Beispiel #1
0
def test_model():
    args = get_setup_args()
    word_vectors = util.torch_from_json(args.word_emb_file)
    with open(args.char2idx_file, "r") as f:
        char2idx = json_load(f)
    model = QANet(word_vectors, char2idx)
    cw_idxs = torch.randint(2, 1000, (64, 374))
    cc_idxs = torch.randint(2, 50, (64, 374, 200))
    qw_idxs = torch.randint(2, 1000, (64, 70))
    qc_idxs = torch.randint(2, 50, (64, 70, 200))
    cw_idxs[:, 0] = 1
    cw_idxs[3, -1] = 0
    qw_idxs[:, 0] = 1
    qw_idxs[3, -1] = 0
    out = model(cw_idxs, cc_idxs, qw_idxs, qc_idxs)
    print(out)
Beispiel #2
0
def main(args):
    log = util.get_logger(args.save_dir, args.name)
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)

    # Prepare BiDAF model (must already trained)
    log.info('Building BiDAF model (should be pretrained)')
    bidaf_model = BiDAF(word_vectors=word_vectors,          # todo: these word vectors shouldn't matter?
                          hidden_size=args.hidden_size)     # since they will be loaded in during load_model?
                          #drop_prob=args.drop_prob)        # no drop probability since we are not training
    #bidaf_model = nn.DataParallel(bidaf_model, args.gpu_ids)

    #log.info(f'Loading checkpoint from {args.load_path}...')
    #bidaf_model = util.load_model(bidaf_model, args.load_path, args.gpu_ids, return_step=False) # don't need step since we aren't training
    #bidaf_model = bidaf_model.to(device)
    bidaf_model.eval()                  # we eval only (vs train)

    # Setup the Paraphraser model
    #ema = util.EMA(bidaf_model, args.ema_decay)

    # Get saver
    # saver = util.CheckpointSaver(args.save_dir,
    #                              max_checkpoints=args.max_checkpoints,
    #                              metric_name=args.metric_name,
    #                              maximize_metric=args.maximize_metric,
    #                              log=log)

    # Get optimizer and scheduler
    # optimizer = optim.Adadelta(model.parameters(), args.lr,
    #                            weight_decay=args.l2_wd)
    # scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR

    # Get data loader

    a = np.array([[5, 0, 3, 0],
                 [4, 0, 1, 0]])
    c_idx = torch.from_numpy(a).long()

    pp(c_idx[c_idx.nonzero()])
Beispiel #3
0
def predict(args, cw_idxs, qn_idxs):
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=False)
    log = util.get_logger(args.save_dir, args.name)
    log.info('Args: {}'.format(dumps(vars(args), indent=4, sort_keys=True)))
    device, gpu_ids = util.get_available_devices()
    args.batch_size *= max(1, len(gpu_ids))

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)

    # Get model
    log.info('Building model...')
    model = BiDAF(word_vectors=word_vectors, hidden_size=args.hidden_size)
    model = nn.DataParallel(model, gpu_ids)
    log.info('Loading checkpoint from {}...'.format(args.load_path))
    model = util.load_model(model, args.load_path, gpu_ids, return_step=False)
    model = model.to(device)
    model.eval()
    y_pred = model(cw_idxs, qn_idxs)
    return y_pred
Beispiel #4
0
def test_input_embedding():
    args = get_setup_args()
    d_char = 200
    word_dropout = 0.1
    char_dropout = 0.05
    with open(args.char2idx_file, "r") as f:
        char2idx = json_load(f)
    hidden_size = 500
    highway_dropout = 0.1
    word_vectors = util.torch_from_json(args.word_emb_file)
    input_embedding = InputEmbedding(word_vectors, d_char, char2idx,
                                     hidden_size, word_dropout, char_dropout,
                                     highway_dropout)

    word_inputs = torch.tensor([[1, 2, 0], [1, 2, 4]], dtype=torch.long)
    char_inputs = torch.tensor([[[1, 2, 2, 0], [1, 3, 2, 3], [0, 0, 0, 0]],
                                [[1, 5, 2, 0], [1, 3, 6, 3], [3, 4, 2, 1]]],
                               dtype=torch.long)
    emb = input_embedding(word_inputs, char_inputs)
    pickle_in = open('input_emb.pickle', 'wb')
    pickle.dump(emb, pickle_in)
    assert emb.size() == (2, 3, 500)
    return emb
Beispiel #5
0
def main(args):

    # Set up logging and devices
    name = "train_exp2"
    args.save_dir = util.get_save_dir(args.logging_dir, name, training=True)
    log = get_logger(args.save_dir, name)
    tbx = SummaryWriter(args.save_dir)
    device, gpu_ids = util.get_available_devices()
    log.info(f"Args: {dumps(vars(args), indent=4, sort_keys=True)}")
    args.batch_size *= max(1, len(gpu_ids))

    # Set random seed
    log.info(f"Using random seed {args.random_seed}...")
    random.seed(args.random_seed)
    np.random.seed(args.random_seed)
    torch.manual_seed(args.random_seed)
    torch.cuda.manual_seed_all(args.random_seed)

    # Get embeddings
    log.info(f"Loading embeddings from {args.word_emb_file}...")
    word_vectors = util.torch_from_json(args.word_emb_file)

    # Get model
    log.info("Building model...")
    model = BiDAF(word_vectors=word_vectors,
                  hidden_size=args.hidden_size,
                  drop_prob=args.drop_prob)
    model = nn.DataParallel(model, gpu_ids)
    if args.load_path:
        log.info(f"Loading checkpoint from {args.load_path}...")
        model, step = util.load_model(model, args.load_path, gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()
    ema = util.EMA(model, args.ema_decay)

    # Get saver
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints,
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)

    # Get optimizer and scheduler
    optimizer = optim.Adadelta(model.parameters(), args.learning_rate,
                               weight_decay=args.learning_rate_decay)
    # scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR
    scheduler = sched.ReduceLROnPlateau(optimizer=optimizer,
                                        mode="min", factor=0.1,
                                        patience=2, verbose=True, cooldown=0 
                                        min_lr=0.0005)


    for epoch in range(args.num_epochs):
        log.info(f"Starting epoch {epoch}...")
        for i in range(args.num_train_chunks):
        # Get data loader
            train_rec_file = f"{args.train_record_file_exp2}_{i}.npz"
            log.info(f'Building dataset from {train_rec_file} ...')
            train_dataset = SQuAD(train_rec_file, args.exp2_train_topic_contexts, use_v2=True)
            train_loader = data.DataLoader(train_dataset,
                                           batch_size=args.batch_size,
                                           shuffle=True,
                                           num_workers=args.num_workers,
                                           collate_fn=collate_fn)

            # Train
            log.info('Training...')
            steps_till_eval = args.eval_steps
            epoch = 0
        # torch.set_num_threads(7)
            with torch.enable_grad(), tqdm(total=len(train_loader.dataset)) as progress_bar:
                for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in train_loader:
                    # Setup for forward
                    cw_idxs = cw_idxs.to(device)
                    qw_idxs = qw_idxs.to(device)
                    batch_size = qw_idxs.size(0)
                    optimizer.zero_grad()

                    # Forward
                    log_p1, log_p2 = model(cw_idxs, qw_idxs)
                    y1, y2 = y1.to(device), y2.to(device)
                    loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
                    loss_val = loss.item()

                    # Backward
                    loss.backward()
                    nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
                    optimizer.step()
                    scheduler.step(step // batch_size)
                    ema(model, step // batch_size)

                    # Log info
                    step += batch_size
                    progress_bar.update(batch_size)
                    progress_bar.set_postfix(epoch=epoch,
                                             NLL=loss_val)
                    tbx.add_scalar('train/NLL', loss_val, step)
                    tbx.add_scalar('train/LR',
                                   optimizer.param_groups[0]['lr'],
                                   step)

                    steps_till_eval -= batch_size
                    if steps_till_eval <= 0:
                        steps_till_eval = args.eval_steps

                        # Evaluate and save checkpoint
                        log.info(f"Evaluating at step {step}...")
                        ema.assign(model)

                        for i in range(args.num_dev_chunks):
                        # Get data loader
                            all_pred_dicts = {}
                            all_results = OrderedDict() 
                            dev_rec_file = f"{args.dev_record_file_exp2}_{i}.npz"
                            log.info(f'Building evaluating dataset from {dev_rec_file} ...')
                            dev_dataset = SQuAD(dev_rec_file, 
                                                args.exp2_dev_topic_contexts, 
                                                use_v2=True)
                            dev_loader = data.DataLoader(dev_dataset,
                                                           batch_size=args.batch_size,
                                                           shuffle=True,
                                                           num_workers=args.num_workers,
                                                           collate_fn=collate_fn)
                            results, pred_dict = evaluate(model, dev_loader, device,
                                                          args.dev_eval_file,
                                                          args.max_ans_len,
                                                          use_squad_v2=True)
                            all_results.update(results)
                            all_pred_dicts.update(pred_dict)

                            del dev_dataset
                            del dev_loader
                            del results
                            del pred_dict
                            torch.cuda.empty_cache()

                        saver.save(step, model, all_results[args.metric_name], device)
                        ema.resume(model)

                        # Log to console
                        results_str = ', '.join(f'{k}: {v:05.2f}' for k, v in all_results.items())
                        log.info(f"Dev {results_str}")

                        # Log to TensorBoard
                        log.info('Visualizing in TensorBoard...')
                        for k, v in all_results.items():
                            tbx.add_scalar(f"dev/{k}", v, step)
                        util.visualize(tbx,
                                       pred_dict=all_pred_dicts,
                                       eval_path=args.dev_eval_file,
                                       step=step,
                                       split='dev',
                                       num_visuals=args.num_visuals)
                    torch.cuda.empty_cache()
            del train_dataset
            del train_loader
            torch.cuda.empty_cache()
Beispiel #6
0
def main(args):
    # Set up logging and devices
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    log = util.get_logger(args.save_dir, args.name)
    tbx = SummaryWriter(args.save_dir)
    device, args.gpu_ids = util.get_available_devices()
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    args.batch_size *= max(1, len(args.gpu_ids))
    max_len = 10

    # Set random seed
    log.info(f'Using random seed {args.seed}...')
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)
    ch_vectors = util.torch_from_json(args.char_emb_file)

    # Get model
    log.info('Building model...')
    model = BiDAF(word_vectors=word_vectors,
                  ch_vectors=ch_vectors,
                  hidden_size=args.hidden_size,
                  drop_prob=args.drop_prob)
    model = nn.DataParallel(model, args.gpu_ids)
    if args.load_path:
        log.info(f'Loading checkpoint from {args.load_path}...')
        model, step = util.load_model(model, args.load_path, args.gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()
    ema = util.EMA(model, args.ema_decay)

    # Get saver
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints,
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)

    # Get optimizer and scheduler
    optimizer = optim.Adadelta(model.parameters(),
                               args.lr,
                               weight_decay=args.l2_wd)
    scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR

    # Get data loader
    log.info('Building dataset...')
    train_dataset = SQuAD(args.train_record_file, args.use_squad_v2)
    train_loader = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   shuffle=True,
                                   num_workers=args.num_workers,
                                   collate_fn=collate_fn)
    dev_dataset = SQuAD(args.dev_record_file, args.use_squad_v2)
    dev_loader = data.DataLoader(dev_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=args.num_workers,
                                 collate_fn=collate_fn)

    # Train
    log.info('Training...')
    steps_till_eval = args.eval_steps
    epoch = step // len(train_dataset)
    while epoch != args.num_epochs:
        epoch += 1
        log.info(f'Starting epoch {epoch}...')
        with torch.enable_grad(), \
                tqdm(total=len(train_loader.dataset)) as progress_bar:
            for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in train_loader:
                # Setup for forward
                cw_idxs = cw_idxs.to(device)
                qw_idxs = qw_idxs.to(device)
                cc_idxs = cc_idxs.to(device)
                qc_idxs = qc_idxs.to(device)
                batch_size = cw_idxs.size(0)
                optimizer.zero_grad()

                # Forward
                log_p = model(cw_idxs, qw_idxs, cc_idxs, qc_idxs)
                y1, y2 = y1.to(device), y2.to(device)
                #print("ckpt 1")
                ans_lens = y2 - y1
                loss = 0
                for i in range(max_len):
                    mask = ((torch.ones_like(y1) * i) == ans_lens).type(
                        torch.cuda.LongTensor)
                    y = y1 * mask
                    loss += F.nll_loss(log_p[:, :, i], y)
                #print("ckpt 2")
                loss_val = loss.item()
                #print("ckpt 3")
                # Backward
                loss.backward()
                #print("ckpt 4")
                nn.utils.clip_grad_norm_(model.parameters(),
                                         args.max_grad_norm)
                #print("ckpt 5")
                optimizer.step()
                #print("ckpt 6")
                scheduler.step(step // batch_size)
                ema(model, step // batch_size)
                #print("ckpt 7")

                # Log info
                step += batch_size
                progress_bar.update(batch_size)
                progress_bar.set_postfix(epoch=epoch, NLL=loss_val)
                if step % (50 * batch_size) == 0:
                    print(loss_val)
                tbx.add_scalar('train/NLL', loss_val, step)
                tbx.add_scalar('train/LR', optimizer.param_groups[0]['lr'],
                               step)

                steps_till_eval -= batch_size
                #print("ckpt 8")
                if steps_till_eval <= 0:
                    steps_till_eval = args.eval_steps

                    # Evaluate and save checkpoint
                    log.info(f'Evaluating at step {step}...')
                    ema.assign(model)
                    results, pred_dict = evaluate(model, dev_loader, device,
                                                  args.dev_eval_file,
                                                  args.max_ans_len,
                                                  args.use_squad_v2)
                    saver.save(step, model, results[args.metric_name], device)
                    ema.resume(model)

                    # Log to console
                    results_str = ', '.join(f'{k}: {v:05.2f}'
                                            for k, v in results.items())
                    log.info(f'Dev {results_str}')

                    # Log to TensorBoard
                    log.info('Visualizing in TensorBoard...')
                    for k, v in results.items():
                        tbx.add_scalar(f'dev/{k}', v, step)
                    util.visualize(tbx,
                                   pred_dict=pred_dict,
                                   eval_path=args.dev_eval_file,
                                   step=step,
                                   split='dev',
                                   num_visuals=args.num_visuals)
Beispiel #7
0
def main(args):
    # Set up logging and devices
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    log = util.get_logger(args.save_dir, args.name)
    tbx = SummaryWriter(args.save_dir)
    device, args.gpu_ids = util.get_available_devices()
    log.info('Args: {}'.format(dumps(vars(args), indent=4, sort_keys=True)))
    # Comment out to only use 1 GPU on nv12
    args.batch_size *= max(1, len(args.gpu_ids))

    # Set random seed
    log.info('Using random seed {}...'.format(args.seed))
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Get embeddings

    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)

