(frame2, pts)

        color1 = ig.lookup_bilinear(im1, proj1[:, 0], proj1[:, 1])
        color2 = ig.lookup_bilinear(im2, proj2[:, 0], proj2[:, 1])

        in_bounds1 = ig.lookup_bilinear(np.ones(im1.shape[:2]), proj1[:, 0], proj1[:, 1]) > 0
        in_bounds2 = ig.lookup_bilinear(np.ones(im2.shape[:2]), proj2[:, 0], proj2[:, 1]) > 0
        
        p1s = np.array([p1]*len(proj1))
        p1s[-in_bounds1] = 0

        p2s = np.array([p2]*len(proj2))
        p2s[-in_bounds2] = 0

        s = p1s + p2s
        p1s = p1s / np.maximum(s, 0.00001)
        p2s = p2s / np.maximum(s, 0.00001)

        #mask = p1*mesh_occ.mask(frame1) + p2*mesh_occ.mask(frame2)
        #mask = p1*mesh_occ.mask(frame1) + p2*mesh_occ.mask(frame2)
        mask1 = ig.lookup_bilinear(mesh_occ.mask(frame1), proj1[:, 0], proj1[:, 1])
        mask2 = ig.lookup_bilinear(mesh_occ.mask(frame2), proj2[:, 0], proj2[:, 1])
        mask = ut.im_from_col(im.shape[:2], mask1*p1s + mask2*p2s)
        
        #mask = p1*mesh_occ.mask(frame1) + p2*mesh_occ.mask(frame2)
        #mask[mask >= 0.5] = 1

        if (frame1, frame2) in bad_pairs:
          assert mesh_occ.path is None
          ims.append(p1*mesh.render(scan, frame1, tc, mask = mask) + p2*mesh.render(scan, frame2, tc, mask = mask))
        else:
          im = ut.im_from_col(im.shape, color1*p1s[:, np.newaxis] + color2*p2s[:, np.newaxis])
          ims.append(mesh.render(scan, (Rp, Pp, Kp, cp), tc, im = im, mask = mask))

    return ims

  ims = ut.flatten(ip.map(par, f, (frames[:-1], frames[1:])))

  #ut.toplevel_locals()
  
  #ig.show([('animation', ims, 100*10./n)])
  #ig.show([('animation', ims, 8*10./n)])
  #ig.show([imtable.Video(ims, fps = 0.25*float(im_wait*n))])
  #ig.show([imtable.Video(ims, fps = 0.75*float(im_wait*n))])

  ut.toplevel_locals()
  url = ig.show([imtable.Video(ims, fps = 0.75*float(im_wait*n))])
  
  del ims
  return url