    # Get model
    log.info('Building model...')
    model = None
    max_context_len, max_question_len = args.para_limit, args.ques_limit
    if (args.model_type == "bidaf" or args.model_type == "bert-bidaf"):
        model = BiDAF(word_vectors=word_vectors,
                      hidden_size=args.hidden_size,
                      drop_prob=args.drop_prob)
    elif (args.model_type == "dcn" or args.model_type == "bert-dcn"):
        model = DCN(word_vectors=word_vectors,
                    hidden_size=args.hidden_size,
                    max_context_len=max_context_len,
                    max_question_len=max_question_len,
                    drop_prob=args.drop_prob)
    elif (args.model_type == "bert-basic"):
        model = BERT(word_vectors=word_vectors,
                     hidden_size=args.hidden_size,
                     drop_prob=args.drop_prob)

    if model is None:
        raise ValueError('Model is unassigned. Please ensure --model_type \
        chooses between {bidaf, bert-bidaf, dcn, bert-dcn, bert-basic} ')

    model = nn.DataParallel(model, args.gpu_ids)
    if args.load_path:
        log.info('Loading checkpoint from {}...'.format(args.load_path))
        model, step = util.load_model(model, args.load_path, args.gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()
    ema = util.EMA(model, args.ema_decay)

    # Get saver
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints,
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)

    # Get optimizer and scheduler
    optimizer = optim.Adadelta(model.parameters(),
                               args.lr,
                               weight_decay=args.l2_wd)
    scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR

    # Get data loader
    log.info('Building dataset...')
    train_dataset = SQuAD(args.train_record_file, args.use_squad_v2)
    train_loader = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   shuffle=True,
                                   num_workers=args.num_workers,
                                   collate_fn=collate_fn)
    dev_dataset = SQuAD(args.dev_record_file, args.use_squad_v2)
    dev_loader = data.DataLoader(dev_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=args.num_workers,
                                 collate_fn=collate_fn)

    # Train
    log.info('Training...')
    steps_till_eval = args.eval_steps
    epoch = step // len(train_dataset)
    count_skip = 0
    while epoch != args.num_epochs:
        epoch += 1
        log.info('Starting epoch {}...'.format(epoch))
        with torch.enable_grad(), \
                tqdm(total=len(train_loader.dataset)) as progress_bar:
            for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in train_loader:
                batch_size = cw_idxs.size(0)
                count_skip += 1
                if (args.skip_examples == True
                        and (count_skip % 5 == 1 or count_skip % 5 == 2
                             or count_skip % 5 == 3 or count_skip % 5 == 4)):
                    step += batch_size
                    progress_bar.update(batch_size)
                    steps_till_eval -= batch_size
                    continue
                # Setup for forward
                cw_idxs = cw_idxs.to(device)
                qw_idxs = qw_idxs.to(device)
                batch_size = cw_idxs.size(0)
                optimizer.zero_grad()

                ## Additions for BERT ##
                max_context_len, max_question_len = args.para_limit, args.ques_limit

                if "bert" in args.model_type:
                    bert_train_embeddings = get_embeddings(
                        "train", ids, args.para_limit, args.ques_limit)
                else:
                    bert_train_embeddings = None

                # Forward
                log_p1, log_p2 = model(cw_idxs, qw_idxs, bert_train_embeddings, \
                max_context_len, max_question_len, device)
                y1, y2 = y1.to(device), y2.to(device)
                loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
                loss_val = loss.item()

                # Backward
                loss.backward()
                nn.utils.clip_grad_norm_(model.parameters(),
                                         args.max_grad_norm)
                optimizer.step()
                scheduler.step(step // batch_size)
                ema(model, step // batch_size)

                # Log info
                step += batch_size
                progress_bar.update(batch_size)
                progress_bar.set_postfix(epoch=epoch, NLL=loss_val)
                tbx.add_scalar('train/NLL', loss_val, step)
                tbx.add_scalar('train/LR', optimizer.param_groups[0]['lr'],
                               step)

                steps_till_eval -= batch_size
                if steps_till_eval <= 0:
                    steps_till_eval = args.eval_steps

                    # Evaluate and save checkpoint
                    log.info('Evaluating at step {}...'.format(step))
                    ema.assign(model)
                    results, pred_dict = evaluate(model, dev_loader, device,
                                                  args.dev_eval_file,
                                                  args.max_ans_len,
                                                  args.use_squad_v2, args)
                    saver.save(step, model, results[args.metric_name], device)
                    ema.resume(model)

                    # Log to console
                    results_str = ', '.join('{}: {:05.2f}'.format(k, v)
                                            for k, v in results.items())
                    log.info('Dev {}'.format(results_str))

                    # Log to TensorBoard
                    log.info('Visualizing in TensorBoard...')
                    for k, v in results.items():
                        tbx.add_scalar('dev/{}'.format(k), v, step)
                    util.visualize(tbx,
                                   pred_dict=pred_dict,
                                   eval_path=args.dev_eval_file,
                                   step=step,
                                   split='dev',
                                   num_visuals=args.num_visuals)
Beispiel #8
0
def main(args):
    # Set up faulthandler
    faulthandler.enable()
    # Set up logging and devices
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    log = util.get_logger(args.save_dir, args.name)
    tbx = SummaryWriter(args.save_dir)
    device, args.gpu_ids = util.get_available_devices()
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    args.batch_size *= max(1, len(args.gpu_ids))

    # Set random seed
    log.info(f'Using random seed {args.seed}...')
    random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)
    char_vectors = util.torch_from_json(args.char_emb_file)

    # Get model
    log.info('Building model...')
    model_params = {
        'word_vectors': word_vectors,
        'char_vectors': char_vectors,
        'args': args
    }
    model = get_model(args.model, model_params)
    print('Model size: {:f} MB'.format(
        sum(p.nelement() * p.element_size()
            for p in model.parameters()) / (1024 * 1024)))
    # model = nn.DataParallel(model, args.gpu_ids)
    if args.load_path:
        log.info(f'Loading checkpoint from {args.load_path}...')
        model, step = util.load_model(model, args.load_path, args.gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()
    ema = util.EMA(model, args.ema_decay)

    # Get saver
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints,
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)

    # Get optimizer and scheduler
    optimizer = optim.Adadelta(model.parameters(),
                               args.lr,
                               weight_decay=args.l2_wd)
    scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR

    # Get data loader
    log.info('Building dataset...')
    train_dataset = SQuAD(args.train_record_file, args.use_squad_v2)
    train_loader = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   shuffle=True,
                                   num_workers=args.num_workers,
                                   collate_fn=collate_fn)
    dev_dataset = SQuAD(args.dev_record_file, args.use_squad_v2)
    dev_loader = data.DataLoader(dev_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=args.num_workers,
                                 collate_fn=collate_fn)

    # Train
    log.info('Training...')
    steps_till_eval = args.eval_steps
    epoch = step // len(train_dataset)
    while epoch != args.num_epochs:
        epoch += 1
        log.info(f'Starting epoch {epoch}...')
        with torch.enable_grad(), \
                tqdm(total=len(train_loader.dataset)) as progress_bar:
            for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in train_loader:
                progress_bar.set_description(
                    'Batch data_loading finished'.ljust(30))
                progress_bar.refresh()

                # Setup for forward
                cw_idxs = cw_idxs.to(device)
                qw_idxs = qw_idxs.to(device)
                cc_idxs = cc_idxs.to(device)
                qc_idxs = qc_idxs.to(device)
                batch_size = cw_idxs.size(0)
                optimizer.zero_grad()
                progress_bar.set_description(
                    'Batch initialization finished'.ljust(30))
                progress_bar.refresh()

                # Forward
                faulthandler.dump_traceback_later(timeout=3)
                log_p1, log_p2 = model(cw_idxs, cc_idxs, qw_idxs, qc_idxs)
                faulthandler.cancel_dump_traceback_later()
                progress_bar.set_description(
                    'Batch forward finished'.ljust(30))
                progress_bar.refresh()
                y1, y2 = y1.to(device), y2.to(device)
                loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
                loss_val = loss.item()

                # Backward
                faulthandler.dump_traceback_later(timeout=3)
                loss.backward()
                faulthandler.cancel_dump_traceback_later()
                progress_bar.set_description(
                    'Batch backward finished'.ljust(30))
                progress_bar.refresh()
                nn.utils.clip_grad_norm_(model.parameters(),
                                         args.max_grad_norm)
                optimizer.step()
                progress_bar.set_description('Optimization finished'.ljust(30))
                progress_bar.refresh()
                scheduler.step()
                ema(model, step // batch_size)

                # Log info
                step += batch_size
                progress_bar.update(batch_size)
                progress_bar.set_postfix(epoch=epoch, NLL=loss_val)
                tbx.add_scalar('train/NLL', loss_val, step)
                tbx.add_scalar('train/LR', optimizer.param_groups[0]['lr'],
                               step)

                steps_till_eval -= batch_size
                if steps_till_eval <= 0:
                    steps_till_eval = args.eval_steps

                    # Evaluate and save checkpoint
                    log.info(f'Evaluating at step {step}...')
                    ema.assign(model)
                    results, pred_dict = evaluate(model, dev_loader, device,
                                                  args.dev_eval_file,
                                                  args.max_ans_len,
                                                  args.use_squad_v2)
                    progress_bar.set_description(
                        'Evaluation finished'.ljust(30))
                    progress_bar.refresh()
                    saver.save(step, model, results[args.metric_name], device)
                    ema.resume(model)

                    # Log to console
                    results_str = ', '.join(f'{k}: {v:05.2f}'
                                            for k, v in results.items())
                    log.info(f'Dev {results_str}')

                    # Log to TensorBoard
                    log.info('Visualizing in TensorBoard...')
                    for k, v in results.items():
                        tbx.add_scalar(f'dev/{k}', v, step)
                    util.visualize(tbx,
                                   pred_dict=pred_dict,
                                   eval_path=args.dev_eval_file,
                                   step=step,
                                   split='dev',
                                   num_visuals=args.num_visuals)
def main(args):
    # Set up logging
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=False)
    log = util.get_logger(args.save_dir, args.name)
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    device, gpu_ids = util.get_available_devices()
    args.batch_size *= max(1, len(gpu_ids))

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)

    # Get model
    log.info('Building model...')
    if args.model == 'bidaf':
        model = BiDAF(word_vectors=word_vectors, hidden_size=args.hidden_size)
    elif args.model == 'bidafextra':
        model = BiDAFExtra(word_vectors=word_vectors, args=args)
    elif args.model == 'fusionnet':
        model = FusionNet(word_vectors=word_vectors, args=args)

    model = nn.DataParallel(model, gpu_ids)
    log.info(f'Loading checkpoint from {args.load_path}...')
    model = util.load_model(model, args.load_path, gpu_ids, return_step=False)
    model = model.to(device)
    model.eval()

    # Get data loader
    log.info('Building dataset...')
    record_file = vars(args)[f'{args.split}_record_file']
    dataset = SQuAD(record_file, args)
    data_loader = data.DataLoader(dataset,
                                  batch_size=args.batch_size,
                                  shuffle=False,
                                  num_workers=args.num_workers,
                                  collate_fn=collate_fn)
    # print("*"*80)
    # print(len(dataset.question_idxs))

    # for question_idx in dataset.question_idxs:
    #    print(question_idx)
    #    print("*" * 80)

    # print(self.question_idxs[question_idx])
    # self.question_idxs[idx]
    # print("data_loader: ",data_loader)
    # Evaluate
    log.info(f'Evaluating on {args.split} split...')
    nll_meter = util.AverageMeter()
    pred_dict = {}  # Predictions for TensorBoard
    sub_dict = {}  # Predictions for submission
    eval_file = vars(args)[f'{args.split}_eval_file']
    with open(eval_file, 'r') as fh:
        gold_dict = json_load(fh)

    # create statistics
    # print("*"*80)
    # print(len(gold_dict))
    # print(gold_dict['1']['question'])

    count_questions_type = defaultdict(lambda: 0)

    audit_trail_from_question_type = defaultdict(lambda: [])
    list_of_interrogative_pronouns = [
        "what", "whose", "why", "which", "where", "when", "how", "who", "whom"
    ]

    for index in range(1, len(gold_dict)):
        # transform the question in lower case to simplify the analysis, thus losing the benefit of the capital letters
        # possibly indicating the position of the interrogative pronoun in the sentence.
        question_lower_case = gold_dict[str(index)]['question'].lower()

        list_question_lower_case_with_punctuation = question_lower_case.translate(
            {ord(i): " "
             for i in "'"}).split()

        #
        question_lower_case = []
        for item in list_question_lower_case_with_punctuation:
            question_lower_case.append(
                item.translate({ord(i): ""
                                for i in ",.<>!@£$%^&*()_-+=?"}))

        # defining a variable for the first word
        first_word_question_lower_case = question_lower_case[0]

        # defining variable for the second word
        second_word_question_lower_case = question_lower_case[1]

        # defining variable for the first and second word
        combined_first_and_second_words = first_word_question_lower_case + " " + second_word_question_lower_case

        #printing on the screen test for debugging purpose

        # Analyzing the sentence
        if first_word_question_lower_case in list_of_interrogative_pronouns:
            count_questions_type[first_word_question_lower_case] += 1
            audit_trail_from_question_type[
                first_word_question_lower_case].append(str(index))
        # composed question starting by in
        elif first_word_question_lower_case == "in":
            if second_word_question_lower_case in list_of_interrogative_pronouns and second_word_question_lower_case != "whose":
                count_questions_type[combined_first_and_second_words] += 1
                audit_trail_from_question_type[
                    combined_first_and_second_words].append(str(index))
            else:
                pronoun = find_first_interrogative_pronoun(
                    list_of_interrogative_pronouns, question_lower_case)
                count_questions_type[pronoun] += 1
                audit_trail_from_question_type[pronoun].append(str(index))

        # composed question starting by by
        elif first_word_question_lower_case == "by":
            if second_word_question_lower_case in list_of_interrogative_pronouns \
                    and second_word_question_lower_case !="whom"\
                    and second_word_question_lower_case !="which"\
                    and second_word_question_lower_case !="when"\
                    and second_word_question_lower_case !="how":
                count_questions_type[combined_first_and_second_words] += 1
                audit_trail_from_question_type[
                    combined_first_and_second_words].append(str(index))
            else:
                pronoun = find_first_interrogative_pronoun(
                    list_of_interrogative_pronouns, question_lower_case)
                count_questions_type[pronoun] += 1
                audit_trail_from_question_type[pronoun].append(str(index))

        else:
            pronoun = find_first_interrogative_pronoun(
                list_of_interrogative_pronouns, question_lower_case)
            #if pronoun =="":
            #    print(">>", question_lower_case)
            #    print("@@@", gold_dict[str(index)]['question'])
            count_questions_type[pronoun] += 1
            audit_trail_from_question_type[pronoun].append(str(index))
            # if pronoun =="":
            #    print(">>", question_lower_case.split())
            # print()
            #if first_word_question_lower_case == "if":
            #    print(">>", question_lower_case.split())

    # print(count_questions_type)
    # if gold_dict[str(index)]['question'].lower().split()[0] == "in":
    #    print(gold_dict[str(index)]['question'])

    reverse_dict_by_value = OrderedDict(
        sorted(count_questions_type.items(), key=lambda x: x[1]))
    # print(count_questions_type)
    total_questions = sum(count_questions_type.values())
    # print(reverse_dict)
    #for k, v in reverse_dict_by_value.items():
    #   print( "%s: %s and in percentage: %s" % (k, v, 100*v/total_questions))
    #print(audit_trail_from_question_type)
    # exit()
    with torch.no_grad(), \
         tqdm(total=len(dataset)) as progress_bar:
        for cw_idxs, cc_idxs, qw_idxs, qc_idxs, cw_pos, cw_ner, cw_freq, cqw_extra, y1, y2, ids in data_loader:
            # Setup for forward
            cw_idxs = cw_idxs.to(device)
            qw_idxs = qw_idxs.to(device)
            batch_size = cw_idxs.size(0)

            # Forward
            if args.model == 'bidaf':
                log_p1, log_p2 = model(cw_idxs, qw_idxs)
            else:
                log_p1, log_p2 = model(cw_idxs, qw_idxs, cw_pos, cw_ner,
                                       cw_freq, cqw_extra)

            y1, y2 = y1.to(device), y2.to(device)
            loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
            nll_meter.update(loss.item(), batch_size)

            # Get F1 and EM scores
            p1, p2 = log_p1.exp(), log_p2.exp()
            starts, ends = util.discretize(p1, p2, args.max_ans_len,
                                           args.use_squad_v2)

            # Log info
            progress_bar.update(batch_size)
            if args.split != 'test':
                # No labels for the test set, so NLL would be invalid
                progress_bar.set_postfix(NLL=nll_meter.avg)

            idx2pred, uuid2pred = util.convert_tokens(gold_dict, ids.tolist(),
                                                      starts.tolist(),
                                                      ends.tolist(),
                                                      args.use_squad_v2)
            pred_dict.update(idx2pred)
            sub_dict.update(uuid2pred)

    # Log results (except for test set, since it does not come with labels)
    if args.split != 'test':
        results = util.eval_dicts(gold_dict, pred_dict, args.use_squad_v2)

        # Printing information for questions without interrogative pronouns
        """"
        print("len(gold_dict): ", len(gold_dict))
        print("len(pred_dict): ", len(pred_dict))
        print("Is gold_dict.keys() identical to pred_dict.keys(): ", gold_dict.keys()==pred_dict.keys())
        if gold_dict.keys()!=pred_dict.keys():
            for key in gold_dict.keys():
                if key not in pred_dict.keys():
                    print("key ", key, " missing in pred_dict.keys(")
        """
        results_list = [('NLL', nll_meter.avg), ('F1', results['F1']),
                        ('EM', results['EM'])]
        if args.use_squad_v2:
            results_list.append(('AvNA', results['AvNA']))
        results = OrderedDict(results_list)

        # Computing the F1 score for each type of question
        #
        #    audit_trail_from_question_type[pronoun].append(str(index))

        # create a list of the types of questions by extracting the keys from the dict audit_trail_from_question_type
        types_of_questions = list(audit_trail_from_question_type.keys())

        gold_dict_per_type_of_questions = defaultdict(lambda: [])
        pred_dict_per_type_of_questions = {}

        gold_dict_per_type_of_questions_start = {}
        pred_dict_per_type_of_questions_start = {}

        gold_dict_per_type_of_questions_middle = {}
        pred_dict_per_type_of_questions_middle = {}

        gold_dict_per_type_of_questions_end = {}
        pred_dict_per_type_of_questions_end = {}

        for type_of_questions in types_of_questions:
            #gold_pred = {key: value for key, value in gold_dict.items() if key in audit_trail_from_question_type[type_of_questions]}
            #lst_pred = {key: value for key, value in pred_dict.items() if key in audit_trail_from_question_type[type_of_questions]}

            # Create two dictionnaries for each type of sentence for gold_dict_per_type_of_questions and pred_dict_per_type_of_questions
            gold_dict_per_type_of_questions[type_of_questions] = {
                key: value
                for key, value in gold_dict.items()
                if key in audit_trail_from_question_type[type_of_questions]
                and key in pred_dict.keys()
            }
            pred_dict_per_type_of_questions[type_of_questions] = {
                key: value
                for key, value in pred_dict.items()
                if key in audit_trail_from_question_type[type_of_questions]
                and key in pred_dict.keys()
            }
            # print(type_of_questions," F1 score: ", util.eval_dicts(gold_dict_per_type_of_questions[type_of_questions], pred_dict_per_type_of_questions[type_of_questions], args.use_squad_v2)['F1'])

            gold_dict_per_type_of_questions_start[type_of_questions] = {
                key: value
                for key, value in gold_dict.items()
                if key in audit_trail_from_question_type[type_of_questions]
                and key in pred_dict.keys()
            }
            pred_dict_per_type_of_questions_start[type_of_questions] = {
                key: value
                for key, value in pred_dict.items()
                if key in audit_trail_from_question_type[type_of_questions]
                and key in pred_dict.keys()
            }

            gold_dict_per_type_of_questions_middle[type_of_questions] = {
                key: value
                for key, value in gold_dict.items()
                if key in audit_trail_from_question_type[type_of_questions]
                and key in pred_dict.keys()
            }
            pred_dict_per_type_of_questions_middle[type_of_questions] = {
                key: value
                for key, value in pred_dict.items()
                if key in audit_trail_from_question_type[type_of_questions]
                and key in pred_dict.keys()
            }

            gold_dict_per_type_of_questions_end[type_of_questions] = {
                key: value
                for key, value in gold_dict.items()
                if key in audit_trail_from_question_type[type_of_questions]
                and key in pred_dict.keys()
            }
            pred_dict_per_type_of_questions_end[type_of_questions] = {
                key: value
                for key, value in pred_dict.items()
                if key in audit_trail_from_question_type[type_of_questions]
                and key in pred_dict.keys()
            }

            for key, value in gold_dict.items():
                #if key in audit_trail_from_question_type[type_of_questions] and key in pred_dict.keys():
                if key in audit_trail_from_question_type[
                        type_of_questions] and type_of_questions != "" and key in pred_dict_per_type_of_questions[
                            type_of_questions]:
                    """
                    print("type_of_questions: ",type_of_questions)
                    print("key: ", key)
                    print("question: ", value["question"])
                    sub_index = value["question"].lower().find(type_of_questions)
                    print("sub_index: ",sub_index)
                    test_fc = value["question"].lower().find(type_of_questions)
                    print("present type of the var: ",type(test_fc))
                    #print("question: ", value["question"][str(key)])
                    print("length of the question: ", len(value["question"]))
                    print('Position of the interrogative pronoun in the question:', )
                    """
                    # Create two dictionnaries for each type of sentence based at the start of the sentence

                    if value["question"].lower().find(
                            type_of_questions) == 1 or value["question"].lower(
                            ).find(type_of_questions) == 0:
                        #print("BEGINNING")
                        if type_of_questions != "":
                            try:
                                del gold_dict_per_type_of_questions_middle[
                                    type_of_questions][key]
                            except KeyError:
                                pass

                            try:
                                del pred_dict_per_type_of_questions_middle[
                                    type_of_questions][key]
                            except KeyError:
                                pass

                            try:
                                del gold_dict_per_type_of_questions_end[
                                    type_of_questions][key]
                            except KeyError:
                                pass

                            try:
                                del pred_dict_per_type_of_questions_end[
                                    type_of_questions][key]
                            except KeyError:
                                pass

                        #pred_dict_per_type_of_questions_start[type_of_questions] = {key: pred_dict[key] for key in
                        #                                                            gold_dict_per_type_of_questions_start[
                        #                                                                type_of_questions].keys()}
                    elif value["question"].lower(
                    ).find(type_of_questions) >= len(
                            value["question"]) - len(type_of_questions) - 5:
                        #print("END")

                        if type_of_questions != "":
                            try:
                                del gold_dict_per_type_of_questions_middle[
                                    type_of_questions][key]
                            except KeyError:
                                pass

                            try:
                                del pred_dict_per_type_of_questions_middle[
                                    type_of_questions][key]
                            except KeyError:
                                pass

                            try:
                                del gold_dict_per_type_of_questions_start[
                                    type_of_questions][key]
                            except KeyError:
                                pass

                            try:
                                del pred_dict_per_type_of_questions_start[
                                    type_of_questions][key]
                            except KeyError:
                                pass

                        #print("type_of_questions: ",type_of_questions)
                        #sub_index = value["question"].lower().find(type_of_questions)
                        #print("sub_index: ", sub_index)
                        #print("len(value['question']) - len(type_of_questions) - 2: ", len(value["question"])-len(type_of_questions)-2)
                        #start_string = len(value["question"])-len(type_of_questions)-6
                        #end_string = len(value["question"])-1
                        #print("extract at the end: ", value["question"][start_string:end_string])
                    else:
                        #print("MIDDLE")
                        if type_of_questions != "":
                            try:
                                del gold_dict_per_type_of_questions_start[
                                    type_of_questions][key]
                            except KeyError:
                                pass

                            try:
                                del pred_dict_per_type_of_questions_start[
                                    type_of_questions][key]
                            except KeyError:
                                pass

                            try:
                                del gold_dict_per_type_of_questions_end[
                                    type_of_questions][key]
                            except KeyError:
                                pass

                            try:
                                del pred_dict_per_type_of_questions_end[
                                    type_of_questions][key]
                            except KeyError:
                                pass
                            pass
            """
            if  type_of_questions != "":
                gold_dict_per_type_of_questions_start[type_of_questions] = {key: value for key, value in gold_dict.items() if (key in audit_trail_from_question_type[type_of_questions] \
                                                                        and (value["question"].lower().find(type_of_questions) <= 1) \
                                                                        and key in pred_dict_per_type_of_questions[type_of_questions]) }
            """
            """
                for key in gold_dict_per_type_of_questions_start[type_of_questions].keys():
                    print("key:: ", key )
                    print("type(key):: ", type(key) )
                            print("pred_dict[,key,] : ", pred_dict[key])
                print("@@@@@@@@@@@@@@@@@@@@@@@@")
                
                pred_dict_per_type_of_questions_start[type_of_questions] = {key: pred_dict[key] for key in gold_dict_per_type_of_questions_start[type_of_questions].keys()}

                #pred_dict_per_type_of_questions_start[type_of_questions] = {key: value for key, value in pred_dict.items() if key in list(gold_dict_per_type_of_questions_start[type_of_questions].keys()) }

                # Create two dictionnaries for each type of sentence based at the end of the sentence
                gold_dict_per_type_of_questions_end[type_of_questions] = {key: value for key, value in gold_dict.items() if key in audit_trail_from_question_type[type_of_questions] \
                                                                        and value["question"].lower().find(type_of_questions) >= len(value["question"])-len(type_of_questions)-2 \
                                                                        and key in pred_dict_per_type_of_questions[type_of_questions]}


                pred_dict_per_type_of_questions_end[type_of_questions] = {key: pred_dict[key] for key in list(gold_dict_per_type_of_questions_end[type_of_questions].keys())}

                #print("*"*80)
                # Create two dictionnaries for each type of sentence based at the middle of the sentencecount_questions_type
                gold_dict_per_type_of_questions_middle[type_of_questions] = {key: value for key, value in gold_dict.items() if key not in list(gold_dict_per_type_of_questions_start[type_of_questions].keys()) \
                                                                            and key not in list(gold_dict_per_type_of_questions_end[type_of_questions].keys())}

                pred_dict_per_type_of_questions_middle[type_of_questions] = {key: pred_dict[key] for key in list(gold_dict_per_type_of_questions_end[type_of_questions].keys())}
            else:
                gold_dict_per_type_of_questions_start[""] = gold_dict_per_type_of_questions[""]
                pred_dict_per_type_of_questions_start[""] = pred_dict_per_type_of_questions[""]
                gold_dict_per_type_of_questions_end[""] = gold_dict_per_type_of_questions[""]
                pred_dict_per_type_of_questions_end[""] = pred_dict_per_type_of_questions[""]
                gold_dict_per_type_of_questions_middle[""] = gold_dict_per_type_of_questions[""]
                pred_dict_per_type_of_questions_middle[""] = pred_dict_per_type_of_questions[""]
        """

        positions_in_question = ["beginning", "middle", "end"]

        # print(type_of_questions," F1 score: ", util.eval_dicts(gold_dict_per_type_of_questions[type_of_questions], pred_dict_per_type_of_questions[type_of_questions], args.use_squad_v2)['F1'])

        list_beginning = [
            util.eval_dicts(
                gold_dict_per_type_of_questions_start[type_of_questions],
                pred_dict_per_type_of_questions_start[type_of_questions],
                args.use_squad_v2)['F1']
            for type_of_questions in types_of_questions
        ]
        list_middle = [
            util.eval_dicts(
                gold_dict_per_type_of_questions_middle[type_of_questions],
                pred_dict_per_type_of_questions_middle[type_of_questions],
                args.use_squad_v2)['F1']
            for type_of_questions in types_of_questions
        ]
        list_end = [
            util.eval_dicts(
                gold_dict_per_type_of_questions_end[type_of_questions],
                pred_dict_per_type_of_questions_end[type_of_questions],
                args.use_squad_v2)['F1']
            for type_of_questions in types_of_questions
        ]

        #for type_of_questions in types_of_questions:
        #    print("gold_dict_per_type_of_questions_start[type_of_questions]: ",gold_dict_per_type_of_questions_start[type_of_questions])
        #    print("pred_dict_per_type_of_questions[type_of_questions]: ",pred_dict_per_type_of_questions[type_of_questions])

        F1 = np.array([list_beginning, list_middle, list_end])

        m, n = F1.shape

        value_to_ignore = []
        for i in range(m):
            for j in range(n):
                if F1[i, j] == "NA" or F1[i, j] == 0:
                    value_to_ignore.append((i, j))
        print("value to ignore: ", value_to_ignore)
        #F1 = np.array([[0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0],
        #                    [0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0],
        #                    [0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0]])

        data_label = copy.deepcopy(F1)

        for row in data_label:
            for column_idx in range(len(row)):
                if row[column_idx] == "NA":
                    row[column_idx] = ""

        # print question without interrogative pronoun required for the second part of the analysis:
        for key, value in gold_dict.items():
            if key in audit_trail_from_question_type[
                    ""] and key in pred_dict.keys():
                print("question: ", gold_dict_per_type_of_questions[''])
                print("golden answers: ", )
                print("prediction: ", pred_dict[key])
                print()

        fig, ax = plt.subplots()

        types_of_questions[types_of_questions.index(
            "")] = "Implicit question without interrogative pronoun"

        im, cbar = heatmap(F1, positions_in_question, types_of_questions, ax=ax, \
                            cmap="YlGn", cbarlabel="F1 scores")

        texts = annotate_heatmap(im,
                                 data=data_label,
                                 valfmt="{x:.1f}",
                                 ignore=value_to_ignore)

        fig.tight_layout()
        plt.show()

        # Log to console
        results_str = ', '.join(f'{k}: {v:05.2f}' for k, v in results.items())
        log.info(f'{args.split.title()} {results_str}')

        # Log to TensorBoard
        tbx = SummaryWriter(args.save_dir)
        util.visualize(tbx,
                       pred_dict=pred_dict,
                       eval_path=eval_file,
                       step=0,
                       split=args.split,
                       num_visuals=args.num_visuals)

    # Write submission file
    sub_path = join(args.save_dir, args.split + '_' + args.sub_file)
    log.info(f'Writing submission file to {sub_path}...')
    with open(sub_path, 'w', newline='', encoding='utf-8') as csv_fh:
        csv_writer = csv.writer(csv_fh, delimiter=',')
        csv_writer.writerow(['Id', 'Predicted'])
        for uuid in sorted(sub_dict):
            csv_writer.writerow([uuid, sub_dict[uuid]])
Beispiel #10
0
def main(args):
    # Set up logging and devices
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    log = util.get_logger(args.save_dir, args.name)
    tbx = SummaryWriter(args.save_dir)
    device, args.gpu_ids = util.get_available_devices()
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    args.batch_size *= max(1, len(args.gpu_ids))

    # Set random seed
    log.info(f'Using random seed {args.seed}...')
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Load embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)

    # Build QA model
    log.info('Building model...')
    model = QA_Model(word_vectors=word_vectors,
                     hidden_size=args.hidden_size,
                     drop_prob=args.drop_prob,
                     attention_type=args.attention_type,
                     train_embeddings=args.train_embeddings)
    model = nn.DataParallel(model, args.gpu_ids)
    if args.load_path:
        # Load QA model from file
        log.info(f'Loading checkpoint from {args.load_path}...')
        model, step = util.load_model(model, args.load_path, args.gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()

    # Get saver
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints,
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)

    # Get optimizer
    optimizer = optim.Adadelta(model.parameters(),
                               args.lr,
                               weight_decay=args.l2_wd)
    #optimizer = optim.Adam(model.parameters(), lr=args.lr)

    # Get data loader
    log.info('Building dataset...')
    train_dataset = SQuAD(args.train_record_file, args.use_squad_v2)
    train_loader = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   shuffle=True,
                                   num_workers=args.num_workers,
                                   collate_fn=collate_fn)
    dev_dataset = SQuAD(args.dev_record_file, args.use_squad_v2)
    dev_loader = data.DataLoader(dev_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=args.num_workers,
                                 collate_fn=collate_fn)

    # Train
    log.info('Training...')
    steps_till_eval = args.eval_steps
    epoch = step // len(train_dataset)
    while epoch != args.num_epochs:
        epoch += 1
        log.info(f'Starting epoch {epoch}...')
        with torch.enable_grad(), \
                tqdm(total=len(train_loader.dataset)) as progress_bar:
            for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in train_loader:
                # Setup for forward
                cw_idxs = cw_idxs.to(device)
                qw_idxs = qw_idxs.to(device)
                batch_size = cw_idxs.size(0)
                optimizer.zero_grad()

                # Forward
                log_p1, log_p2 = model(cw_idxs, qw_idxs)
                y1, y2 = y1.to(device), y2.to(device)
                loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
                loss_val = loss.item()

                # Backward
                loss.backward()
                nn.utils.clip_grad_norm_(model.parameters(),
                                         args.max_grad_norm)
                optimizer.step()

                # Log info
                step += batch_size
                progress_bar.update(batch_size)
                progress_bar.set_postfix(epoch=epoch, NLL=loss_val)

                steps_till_eval -= batch_size
                if steps_till_eval <= 0:
                    steps_till_eval = args.eval_steps

                    # Evaluate and save checkpoint
                    log.info(f'Evaluating at step {step}...')

                    results, pred_dict = evaluate(model, dev_loader, device,
                                                  args.dev_eval_file,
                                                  args.max_ans_len,
                                                  args.use_squad_v2)
                    saver.save(step, model, results[args.metric_name], device)

                    # Log to console
                    results_str = ', '.join(f'{k}: {v:05.2f}'
                                            for k, v in results.items())
                    log.info(f'Dev {results_str}')
Beispiel #11
0
def main(args):
    # Set up logging and devices
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    log = util.get_logger(args.save_dir, args.name)
    tbx = SummaryWriter(args.save_dir)
    device, args.gpu_ids = util.get_available_devices()
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    args.batch_size *= max(1, len(args.gpu_ids))

    # Set random seed
    log.info(f'Using random seed {args.seed}...')
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)
    char_vectors = util.torch_from_json(args.char_emb_file)

    # Get model
    log.info('Building model...')
    if args.model_name == 'sketchy':
        model = SketchyReader(word_vectors=word_vectors,
                              char_vectors=char_vectors,
                              hidden_size=args.hidden_size,
                              char_embed_drop_prob=args.char_embed_drop_prob,
                              num_heads=args.num_heads,
                              drop_prob=args.drop_prob)  # SKETCHY
    elif args.model_name == 'intensive':

        model = IntensiveReader(word_vectors=word_vectors,
                                char_vectors=char_vectors,
                                num_heads=args.num_heads,
                                char_embed_drop_prob=args.char_embed_drop_prob,
                                hidden_size=args.hidden_size,
                                drop_prob=args.drop_prob)  # INTENSIVE
    elif args.model_name == 'retro':

        model = RetroQANet(word_vectors=word_vectors,
                           char_vectors=char_vectors,
                           hidden_size=args.hidden_size,
                           num_heads=args.num_heads,
                           char_embed_drop_prob=args.char_embed_drop_prob,
                           intensive_path=args.load_path_i,
                           sketchy_path=args.load_path_s,
                           gpu_ids=args.gpu_ids,
                           drop_prob=args.drop_prob)  # Outer

    model = nn.DataParallel(model, args.gpu_ids)

    if args.load_path:
        log.info(f'Loading checkpoint from {args.load_path}...')
        model, step = util.load_model(model, args.load_path, args.gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()
    ema = util.EMA(model, args.ema_decay)

    # setup losses
    bceLoss = nn.BCELoss()

    # Get saver
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints,
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)

    # Get optimizer and scheduler
    optimizer = optim.Adadelta(model.parameters(), args.lr,
                               weight_decay=args.l2_wd)
    if args.optim == "adam":
        optimizer = optim.Adam(
            model.parameters(), 0.001, betas=(0.8, 0.999), eps=1e-7, weight_decay=3e-7)

    scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR

    # Get data loader
    log.info('Building dataset...')
    train_dataset = SQuAD(args.train_record_file, args.use_squad_v2)
    train_loader = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   shuffle=True,
                                   num_workers=args.num_workers,
                                   collate_fn=collate_fn)

    dev_dataset = SQuAD(args.dev_record_file, args.use_squad_v2)
    dev_loader = data.DataLoader(dev_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=args.num_workers,
                                 collate_fn=collate_fn)

    # Train
    log.info('Training...')
    steps_till_eval = args.eval_steps
    epoch = step // len(train_dataset)
    while epoch != args.num_epochs:
        counter = 0
        epoch += 1
        log.info(f'Starting epoch {epoch}...')
        with torch.enable_grad(), \
                tqdm(total=len(train_loader.dataset)) as progress_bar:
            for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in train_loader:
                counter += 1
                # Setup for forward
                cw_idxs = cw_idxs.to(device)
                qw_idxs = qw_idxs.to(device)
                cc_idxs = cc_idxs.to(device)
                qc_idxs = qc_idxs.to(device)
                batch_size = cw_idxs.size(0)
                optimizer.zero_grad()

                # Forward
                y1, y2 = y1.to(device), y2.to(device)
                if args.model_name == 'sketchy':
                    yi = model(cw_idxs, qw_idxs, cc_idxs, qc_idxs)
                    loss = bceLoss(yi, torch.where(
                        y1 == 0, 0, 1).type(torch.FloatTensor))
                elif args.model_name == 'intensive':
                    yi, log_p1, log_p2 = model(
                        cw_idxs, qw_idxs, cc_idxs, qc_idxs)
                    # if counter % 100 == 0:
                    #print(torch.max(log_p1.exp(), dim=1)[0])
                    # $print(torch.max(log_p2.exp(), dim=1)[0])
                    #weights = torch.ones(log_p1.shape[1])
                    #weights[0] = 2/(log_p1.shape[1])
                    #nll_loss = nn.NLLLoss(weight=weights.to(device='cuda:0'))
                    # gt_0 = torch.zeros(yi.shape[0]).to(device)
                    # gt_1 = torch.ones(yi.shape[0]).to(device)
                    loss = args.alpha_1 * bceLoss(yi, torch.where(y1 == 0, 0, 1).type(
                        torch.FloatTensor)) + args.alpha_2 * (F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2))
                    #loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
                elif args.model_name == 'retro':
                    log_p1, log_p2 = model(cw_idxs, qw_idxs, cc_idxs, qc_idxs)
                    loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
                else:
                    raise ValueError(
                        'invalid --model_name, sketchy or intensive required')

                loss_val = loss.item()

                # Backward
                loss.backward()
                nn.utils.clip_grad_norm_(
                    model.parameters(), args.max_grad_norm)
                optimizer.step()
                scheduler.step(step // batch_size)
                ema(model, step // batch_size)

                # Log info
                step += batch_size
                progress_bar.update(batch_size)
                progress_bar.set_postfix(epoch=epoch,
                                         NLL=loss_val)
                tbx.add_scalar('train/' + args.model_name, loss_val, step)
                tbx.add_scalar('train/LR',
                               optimizer.param_groups[0]['lr'],
                               step)

                steps_till_eval -= batch_size
                if steps_till_eval <= 0:
                    steps_till_eval = args.eval_steps

                    # Evaluate and save checkpoint
                    log.info(f'Evaluating at step {step}...')
                    ema.assign(model)
                    results, pred_dict = evaluate(model, dev_loader, device,
                                                  args.dev_eval_file,
                                                  args.max_ans_len,
                                                  args.use_squad_v2,
                                                  model_name=args.model_name,
                                                  a1=args.alpha_1,
                                                  a2=args.alpha_2)
                    saver.save(
                        step, model, results[args.metric_name], device, model_name=args.model_name)
                    ema.resume(model)

                    # Log to console
                    results_str = ', '.join(
                        f'{k}: {v:05.2f}' for k, v in results.items())
                    log.info(f'Dev {results_str}')

                    # Log to TensorBoard
                    log.info('Visualizing in TensorBoard...')
                    for k, v in results.items():
                        tbx.add_scalar(f'dev/{k}', v, step)
                    util.visualize(tbx,
                                   pred_dict=pred_dict,
                                   eval_path=args.dev_eval_file,
                                   step=step,
                                   split='dev',
                                   num_visuals=args.num_visuals)
def main(args):
    # Set up logging
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=False)
    log = util.get_logger(args.save_dir, args.name)
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    device, gpu_ids = util.get_available_devices()
    args.batch_size *= max(1, len(gpu_ids))

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)
    char_vectors = util.torch_from_json(args.char_emb_file)
    # Get model
    log.info('Building model...')
    nbr_model = 0
    if (args.load_path_baseline):
        model_baseline = Baseline(word_vectors=word_vectors, hidden_size=100)
        model_baseline = nn.DataParallel(model_baseline, gpu_ids)
        log.info(f'Loading checkpoint from {args.load_path_baseline}...')
        model_baseline = util.load_model(model_baseline,
                                         args.load_path_baseline,
                                         gpu_ids,
                                         return_step=False)
        model_baseline = model_baseline.to(device)
        model_baseline.eval()
        nll_meter_baseline = util.AverageMeter()
        nbr_model += 1
        save_prob_baseline_start = []
        save_prob_baseline_end = []

    if (args.load_path_bidaf):
        model_bidaf = BiDAF(word_vectors=word_vectors,
                            char_vectors=char_vectors,
                            char_emb_dim=args.char_emb_dim,
                            hidden_size=args.hidden_size)
        model_bidaf = nn.DataParallel(model_bidaf, gpu_ids)
        log.info(f'Loading checkpoint from {args.load_path_bidaf}...')
        model_bidaf = util.load_model(model_bidaf,
                                      args.load_path_bidaf,
                                      gpu_ids,
                                      return_step=False)
        model_bidaf = model_bidaf.to(device)
        model_bidaf.eval()
        nll_meter_bidaf = util.AverageMeter()
        nbr_model += 1
        save_prob_bidaf_start = []
        save_prob_bidaf_end = []

    if (args.load_path_bidaf_fusion):
        model_bidaf_fu = BiDAF_fus(word_vectors=word_vectors,
                                   char_vectors=char_vectors,
                                   char_emb_dim=args.char_emb_dim,
                                   hidden_size=args.hidden_size)
        model_bidaf_fu = nn.DataParallel(model_bidaf_fu, gpu_ids)
        log.info(f'Loading checkpoint from {args.load_path_bidaf_fusion}...')
        model_bidaf_fu = util.load_model(model_bidaf_fu,
                                         args.load_path_bidaf_fusion,
                                         gpu_ids,
                                         return_step=False)
        model_bidaf_fu = model_bidaf_fu.to(device)
        model_bidaf_fu.eval()
        nll_meter_bidaf_fu = util.AverageMeter()
        nbr_model += 1
        save_prob_bidaf_fu_start = []
        save_prob_bidaf_fu_end = []

    if (args.load_path_qanet):
        model_qanet = QANet(word_vectors=word_vectors,
                            char_vectors=char_vectors,
                            char_emb_dim=args.char_emb_dim,
                            hidden_size=args.hidden_size,
                            n_heads=args.n_heads,
                            n_conv_emb_enc=args.n_conv_emb,
                            n_conv_mod_enc=args.n_conv_mod,
                            n_emb_enc_blocks=args.n_emb_blocks,
                            n_mod_enc_blocks=args.n_mod_blocks,
                            divisor_dim_kqv=args.divisor_dim_kqv)

        model_qanet = nn.DataParallel(model_qanet, gpu_ids)
        log.info(f'Loading checkpoint from {args.load_path_qanet}...')
        model_qanet = util.load_model(model_qanet,
                                      args.load_path_qanet,
                                      gpu_ids,
                                      return_step=False)
        model_qanet = model_qanet.to(device)
        model_qanet.eval()
        nll_meter_qanet = util.AverageMeter()
        nbr_model += 1
        save_prob_qanet_start = []
        save_prob_qanet_end = []

    if (args.load_path_qanet_old):
        model_qanet_old = QANet_old(word_vectors=word_vectors,
                                    char_vectors=char_vectors,
                                    device=device,
                                    char_emb_dim=args.char_emb_dim,
                                    hidden_size=args.hidden_size,
                                    n_heads=args.n_heads,
                                    n_conv_emb_enc=args.n_conv_emb,
                                    n_conv_mod_enc=args.n_conv_mod,
                                    n_emb_enc_blocks=args.n_emb_blocks,
                                    n_mod_enc_blocks=args.n_mod_blocks)

        model_qanet_old = nn.DataParallel(model_qanet_old, gpu_ids)
        log.info(f'Loading checkpoint from {args.load_path_qanet_old}...')
        model_qanet_old = util.load_model(model_qanet_old,
                                          args.load_path_qanet_old,
                                          gpu_ids,
                                          return_step=False)
        model_qanet_old = model_qanet_old.to(device)
        model_qanet_old.eval()
        nll_meter_qanet_old = util.AverageMeter()
        nbr_model += 1
        save_prob_qanet_old_start = []
        save_prob_qanet_old_end = []

    if (args.load_path_qanet_inde):
        model_qanet_inde = QANet_independant_encoder(
            word_vectors=word_vectors,
            char_vectors=char_vectors,
            char_emb_dim=args.char_emb_dim,
            hidden_size=args.hidden_size,
            n_heads=args.n_heads,
            n_conv_emb_enc=args.n_conv_emb,
            n_conv_mod_enc=args.n_conv_mod,
            n_emb_enc_blocks=args.n_emb_blocks,
            n_mod_enc_blocks=args.n_mod_blocks,
            divisor_dim_kqv=args.divisor_dim_kqv)

        model_qanet_inde = nn.DataParallel(model_qanet_inde, gpu_ids)
        log.info(f'Loading checkpoint from {args.load_path_qanet_inde}...')
        model_qanet_inde = util.load_model(model_qanet_inde,
                                           args.load_path_qanet_inde,
                                           gpu_ids,
                                           return_step=False)
        model_qanet_inde = model_qanet_inde.to(device)
        model_qanet_inde.eval()
        nll_meter_qanet_inde = util.AverageMeter()
        nbr_model += 1
        save_prob_qanet_inde_start = []
        save_prob_qanet_inde_end = []

    if (args.load_path_qanet_s_e):
        model_qanet_s_e = QANet_S_E(word_vectors=word_vectors,
                                    char_vectors=char_vectors,
                                    char_emb_dim=args.char_emb_dim,
                                    hidden_size=args.hidden_size,
                                    n_heads=args.n_heads,
                                    n_conv_emb_enc=args.n_conv_emb,
                                    n_conv_mod_enc=args.n_conv_mod,
                                    n_emb_enc_blocks=args.n_emb_blocks,
                                    n_mod_enc_blocks=args.n_mod_blocks,
                                    divisor_dim_kqv=args.divisor_dim_kqv)

        model_qanet_s_e = nn.DataParallel(model_qanet_s_e, gpu_ids)
        log.info(f'Loading checkpoint from {args.load_path_qanet_s_e}...')
        model_qanet_s_e = util.load_model(model_qanet_s_e,
                                          args.load_path_qanet_s_e,
                                          gpu_ids,
                                          return_step=False)
        model_qanet_s_e = model_qanet_s_e.to(device)
        model_qanet_s_e.eval()
        nll_meter_qanet_s_e = util.AverageMeter()
        nbr_model += 1
        save_prob_qanet_s_e_start = []
        save_prob_qanet_s_e_end = []

    # Get data loader
    log.info('Building dataset...')
    record_file = vars(args)[f'{args.split}_record_file']
    dataset = SQuAD(record_file, args.use_squad_v2)
    data_loader = data.DataLoader(dataset,
                                  batch_size=args.batch_size,
                                  shuffle=False,
                                  num_workers=args.num_workers,
                                  collate_fn=collate_fn)

    # Evaluate
    log.info(f'Evaluating on {args.split} split...')
    pred_dict = {}  # Predictions for TensorBoard
    sub_dict = {}  # Predictions for submission
    eval_file = vars(args)[f'{args.split}_eval_file']
    with open(eval_file, 'r') as fh:
        gold_dict = json_load(fh)
    with torch.no_grad(), \
            tqdm(total=len(dataset)) as progress_bar:
        for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in data_loader:
            # Setup for forward
            cw_idxs = cw_idxs.to(device)
            qw_idxs = qw_idxs.to(device)
            cc_idxs = cc_idxs.to(device)
            qc_idxs = qc_idxs.to(device)
            batch_size = cw_idxs.size(0)

            y1, y2 = y1.to(device), y2.to(device)
            l_p1, l_p2 = [], []
            # Forward
            if (args.load_path_baseline):
                log_p1_baseline, log_p2_baseline = model_baseline(
                    cw_idxs, cc_idxs)
                loss_baseline = F.nll_loss(log_p1_baseline, y1) + F.nll_loss(
                    log_p2_baseline, y2)
                nll_meter_baseline.update(loss_baseline.item(), batch_size)
                l_p1 += [log_p1_baseline.exp()]
                l_p2 += [log_p2_baseline.exp()]
                if (args.save_probabilities):
                    save_prob_baseline_start += [
                        log_p1_baseline.exp().detach().cpu().numpy()
                    ]
                    save_prob_baseline_end += [
                        log_p2_baseline.exp().detach().cpu().numpy()
                    ]

            if (args.load_path_qanet):
                log_p1_qanet, log_p2_qanet = model_qanet(
                    cw_idxs, cc_idxs, qw_idxs, qc_idxs)
                loss_qanet = F.nll_loss(log_p1_qanet, y1) + F.nll_loss(
                    log_p2_qanet, y2)
                nll_meter_qanet.update(loss_qanet.item(), batch_size)
                # Get F1 and EM scores
                l_p1 += [log_p1_qanet.exp()]
                l_p2 += [log_p2_qanet.exp()]
                if (args.save_probabilities):
                    save_prob_qanet_start += [
                        log_p1_qanet.exp().detach().cpu().numpy()
                    ]
                    save_prob_qanet_end += [
                        log_p2_qanet.exp().detach().cpu().numpy()
                    ]

            if (args.load_path_qanet_old):
                log_p1_qanet_old, log_p2_qanet_old = model_qanet_old(
                    cw_idxs, cc_idxs, qw_idxs, qc_idxs)
                loss_qanet_old = F.nll_loss(log_p1_qanet_old, y1) + F.nll_loss(
                    log_p2_qanet_old, y2)
                nll_meter_qanet_old.update(loss_qanet_old.item(), batch_size)
                # Get F1 and EM scores
                l_p1 += [log_p1_qanet_old.exp()]
                l_p2 += [log_p2_qanet_old.exp()]
                if (args.save_probabilities):
                    save_prob_qanet_old_start += [
                        log_p1_qanet_old.exp().detach().cpu().numpy()
                    ]
                    save_prob_qanet_old_end += [
                        log_p2_qanet_old.exp().detach().cpu().numpy()
                    ]

            if (args.load_path_qanet_inde):
                log_p1_qanet_inde, log_p2_qanet_inde = model_qanet_inde(
                    cw_idxs, cc_idxs, qw_idxs, qc_idxs)
                loss_qanet_inde = F.nll_loss(
                    log_p1_qanet_inde, y1) + F.nll_loss(log_p2_qanet_inde, y2)
                nll_meter_qanet_inde.update(loss_qanet_inde.item(), batch_size)
                # Get F1 and EM scores
                l_p1 += [log_p1_qanet_inde.exp()]
                l_p2 += [log_p2_qanet_inde.exp()]
                if (args.save_probabilities):
                    save_prob_qanet_inde_start += [
                        log_p1_qanet_inde.exp().detach().cpu().numpy()
                    ]
                    save_prob_qanet_inde_end += [
                        log_p2_qanet_inde.exp().detach().cpu().numpy()
                    ]

            if (args.load_path_qanet_s_e):
                log_p1_qanet_s_e, log_p2_qanet_s_e = model_qanet_s_e(
                    cw_idxs, cc_idxs, qw_idxs, qc_idxs)
                loss_qanet_s_e = F.nll_loss(log_p1_qanet_s_e, y1) + F.nll_loss(
                    log_p2_qanet_s_e, y2)
                nll_meter_qanet_s_e.update(loss_qanet_s_e.item(), batch_size)
                # Get F1 and EM scores
                l_p1 += [log_p1_qanet_s_e.exp()]
                l_p2 += [log_p2_qanet_s_e.exp()]
                if (args.save_probabilities):
                    save_prob_qanet_s_e_start += [
                        log_p1_qanet_s_e.exp().detach().cpu().numpy()
                    ]
                    save_prob_qanet_s_e_end += [
                        log_p2_qanet_s_e.exp().detach().cpu().numpy()
                    ]

            if (args.load_path_bidaf):
                log_p1_bidaf, log_p2_bidaf = model_bidaf(
                    cw_idxs, cc_idxs, qw_idxs, qc_idxs)
                loss_bidaf = F.nll_loss(log_p1_bidaf, y1) + F.nll_loss(
                    log_p2_bidaf, y2)
                nll_meter_bidaf.update(loss_bidaf.item(), batch_size)
                l_p1 += [log_p1_bidaf.exp()]
                l_p2 += [log_p2_bidaf.exp()]
                if (args.save_probabilities):
                    save_prob_bidaf_start += [
                        log_p1_bidaf.exp().detach().cpu().numpy()
                    ]
                    save_prob_bidaf_end += [
                        log_p2_bidaf.exp().detach().cpu().numpy()
                    ]

            if (args.load_path_bidaf_fusion):
                log_p1_bidaf_fu, log_p2_bidaf_fu = model_bidaf_fu(
                    cw_idxs, cc_idxs, qw_idxs, qc_idxs)
                loss_bidaf_fu = F.nll_loss(log_p1_bidaf_fu, y1) + F.nll_loss(
                    log_p2_bidaf_fu, y2)
                nll_meter_bidaf_fu.update(loss_bidaf_fu.item(), batch_size)
                l_p1 += [log_p1_bidaf_fu.exp()]
                l_p2 += [log_p2_bidaf_fu.exp()]
                if (args.save_probabilities):
                    save_prob_bidaf_fu_start += [
                        log_p1_bidaf_fu.exp().detach().cpu().numpy()
                    ]
                    save_prob_bidaf_fu_end += [
                        log_p2_bidaf_fu.exp().detach().cpu().numpy()
                    ]

            p1, p2 = l_p1[0], l_p2[0]
            for i in range(1, nbr_model):
                p1 += l_p1[i]
                p2 += l_p2[i]
            p1 /= nbr_model
            p2 /= nbr_model

            starts, ends = util.discretize(p1, p2, args.max_ans_len,
                                           args.use_squad_v2)

            # Log info
            progress_bar.update(batch_size)
            if args.split != 'test':
                # No labels for the test set, so NLL would be invalid
                if (args.load_path_qanet):
                    progress_bar.set_postfix(NLL=nll_meter_qanet.avg)
                elif (args.load_path_bidaf):
                    progress_bar.set_postfix(NLL=nll_meter_bidaf.avg)
                elif (args.load_path_bidaf_fusion):
                    progress_bar.set_postfix(NLL=nll_meter_bidaf_fu.avg)
                elif (args.load_path_qanet_old):
                    progress_bar.set_postfix(NLL=nll_meter_qanet_old.avg)
                elif (args.load_path_qanet_inde):
                    progress_bar.set_postfix(NLL=nll_meter_qanet_inde.avg)
                elif (args.load_path_qanet_s_e):
                    progress_bar.set_postfix(NLL=nll_meter_qanet_s_e.avg)
                else:
                    progress_bar.set_postfix(NLL=nll_meter_baseline.avg)

            idx2pred, uuid2pred = util.convert_tokens(gold_dict, ids.tolist(),
                                                      starts.tolist(),
                                                      ends.tolist(),
                                                      args.use_squad_v2)
            pred_dict.update(idx2pred)
            sub_dict.update(uuid2pred)

    if (args.save_probabilities):
        if (args.load_path_baseline):
            with open(args.save_dir + "/probs_start", "wb") as fp:  #Pickling
                pickle.dump(save_prob_baseline_start, fp)
            with open(args.save_dir + "/probs_end", "wb") as fp:  #Pickling
                pickle.dump(save_prob_baseline_end, fp)

        if (args.load_path_bidaf):
            with open(args.save_dir + "/probs_start", "wb") as fp:  #Pickling
                pickle.dump(save_prob_bidaf_start, fp)
            with open(args.save_dir + "/probs_end", "wb") as fp:  #Pickling
                pickle.dump(save_prob_bidaf_end, fp)

        if (args.load_path_bidaf_fusion):
            with open(args.save_dir + "/probs_start", "wb") as fp:  #Pickling
                pickle.dump(save_prob_bidaf_fu_start, fp)
            with open(args.save_dir + "/probs_end", "wb") as fp:  #Pickling
                pickle.dump(save_prob_bidaf_fu_end, fp)

        if (args.load_path_qanet):
            with open(args.save_dir + "/probs_start", "wb") as fp:  #Pickling
                pickle.dump(save_prob_qanet_start, fp)
            with open(args.save_dir + "/probs_end", "wb") as fp:  #Pickling
                pickle.dump(save_prob_qanet_end, fp)

        if (args.load_path_qanet_old):
            with open(args.save_dir + "/probs_start", "wb") as fp:  #Pickling
                pickle.dump(save_prob_qanet_old_start, fp)
            with open(args.save_dir + "/probs_end", "wb") as fp:  #Pickling
                pickle.dump(save_prob_qanet_old_end, fp)

        if (args.load_path_qanet_inde):
            with open(args.save_dir + "/probs_start", "wb") as fp:  #Pickling
                pickle.dump(save_prob_qanet_inde_start, fp)
            with open(args.save_dir + "/probs_end", "wb") as fp:  #Pickling
                pickle.dump(save_prob_qanet_inde_end, fp)

        if (args.load_path_qanet_s_e):
            with open(args.save_dir + "/probs_start", "wb") as fp:  #Pickling
                pickle.dump(save_prob_qanet_s_e_start, fp)
            with open(args.save_dir + "/probs_end", "wb") as fp:  #Pickling
                pickle.dump(save_prob_qanet_s_e_end, fp)

    # Log results (except for test set, since it does not come with labels)
    if args.split != 'test':
        results = util.eval_dicts(gold_dict, pred_dict, args.use_squad_v2)
        if (args.load_path_qanet):
            meter_avg = nll_meter_qanet.avg
        elif (args.load_path_bidaf):
            meter_avg = nll_meter_bidaf.avg
        elif (args.load_path_bidaf_fusion):
            meter_avg = nll_meter_bidaf_fu.avg
        elif (args.load_path_qanet_inde):
            meter_avg = nll_meter_qanet_inde.avg
        elif (args.load_path_qanet_s_e):
            meter_avg = nll_meter_qanet_s_e.avg
        elif (args.load_path_qanet_old):
            meter_avg = nll_meter_qanet_old.avg
        else:
            meter_avg = nll_meter_baseline.avg
        results_list = [('NLL', meter_avg), ('F1', results['F1']),
                        ('EM', results['EM'])]
        if args.use_squad_v2:
            results_list.append(('AvNA', results['AvNA']))
        results = OrderedDict(results_list)

        # Log to console
        results_str = ', '.join(f'{k}: {v:05.2f}' for k, v in results.items())
        log.info(f'{args.split.title()} {results_str}')

        # Log to TensorBoard
        tbx = SummaryWriter(args.save_dir)
        util.visualize(tbx,
                       pred_dict=pred_dict,
                       eval_path=eval_file,
                       step=0,
                       split=args.split,
                       num_visuals=args.num_visuals)

    # Write submission file
    sub_path = join(args.save_dir, args.split + '_' + args.sub_file)
    log.info(f'Writing submission file to {sub_path}...')
    with open(sub_path, 'w', newline='', encoding='utf-8') as csv_fh:
        csv_writer = csv.writer(csv_fh, delimiter=',')
        csv_writer.writerow(['Id', 'Predicted'])
        for uuid in sorted(sub_dict):
            csv_writer.writerow([uuid, sub_dict[uuid]])
Beispiel #13
0
def main(args):

    import gc
    gc.collect()

    _model = __MODEL_FROM_NAME[args.name]
    args.save_dir = f'save/prod/{args.name}_TEST'
    log = util.get_logger(args.save_dir, args.name)
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    device, gpu_ids = util.get_available_devices()
    args.batch_size = 1

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)

    # Get model
    log.info('Building model...')
    model = _model(word_vectors=word_vectors,
                   hidden_size=args.hidden_size)
    model = nn.DataParallel(model, gpu_ids)
    log.info(f'Loading checkpoint from {args.load_path}...')
    model = util.load_model(model, f'save/train/{args.name}/best.pth.tar', gpu_ids, return_step=False)
    model = model.to(device)
    model.eval()

    # Get data loader
    log.info('Building dataset...')
    record_file = vars(args)[f'{args.split}_record_file']
    dataset = SQuAD(record_file, args.use_squad_v2)
    data_loader = data.DataLoader(dataset,
                                  batch_size=args.batch_size,
                                  shuffle=False,
                                  num_workers=args.num_workers,
                                  collate_fn=collate_fn)

    prod_results = []
    log.info(f'Starting prodding on {args.split} split...')

    with torch.no_grad(), \
            tqdm(total=len(dataset)) as progress_bar:
        for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in data_loader:
            # Setup for forward
            cw_idxs = cw_idxs.to(device)
            qw_idxs = qw_idxs.to(device)
            batch_size = cw_idxs.size(0)

            # Forward
            prod_results.append(model(cw_idxs, qw_idxs))
            progress_bar.update(batch_size)

    log.info(f'Results summary: \nlen: {len(prod_results)}\n type: \
               list(tuple({type(prod_results[0][0])}, \
               tuplesize: {len(prod_results[0])}))')

    log.info(f'Clearing memory...')

    del model
    del dataset
    gc.collect()

    log.info(f'Pickling results...')
    with open(f'{args.save_dir}/prod_results.pkl', 'wb') as f:
        pickle.dump(prod_results, f)
    log.info(f'Done pickling.')
Beispiel #14
0
def main(args):
    # Set up logging and devices (unchanged from train.py)
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    log = util.get_logger(args.save_dir, args.name)
    tbx = SummaryWriter(args.save_dir)                  # train only, not in test
    device, args.gpu_ids = util.get_available_devices() # todo(small): should this be args (compare test_para)
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    args.batch_size *= max(1, len(args.gpu_ids))        # args.py: default size is 64

    # Set random seed (unchanged) - train only
    log.info(f'Using random seed {args.seed}...')
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)

    # Prepare BiDAF model (must already trained)
    log.info('Building BiDAF model (should be pretrained)')
    bidaf_model = BiDAF(word_vectors=word_vectors,          # todo: these word vectors shouldn't matter?
                          hidden_size=args.hidden_size)     # since they will be loaded in during load_model?
                          #drop_prob=args.drop_prob)        # no drop probability since we are not training
    bidaf_model = nn.DataParallel(bidaf_model, args.gpu_ids)

    if args.short_test:
        args.hidden_size = 5
    elif not args.load_path:
        log.info("Trying to trian paraphraser withou bidaf model. "
                 "First train BiDAF and then specify the load path. Exiting")
        exit(1)
    else:
        log.info(f'Loading checkpoint from {args.load_path}...')
        bidaf_model = util.load_model(bidaf_model, args.load_path, args.gpu_ids, return_step=False) # don't need step since we aren't training
        bidaf_model = bidaf_model.to(device)
        bidaf_model.eval()                  # we eval only (vs train)

    # todo: Setup the Paraphraser model
    paraphaser_model = Paraphraser(word_vectors=word_vectors,
                                   hidden_size=args.hidden_size,
                                   drop_prob=args.drop_prob)


    # Get data loader
    log.info('Building dataset...')
    # New for paraphrase: squad_paraphrase has extra fields
    train_dataset = SQuAD_paraphrase(args.train_record_file, args.use_squad_v2)    # train.npz (from setup.py, build_features())
    train_loader = data.DataLoader(train_dataset,                       # this dataloader used for all epoch iteration
                                   batch_size=args.batch_size,
                                   shuffle=True,
                                   num_workers=args.num_workers,
                                   collate_fn=collate_fn_para)
    dev_dataset = SQuAD_paraphrase(args.dev_record_file, args.use_squad_v2)        # dev.npz (same as above)
    dev_loader = data.DataLoader(dev_dataset,                           # dev.npz used in evaluate() fcn
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=args.num_workers,
                                 collate_fn=collate_fn_para)

    # todo: this is just for looking at the paraphrases
    idx2word_dict = load(args.idx2word_file)

    #Get saver
    # saver = util.CheckpointSaver(args.save_dir,
    #                              max_checkpoints=args.max_checkpoints,
    #                              metric_name=args.metric_name,
    #                              maximize_metric=args.maximize_metric,
    #                              log=log)

    #Get optimizer and scheduler
    # ema = util.EMA(paraphaser_model, args.ema_decay)
    # optimizer = optim.Adadelta(paraphaser_model.parameters(), args.lr,
    #                            weight_decay=args.l2_wd)
    # scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR
    # Train
    step = 0
    log.info('Training...')
    steps_till_eval = args.eval_steps
    epoch = step // len(train_dataset)


    while epoch != args.num_epochs:
        epoch += 1
        log.info(f'Starting epoch {epoch}...')
        with torch.enable_grad(), \
                tqdm(total=len(train_loader.dataset)) as progress_bar:
            for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, cphr_idxs, qphr_idxs, qphr_types, ids in train_loader:
                # Setup for forward
                # note that cc_idxs, qc_idxs are not used! (character indices)
                cw_idxs = cw_idxs.to(device)        # todo what does this actually do
                qw_idxs = qw_idxs.to(device)

                cphr_idxs = cphr_idxs.to(device)
                qphr_idxs = qphr_idxs.to(device)
                qphr_types = qphr_types.to(device)

                batch_size = cw_idxs.size(0)
                # if args.short_test:
                #     print(f'batch size: {batch_size}')
                #     for i, type in enumerate(cphr_idxs[0]):
                #         print(f'type: {i}')
                #         pp(type)
                #     for x in (qphr_idxs[0], qphr_types[0]):
                #         pp(x)
                #     return

                paraphrased = paraphaser_model(qphr_idxs, qphr_types, cphr_idxs)
                for idx, p in enumerate(paraphrased):   # enumerate over batch_size
                    non_zeros = p[p.nonzero()].squeeze()
                    #paraphrased[idx] = non_zeros
                    sentence_as_list = [idx2word_dict[str(w.item())] for w in non_zeros]
                    pp(" ".join(sentence_as_list))
                    #pp([idx2word_dict[w] for w in non_zeros])

                if args.short_test:
                    return

                optimizer.zero_grad()

                # Forward
                log_p1, log_p2 = model(cw_idxs, qw_idxs)
                y1, y2 = y1.to(device), y2.to(device)
                loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
                loss_val = loss.item()

                # Backward
                loss.backward()
                nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
                optimizer.step()
                scheduler.step(step // batch_size)      # // is floor division
                ema(model, step // batch_size)

                # Log info
                step += batch_size
                progress_bar.update(batch_size)
                progress_bar.set_postfix(epoch=epoch,
                                         NLL=loss_val)
                tbx.add_scalar('train/NLL', loss_val, step)
                tbx.add_scalar('train/LR',
                               optimizer.param_groups[0]['lr'],
                               step)

                steps_till_eval -= batch_size
                if steps_till_eval <= 0:
                    steps_till_eval = args.eval_steps

                    # Evaluate and save checkpoint
                    log.info(f'Evaluating at step {step}...')
                    ema.assign(model)
                    results, pred_dict = evaluate(model, dev_loader, device,    # call eval with dev_loader
                                                  args.dev_eval_file,
                                                  args.max_ans_len,
                                                  args.use_squad_v2)
                    saver.save(step, model, results[args.metric_name], device)
                    ema.resume(model)

                    # Log to console
                    results_str = ', '.join(f'{k}: {v:05.2f}' for k, v in results.items())
                    log.info(f'Dev {results_str}')

                    # Log to TensorBoard
                    log.info('Visualizing in TensorBoard...')
                    for k, v in results.items():
                        tbx.add_scalar(f'dev/{k}', v, step)
                    util.visualize(tbx,
                                   pred_dict=pred_dict,
                                   eval_path=args.dev_eval_file,
                                   step=step,
                                   split='dev',
                                   num_visuals=args.num_visuals)
Beispiel #15
0
def main(args):
    # Set up logging and devices
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    log = util.get_logger(args.save_dir, args.name)
    tbx = SummaryWriter(args.save_dir)
    device, args.gpu_ids = util.get_available_devices()
    log.info('Args: {}'.format(dumps(vars(args), indent=4, sort_keys=True)))
    args.batch_size *= max(1, len(args.gpu_ids))

    # Set random seed
    log.info('Using random seed {}...'.format(args.seed))
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)
    char_vectors = util.torch_from_json(args.char_emb_file)

    # Get model
    log.info('Building model...')

    model = BiDAF(vectors=(word_vectors, char_vectors),
                  hidden_size=args.hidden_size,
                  drop_prob=args.drop_prob,
                  p_sdd=args.p_sdd,
                  char_limit=args.char_limit,
                  use_transformer=args.use_transformer,
                  inter_size=args.inter_size,
                  heads=args.heads,
                  c2w_size=args.c2w_size,
                  enc_blocks=args.enc_blocks,
                  enc_convs=args.enc_convs,
                  mod_blocks=args.mod_blocks,
                  mod_convs=args.mod_convs,
                  use_GRU=args.use_GRU)

    model = nn.DataParallel(model, args.gpu_ids)
    if args.load_path:
        log.info('Loading checkpoint from {}...'.format(args.load_path))
        model, step = util.load_model(model, args.load_path,
                                      args.gpu_ids)  # uses the saved step num
    else:
        step = 0
    model = model.to(device)
    model.train()
    ema = util.EMA(model, args.ema_decay)

    # Get saver
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints,
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)

    # Get optimizer and scheduler
    # optimizer = optim.Adadelta(model.parameters(), args.lr,
    #                            weight_decay=args.l2_wd)

    # The scheduler MULTIPLIES the base LR, NOT replaces
    optimizer = optim.Adam(model.parameters(),
                           1.,
                           betas=(.9, .98),
                           eps=1e-9,
                           weight_decay=args.l2_wd)

    scheduler = sched.LambdaLR(
        optimizer, lambda s: 0.001 * math.log(s + 1) / math.log(1000 - 1)
        if s < 1000 else 0.001)  # Chute (must use math.log, else TypeError)
    # scheduler = sched.LambdaLR(optimizer, lambda s: (args.hidden_size**(-.5)) *
    #                            min((s+1e-9)**(-.5), s*(4000**(-1.5)))
    #                            )  # From Vaswani et. al 2017

    # Get data loader
    log.info('Building dataset...')
    train_dataset = SQuAD(args.train_record_file, args.use_squad_v2)
    train_loader = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   shuffle=True,
                                   num_workers=args.num_workers,
                                   collate_fn=collate_fn)
    dev_dataset = SQuAD(args.dev_record_file, args.use_squad_v2)
    dev_loader = data.DataLoader(dev_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=args.num_workers,
                                 collate_fn=collate_fn)

    # Train
    log.info('Training...')
    steps_till_eval = args.eval_steps
    epoch = step // len(train_dataset)
    while epoch != args.num_epochs:
        epoch += 1
        log.info('Starting epoch {}...'.format(epoch))
        with torch.enable_grad(), \
                tqdm(total=len(train_loader.dataset)) as progress_bar:
            for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in train_loader:

                # Setup for forward
                optimizer.zero_grad()
                batch_size = cw_idxs.size(0)

                cc_idxs = cc_idxs.to(device)  # (batch, c_limit, char_limit)
                qc_idxs = qc_idxs.to(device)
                cw_idxs = cw_idxs.to(device)  # (batch, c_limit)
                qw_idxs = qw_idxs.to(device)

                c_idxs, q_idxs = (cw_idxs, cc_idxs), (qw_idxs, qc_idxs)

                # Forward
                log_p1, log_p2 = model(c_idxs, q_idxs)

                y1, y2 = y1.to(device), y2.to(device)
                loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
                loss_val = loss.item()

                # Backward
                loss.backward()
                nn.utils.clip_grad_norm_(model.parameters(),
                                         args.max_grad_norm)
                optimizer.step()
                scheduler.step(
                    step // batch_size
                )  # By default, schedules per epoch; pass in step # as "epoch"
                ema(model, step // batch_size)

                # Log info
                step += batch_size  # Number of examples. Step is usually the number of (mini)-batches
                progress_bar.update(batch_size)
                progress_bar.set_postfix(epoch=epoch, NLL=loss_val)
                tbx.add_scalar('train/NLL', loss_val, step)
                tbx.add_scalar('train/LR', optimizer.param_groups[0]['lr'],
                               step)

                steps_till_eval -= batch_size
                if steps_till_eval <= 0:
                    steps_till_eval = args.eval_steps

                    # Evaluate and save checkpoint
                    log.info('Evaluating at step {}...'.format(step))
                    ema.assign(model)
                    results, pred_dict = evaluate(model, dev_loader, device,
                                                  args.dev_eval_file,
                                                  args.max_ans_len,
                                                  args.use_squad_v2)
                    saver.save(step, model, results[args.metric_name], device)
                    ema.resume(model)

                    # Log to console
                    results_str = ', '.join('{}: {:05.2f}'.format(k, v)
                                            for k, v in results.items())
                    log.info('Dev {}'.format(results_str))

                    # Log to TensorBoard
                    log.info('Visualizing in TensorBoard...')
                    for k, v in results.items():
                        tbx.add_scalar('dev/{}'.format(k), v, step)
                    util.visualize(tbx,
                                   pred_dict=pred_dict,
                                   eval_path=args.dev_eval_file,
                                   step=step,
                                   split='dev',
                                   num_visuals=args.num_visuals)
def test_model(questions,
               context,
               use_squad_v2=True,
               model_path="../save/training-02/best.pth.tar"):
    # Set up logging
    #args.save_dir = util.get_save_dir(args.save_dir, args.name, training=False)
    #log = util.get_logger(args.save_dir, args.name)
    #log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    #args = get_test_args()
    device, gpu_ids = util.get_available_devices()
    batch_size = 64 * max(1, len(gpu_ids))

    # Get embeddings
    #print('Loading embeddings...')
    word_vectors = util.torch_from_json('../data/word_emb.json')

    # Get model
    #print('Building model...')
    model = BiDAF(word_vectors=word_vectors, hidden_size=100)
    model = nn.DataParallel(model, gpu_ids)
    #model_path = "../save/training-02/best.pth.tar"
    #print(f'Loading checkpoint from {args.load_path}...')
    model = util.load_model(model, model_path, gpu_ids, return_step=False)
    model = model.to(device)
    model.eval()

    # Get data loader
    #print('Building dataset...')
    #record_file = vars(args)[f'{args.split}_record_file']
    # my code start here
    # this is a simple approch when dealing with the user date
    # according to your approch of creating the interface you can change this code
    # and also you have to check the function "process_file" in the setup.py file
    processed_questions = []
    for index, question in enumerate(questions):
        processed_question = {
            "question": question,
            "id": index,
            "answers": [{
                "answer_start": 0,
                "text": "never mind"
            }]
        }
        processed_questions.append(processed_question)
    source = {"paragraphs": [{"qas": processed_questions, "context": context}]}
    word_counter, char_counter = Counter(), Counter()
    with open("../data/word2idx.json", "r") as f1:
        word2idx_dict = json.load(f1)
    with open("../data/char2idx.json", "r") as f2:
        char2idx_dict = json.load(f2)
    my_test_examples, my_test_eval = process_file(source, "my_test",
                                                  word_counter, char_counter)
    npz = build_features(my_test_examples,
                         "my_test",
                         word2idx_dict,
                         char2idx_dict,
                         is_test=True)
    #my code end here
    dataset = SQuAD(npz, use_squad_v2)
    data_loader = data.DataLoader(dataset,
                                  batch_size=batch_size,
                                  shuffle=False,
                                  num_workers=4,
                                  collate_fn=collate_fn)

    # Evaluate
    #print(f'Evaluating on {args.split} split...')
    nll_meter = util.AverageMeter()
    pred_dict = {}  # Predictions for TensorBoard
    sub_dict = {}  # Predictions for submission
    #eval_file = vars(args)[f'{args.split}_eval_file']
    gold_dict = my_test_eval
    #print("gold_dict", gold_dict)
    #print("data_loader", data_loader)
    with torch.no_grad(), \
            tqdm(total=len(dataset)) as progress_bar:
        for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in data_loader:
            # Setup for forward
            cw_idxs = cw_idxs.to(device)
            qw_idxs = qw_idxs.to(device)
            batch_size = cw_idxs.size(0)
            # Forward
            log_p1, log_p2 = model(cw_idxs, qw_idxs)
            y1, y2 = y1.to(device), y2.to(device)
            loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
            nll_meter.update(loss.item(), batch_size)

            # Get F1 and EM scores
            p1, p2 = log_p1.exp(), log_p2.exp()
            starts, ends = util.discretize(p1, p2, 15, use_squad_v2)
            print("starts ", starts, " ends ", ends)

            # Log info
            progress_bar.update(batch_size)
            #if args.split != 'test':
            # No labels for the test set, so NLL would be invalid
            #progress_bar.set_postfix(NLL=nll_meter.avg)

            idx2pred, uuid2pred = util.convert_tokens(gold_dict, ids.tolist(),
                                                      starts.tolist(),
                                                      ends.tolist(),
                                                      use_squad_v2)
            pred_dict.update(idx2pred)
            sub_dict.update(uuid2pred)

    #print("my evaluation ....")

    #for el in pred_dict:
    #print(el, pred_dict[el])

    #for el in sub_dict:
    #print(el, sub_dict[el])
    return pred_dict
Beispiel #17
0
def main(args):
    # Set up logging
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=False)
    #log = util.get_logger(args.save_dir, args.name)
    #log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    device, gpu_ids = util.get_available_devices()
    args.batch_size *= max(1, len(gpu_ids))

    # Get embeddings
    print('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)

    # Get model
    print('Building model...')
    model = BiDAF(word_vectors=word_vectors, hidden_size=args.hidden_size)
    model = nn.DataParallel(model, gpu_ids)
    print(f'Loading checkpoint from {args.load_path}...')
    model = util.load_model(model, args.load_path, gpu_ids, return_step=False)
    model = model.to(device)
    model.eval()

    # Get data loader
    print('Building dataset...')
    #record_file = vars(args)[f'{args.split}_record_file']
    dataset = SQuAD("./data/my_test.npz", args.use_squad_v2)
    data_loader = data.DataLoader(dataset,
                                  batch_size=args.batch_size,
                                  shuffle=False,
                                  num_workers=args.num_workers,
                                  collate_fn=collate_fn)

    # Evaluate
    print(f'Evaluating on {args.split} split...')
    nll_meter = util.AverageMeter()
    pred_dict = {}  # Predictions for TensorBoard
    sub_dict = {}  # Predictions for submission
    #eval_file = vars(args)[f'{args.split}_eval_file']
    with open("./data/my_test_eval.json", 'r') as fh:
        gold_dict = json_load(fh)
    with torch.no_grad(), \
            tqdm(total=len(dataset)) as progress_bar:
        for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in data_loader:
            print("viewing the dataset")
            print(cw_idxs, cc_idxs, qw_idxs, qc_idxs)
            # Setup for forward
            cw_idxs = cw_idxs.to(device)
            qw_idxs = qw_idxs.to(device)
            batch_size = cw_idxs.size(0)
            # Forward
            log_p1, log_p2 = model(cw_idxs, qw_idxs)
            y1, y2 = y1.to(device), y2.to(device)
            loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
            nll_meter.update(loss.item(), batch_size)

            # Get F1 and EM scores
            p1, p2 = log_p1.exp(), log_p2.exp()
            starts, ends = util.discretize(p1, p2, args.max_ans_len,
                                           args.use_squad_v2)

            # Log info
            progress_bar.update(batch_size)
            #if args.split != 'test':
            # No labels for the test set, so NLL would be invalid
            #progress_bar.set_postfix(NLL=nll_meter.avg)

            idx2pred, uuid2pred = util.convert_tokens(gold_dict, ids.tolist(),
                                                      starts.tolist(),
                                                      ends.tolist(),
                                                      args.use_squad_v2)
            pred_dict.update(idx2pred)
            sub_dict.update(uuid2pred)

    print("my evaluation ....")

    for el in pred_dict:
        print(el, pred_dict[el])

    for el in sub_dict:
        print(el, sub_dict[el])
Beispiel #18
0
def main(args):
    # Set up logging and devices
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    log = util.get_logger(args.save_dir, args.name)
    tbx = SummaryWriter(args.save_dir)
    device, args.gpu_ids = util.get_available_devices()
    log.info('Args: {}'.format(dumps(vars(args), indent=4, sort_keys=True)))
    args.batch_size *= max(1, len(args.gpu_ids))

    # Set random seed
    log.info('Using random seed {}...'.format(args.seed))
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Get embeddings
    # Args:  word_vectors: word vector tensor of dimension [vocab_size * wemb_dim]
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)
    char_vectors = util.torch_from_json(args.char_emb_file)

    # Get Model
    log.info('Building Model...')
    model = QANet(word_vectors,
                  char_vectors,
                  args.para_limit,
                  args.ques_limit,
                  args.f_model,
                  num_head=args.num_head,
                  train_cemb = (not args.pretrained_char))
    model = nn.DataParallel(model, args.gpu_ids)
    
    if args.load_path:
        log.info('Loading checkpoint from {}...'.format(args.load_path))
        model, step = util.load_model(model, args.load_path, args.gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()
    ema = util.EMA(model, args.ema_decay)

    # Get saver
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints,
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)

    # Get optimizer and scheduler
    parameters = filter(lambda p: p.requires_grad, model.parameters())
    optimizer = optim.Adam(
        params=parameters,
        lr=args.lr,
        betas=(args.beta1, args.beta2),
        eps=1e-8,
        weight_decay=3e-7)
    cr = 1.0 / math.log(args.lr_warm_up_num)
    scheduler = optim.lr_scheduler.LambdaLR(
        optimizer,
        lr_lambda=lambda ee: cr * math.log(ee + 1)
        if ee < args.lr_warm_up_num else 1)
    loss_f = torch.nn.CrossEntropyLoss()

    # Get data loader
    log.info('Building dataset...')
    train_dataset = SQuAD(args.train_record_file, args.use_squad_v2)
    train_loader = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   shuffle=True,
                                   num_workers=args.num_workers,
                                   collate_fn=collate_fn)
    dev_dataset = SQuAD(args.dev_record_file, args.use_squad_v2)
    dev_loader = data.DataLoader(dev_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=args.num_workers,
                                 collate_fn=collate_fn)

    # Train
    log.info('Training...')
    steps_till_eval = args.eval_steps
    epoch = step // len(train_dataset)
    while epoch != args.num_epochs:
        epoch += 1
        log.info('Starting epoch {}...'.format(epoch))
        with torch.enable_grad(), \
                tqdm(total=len(train_loader.dataset)) as progress_bar:
            for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in train_loader:
                # Setup for forward
                cw_idxs = cw_idxs.to(device)
                qw_idxs = qw_idxs.to(device)

                cc_idxs = cc_idxs.to(device)
                qc_idxs = qc_idxs.to(device)
                
                batch_size = cw_idxs.size(0)
                optimizer.zero_grad()

                # Forward
                log_p1, log_p2 = model(cw_idxs, cc_idxs, qw_idxs, qc_idxs)
                y1, y2 = y1.to(device), y2.to(device)
                loss = torch.mean(loss_f(log_p1, y1) + loss_f(log_p2, y2))
                loss_val = loss.item()

                # Backward
                loss.backward()
                nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
                optimizer.step()
                scheduler.step(step // batch_size)
                ema(model, step // batch_size)

                # Log info
                step += batch_size
                progress_bar.update(batch_size)
                progress_bar.set_postfix(epoch=epoch,
                                         NLL=loss_val)
                tbx.add_scalar('train/NLL', loss_val, step)
                tbx.add_scalar('train/LR',
                               optimizer.param_groups[0]['lr'],
                               step)

                steps_till_eval -= batch_size
                if steps_till_eval <= 0:
                    steps_till_eval = args.eval_steps

                    # Evaluate and save checkpoint
                    log.info('Evaluating at step {}...'.format(step))
                    ema.assign(model)
                    results, pred_dict = evaluate(model, dev_loader, device,
                                                  args.dev_eval_file,
                                                  args.max_ans_len,
                                                  args.use_squad_v2)
                    saver.save(step, model, results[args.metric_name], device)
                    ema.resume(model)

                    # Log to console
                    results_str = ', '.join('{}: {:05.2f}'.format(k, v)
                                            for k, v in results.items())
                    log.info('Dev {}'.format(results_str))

                    # Log to TensorBoard
                    log.info('Visualizing in TensorBoard...')
                    for k, v in results.items():
                        tbx.add_scalar('dev/{}'.format(k), v, step)
                    util.visualize(tbx,
                                   pred_dict=pred_dict,
                                   eval_path=args.dev_eval_file,
                                   step=step,
                                   split='dev',
                                   num_visuals=args.num_visuals)
Beispiel #19
0
def main(args):
    # Set up logging and devices
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    log = util.get_logger(args.save_dir, args.name)
    tbx = SummaryWriter(args.save_dir)
    device, args.gpu_ids = util.get_available_devices()
    log.info('Args: {}'.format(dumps(vars(args), indent=4, sort_keys=True)))
    args.batch_size *= max(1, len(args.gpu_ids))

    # Set random seed
    log.info('Using random seed {}...'.format(args.seed))
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)
    char_vectors = util.torch_from_json(args.char_emb_file)

    # ######################################
    # tokenizer = BertTokenizer.from_pretrained('bert-large-uncased', do_lower_case=True)
    # train_examples = None
    # train_examples = read_squad_examples(
    #     input_file=args.train_file, is_training=True, version_2_with_negative=args.version_2_with_negative)
    # train_features = convert_examples_to_features(
    #     examples=train_examples,
    #     tokenizer=tokenizer,
    #     max_seq_length=args.max_seq_length,
    #     doc_stride=args.doc_stride,
    #     max_query_length=args.max_query_length,
    #     is_training=True)
    # if args.local_rank == -1 or torch.distributed.get_rank() == 0:
    #     logger.info("  Saving train features into cached file %s", cached_train_features_file)
    #     with open(cached_train_features_file, "wb") as writer:
    #         pickle.dump(train_features, writer)
    # all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
    # x = all_input_ids
    ###########################################

    # Get model
    log.info('Building model...')
    model = BiDAF(word_vectors=word_vectors,
                  char_vectors=char_vectors,
                  hidden_size=args.hidden_size,
                  drop_prob=args.drop_prob)
    model = nn.DataParallel(model, args.gpu_ids)
    if args.load_path:
        log.info('Loading checkpoint from {}...'.format(args.load_path))
        model, step = util.load_model(model, args.load_path, args.gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()
    ema = util.EMA(model, args.ema_decay)

    # Get saver
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints,
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)

    # Get optimizer and scheduler
    optimizer = optim.Adadelta(model.parameters(),
                               args.lr,
                               weight_decay=args.l2_wd)
    scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR

    # Get data loader
    log.info('Building dataset...')
    train_dataset = SQuAD(args.train_record_file, args.use_squad_v2)
    train_loader = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   shuffle=True,
                                   num_workers=args.num_workers,
                                   collate_fn=collate_fn)
    dev_dataset = SQuAD(args.dev_record_file, args.use_squad_v2)
    dev_loader = data.DataLoader(dev_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=args.num_workers,
                                 collate_fn=collate_fn)

    # Train
    log.info('Training...')
    steps_till_eval = args.eval_steps
    epoch = step // len(train_dataset)
    while epoch != args.num_epochs:
        epoch += 1
        log.info('Starting epoch {}...'.format(epoch))
        with torch.enable_grad(), \
                tqdm(total=len(train_loader.dataset)) as progress_bar:
            for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in train_loader:
                # Setup for forward
                cw_idxs = cw_idxs.to(device)
                qw_idxs = qw_idxs.to(device)
                batch_size = cw_idxs.size(0)

                # added_flag
                cc_idxs = cc_idxs.to(device)
                qc_idxs = qc_idxs.to(device)

                optimizer.zero_grad()

                # Forward
                # log_p1, log_p2 = model(cw_idxs, qw_idxs)
                log_p1, log_p2 = model(cw_idxs, qw_idxs, cc_idxs, qc_idxs)
                y1, y2 = y1.to(device), y2.to(device)
                loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
                loss_val = loss.item()

                # Backward
                loss.backward()
                nn.utils.clip_grad_norm_(model.parameters(),
                                         args.max_grad_norm)
                optimizer.step()
                scheduler.step(step // batch_size)
                ema(model, step // batch_size)

                # Log info
                step += batch_size
                progress_bar.update(batch_size)
                progress_bar.set_postfix(epoch=epoch, NLL=loss_val)
                tbx.add_scalar('train/NLL', loss_val, step)
                tbx.add_scalar('train/LR', optimizer.param_groups[0]['lr'],
                               step)

                steps_till_eval -= batch_size
                if steps_till_eval <= 0:
                    steps_till_eval = args.eval_steps

                    # Evaluate and save checkpoint
                    log.info('Evaluating at step {}...'.format(step))
                    ema.assign(model)
                    results, pred_dict = evaluate(model, dev_loader, device,
                                                  args.dev_eval_file,
                                                  args.max_ans_len,
                                                  args.use_squad_v2)
                    saver.save(step, model, results[args.metric_name], device)
                    ema.resume(model)

                    # Log to console
                    results_str = ', '.join('{}: {:05.2f}'.format(k, v)
                                            for k, v in results.items())
                    log.info('Dev {}'.format(results_str))

                    # Log to TensorBoard
                    log.info('Visualizing in TensorBoard...')
                    for k, v in results.items():
                        tbx.add_scalar('dev/{}'.format(k), v, step)
                    util.visualize(tbx,
                                   pred_dict=pred_dict,
                                   eval_path=args.dev_eval_file,
                                   step=step,
                                   split='dev',
                                   num_visuals=args.num_visuals)
Beispiel #20
0
def main(args):
    # Set up logging and devices
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    log = util.get_logger(args.save_dir, args.name)
    tbx = SummaryWriter(args.save_dir)
    device, args.gpu_ids = util.get_available_devices()
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    args.batch_size *= max(1, len(args.gpu_ids))

    # Set random seed
    log.info(f'Using random seed {args.seed}...')
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)

    # Get model
    log.info('Building model...')
    model = BiDAF(word_vectors=word_vectors,
                  hidden_size=args.hidden_size,
                  drop_prob=args.drop_prob)
    model = nn.DataParallel(model, args.gpu_ids)
    if args.load_path:
        log.info(f'Loading checkpoint from {args.load_path}...')
        model, step = util.load_model(model, args.load_path, args.gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()
    ema = util.EMA(model, args.ema_decay)

    # Get saver
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints,
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)

    # Get optimizer and scheduler
    optimizer = optim.Adadelta(model.parameters(),
                               args.lr,
                               weight_decay=args.l2_wd)
    scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR

    # Get data loader
    log.info('Building dataset...')
    train_dataset = SQuAD(args.train_record_file, args.use_squad_v2)
    train_loader = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   shuffle=True,
                                   num_workers=args.num_workers,
                                   collate_fn=collate_fn)
    dev_dataset = SQuAD(args.dev_record_file, args.use_squad_v2)
    dev_loader = data.DataLoader(dev_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=args.num_workers,
                                 collate_fn=collate_fn)

    # Train
    log.info('Training...')
    steps_till_eval = args.eval_steps
    epoch = step // len(train_dataset)
    while epoch != args.num_epochs:
        epoch += 1
        log.info(f'Starting epoch {epoch}...')
        for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in train_loader:

            # Setup for forward
            cw_idxs = cw_idxs.to(device)
            qw_idxs = qw_idxs.to(device)
            batch_size = cw_idxs.size(0)
            optimizer.zero_grad()

            # Forward
            log_p1, log_p2 = model(cw_idxs, qw_idxs)
            y1, y2 = y1.to(device), y2.to(device)
            loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
            loss_val = loss.item()

            # Backward
            loss.backward()
            nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
            optimizer.step()
            scheduler.step(step // batch_size)
            ema(model, step // batch_size)

            # Log info
            step += batch_size
            if step % 1000 == 0 and step > 0:
                log.info(f'Step {step}: training loss {loss_val}...')

            steps_till_eval -= batch_size
            if steps_till_eval <= 0:
                steps_till_eval = args.eval_steps

                # Evaluate and save checkpoint
                log.info(f'Evaluating at step {step}...')
                ema.assign(model)
                results, pred_dict = evaluate(model, dev_loader, device,
                                              args.dev_eval_file,
                                              args.max_ans_len,
                                              args.use_squad_v2)
                saver.save(step, model, results[args.metric_name], device)
                ema.resume(model)

                # Log to console
                results_str = ', '.join(f'{k}: {v:05.2f}'
                                        for k, v in results.items())
                log.info(f'Dev {results_str}')

                # Log to TensorBoard
                log.info('Visualizing in TensorBoard...')
                for k, v in results.items():
                    tbx.add_scalar(f'dev/{k}', v, step)
                util.visualize(tbx,
                               pred_dict=pred_dict,
                               eval_path=args.dev_eval_file,
                               step=step,
                               split='dev',
                               num_visuals=args.num_visuals)
Beispiel #21
0
def main(args):
    # Set up logging and devices
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    log = util.get_logger(args.save_dir, args.name)
    tbx = SummaryWriter(args.save_dir)
    device, args.gpu_ids = util.get_available_devices()
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    args.batch_size *= max(1, len(args.gpu_ids))

    # Set random seed
    # To make the data generation of every experiment same
    log.info(f'Using random seed {args.seed}...')
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)
    char_vectors = util.torch_from_json(args.char_emb_file)
    print(word_vectors.size())
    print(char_vectors.size())

    # Get model
    log.info('Building model...')
    model = BiDAF(word_vectors=word_vectors,
                  char_vectors=char_vectors,
                  hidden_size=args.hidden_size,
                  drop_prob=args.drop_prob)
    model = nn.DataParallel(model, args.gpu_ids)
    if args.load_path:
        log.info(f'Loading checkpoint from {args.load_path}...')
        model, step = util.load_model(model, args.load_path, args.gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()
    ema = util.EMA(model, args.ema_decay)

    # Get saver
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints,
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)

    # Get optimizer and scheduler
    optimizer = optim.Adadelta(model.parameters(),
                               args.lr,
                               weight_decay=args.l2_wd)
    scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR

    # Get data loader
    # (context_idxs(context_len,): Indices of the words in the context.,
    # context_char_idx(context_len, max_word_len): Indices of the characters in the context,
    # question_idxs(question_len,): Indices of the words in the question,
    # question_char_idx(question_len, max_word_len): Indices of the characters in the question,
    # y1:start, -1 if no answer: answer start index,
    # y2:start, -1 if no answer: answer end index,
    # id ID of the example)
    log.info('Building dataset...')
    train_dataset = SQuAD(args.train_record_file, args.use_squad_v2)
    train_loader = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   shuffle=True,
                                   num_workers=args.num_workers,
                                   collate_fn=collate_fn)
    dev_dataset = SQuAD(args.dev_record_file, args.use_squad_v2)
    dev_loader = data.DataLoader(dev_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=args.num_workers,
                                 collate_fn=collate_fn)

    # Train
    log.info('Training...')
    steps_till_eval = args.eval_steps
    epoch = step // len(train_dataset)
    while epoch != args.num_epochs:
        epoch += 1
        log.info(f'Starting epoch {epoch}...')
        with torch.enable_grad(), \
                tqdm(total=len(train_loader.dataset)) as progress_bar:
            for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in train_loader:
                # Setup for forward
                # cw_idxs: Indices of the words in the context
                # cc_idxs: Indices of the characters in the context
                # qw_idxs: Indices of the words in the query
                # qc_idxs: Indices of the characters in teh query
                cw_idxs = cw_idxs.to(device)
                qw_idxs = qw_idxs.to(device)
                # cw_idx with shape(context_len, )
                batch_size = cw_idxs.size(0)
                optimizer.zero_grad()

                # Forward
                log_p1, log_p2 = model(cw_idxs, cc_idxs, qw_idxs, qc_idxs)
                y1, y2 = y1.to(device), y2.to(device)
                # L(theta) = - 1/N * sum(log(P1_yi_1) + log(P2_yi_2))
                loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
                loss_val = loss.item()

                # Backward
                loss.backward()
                nn.utils.clip_grad_norm_(model.parameters(),
                                         args.max_grad_norm)
                optimizer.step()
                scheduler.step(step // batch_size)
                ema(model, step // batch_size)

                # Log info
                step += batch_size
                progress_bar.update(batch_size)
                progress_bar.set_postfix(epoch=epoch, NLL=loss_val)
                tbx.add_scalar('train/NLL', loss_val, step)
                tbx.add_scalar('train/LR', optimizer.param_groups[0]['lr'],
                               step)

                steps_till_eval -= batch_size
                if steps_till_eval <= 0:
                    steps_till_eval = args.eval_steps

                    # Evaluate and save checkpoint
                    log.info(f'Evaluating at step {step}...')
                    ema.assign(model)
                    results, pred_dict = evaluate(model, dev_loader, device,
                                                  args.dev_eval_file,
                                                  args.max_ans_len,
                                                  args.use_squad_v2)
                    saver.save(step, model, results[args.metric_name], device)
                    ema.resume(model)

                    # Log to console
                    results_str = ', '.join(f'{k}: {v:05.2f}'
                                            for k, v in results.items())
                    log.info(f'Dev {results_str}')

                    # Log to TensorBoard
                    log.info('Visualizing in TensorBoard...')
                    for k, v in results.items():
                        tbx.add_scalar(f'dev/{k}', v, step)
                    util.visualize(tbx,
                                   pred_dict=pred_dict,
                                   eval_path=args.dev_eval_file,
                                   step=step,
                                   split='dev',
                                   num_visuals=args.num_visuals)
Beispiel #22
0
def main(args):
    # Set up logging
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=False)
    log = util.get_logger(args.save_dir, args.name)
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    device, gpu_ids = util.get_available_devices()
    args.batch_size *= max(1, len(gpu_ids))

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)
    ch_vectors = util.torch_from_json(args.char_emb_file)

    # Get model
    log.info('Building model...')
    model = BiDAF(word_vectors=word_vectors,
                  ch_vectors=ch_vectors,
                  hidden_size=args.hidden_size)
    model = nn.DataParallel(model, gpu_ids)
    log.info(f'Loading checkpoint from {args.load_path}...')
    model = util.load_model(model, args.load_path, gpu_ids, return_step=False)
    model = model.to(device)
    model.eval()

    # Get data loader
    log.info('Building dataset...')
    record_file = vars(args)[f'{args.split}_record_file']
    dataset = SQuAD(record_file, args.use_squad_v2)
    data_loader = data.DataLoader(dataset,
                                  batch_size=args.batch_size,
                                  shuffle=False,
                                  num_workers=args.num_workers,
                                  collate_fn=collate_fn)

    # Evaluate
    log.info(f'Evaluating on {args.split} split...')
    nll_meter = util.AverageMeter()
    pred_dict = {}  # Predictions for TensorBoard
    sub_dict = {}  # Predictions for submission
    eval_file = vars(args)[f'{args.split}_eval_file']
    with open(eval_file, 'r') as fh:
        gold_dict = json_load(fh)
    with torch.no_grad(), \
            tqdm(total=len(dataset)) as progress_bar:
        for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in data_loader:
            # Setup for forward
            cw_idxs = cw_idxs.to(device)
            qw_idxs = qw_idxs.to(device)
            cc_idxs = cc_idxs.to(device)
            qc_idxs = qc_idxs.to(device)
            batch_size = cw_idxs.size(0)

            # Forward
            log_p1, log_p2 = model(cw_idxs, qw_idxs, cc_idxs, qc_idxs)
            y1, y2 = y1.to(device), y2.to(device)
            loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
            nll_meter.update(loss.item(), batch_size)

            # Get F1 and EM scores
            p1, p2 = log_p1.exp(), log_p2.exp()
            starts, ends = util.discretize(p1, p2, args.max_ans_len,
                                           args.use_squad_v2)

            # Log info
            progress_bar.update(batch_size)
            if args.split != 'test':
                # No labels for the test set, so NLL would be invalid
                progress_bar.set_postfix(NLL=nll_meter.avg)

            idx2pred, uuid2pred = util.convert_tokens(gold_dict, ids.tolist(),
                                                      starts.tolist(),
                                                      ends.tolist(),
                                                      args.use_squad_v2)
            pred_dict.update(idx2pred)
            sub_dict.update(uuid2pred)

    # Log results (except for test set, since it does not come with labels)
    if args.split != 'test':
        results = util.eval_dicts(gold_dict, pred_dict, args.use_squad_v2)
        results_list = [('NLL', nll_meter.avg), ('F1', results['F1']),
                        ('EM', results['EM'])]
        if args.use_squad_v2:
            results_list.append(('AvNA', results['AvNA']))
        results = OrderedDict(results_list)

        # Log to console
        results_str = ', '.join(f'{k}: {v:05.2f}' for k, v in results.items())
        log.info(f'{args.split.title()} {results_str}')

        # Log to TensorBoard
        tbx = SummaryWriter(args.save_dir)
        util.visualize(tbx,
                       pred_dict=pred_dict,
                       eval_path=eval_file,
                       step=0,
                       split=args.split,
                       num_visuals=args.num_visuals)

    # Write submission file
    sub_path = join(args.save_dir, args.split + '_' + args.sub_file)
    log.info(f'Writing submission file to {sub_path}...')
    with open(sub_path, 'w', newline='', encoding='utf-8') as csv_fh:
        csv_writer = csv.writer(csv_fh, delimiter=',')
        csv_writer.writerow(['Id', 'Predicted'])
        for uuid in sorted(sub_dict):
            csv_writer.writerow([uuid, sub_dict[uuid]])
Beispiel #23
0
def main(args):
    # Set up logging and devices
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    log = util.get_logger(args.save_dir, args.name)
    tbx = SummaryWriter(args.save_dir) # Writes entries directly to event files in the logdir to be consumed by TensorBoard.
    device, args.gpu_ids = util.get_available_devices()
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    args.batch_size *= max(1, len(args.gpu_ids))  # 一个gpu: batch_size=64 看实际情况

    # Set random seed
    log.info(f'Using random seed {args.seed}...')
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)

    # Get model
    log.info('Building model...')
    model = BiDAF(word_vectors=word_vectors,
                  hidden_size=args.hidden_size,
                  drop_prob=args.drop_prob)
    model = nn.DataParallel(model, args.gpu_ids)
    if args.load_path: # default=None
        log.info(f'Loading checkpoint from {args.load_path}...')
        model, step = util.load_model(model, args.load_path, args.gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()
    ema = util.EMA(model, args.ema_decay) # ema_decay = 0.999
    # ema core =>  new_average = (1.0 - decay) * param.data + decay * self.shadow[name]

    # Get saver
    # metric_name: NLL or EM F1
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints, # max_checkpoints = 5
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)

    # Get optimizer and scheduler
    optimizer = optim.Adadelta(model.parameters(), args.lr,
                               weight_decay=args.l2_wd)  # lr : default=0.5    l2_wd : default=0
    scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR

    # Get data loader
    log.info('Building dataset...')
    train_dataset = SQuAD(args.train_record_file, args.use_squad_v2)  # train_record_file = './data/train.npz'

    train_loader = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size, # 64
                                   shuffle=True, # sampler = RandomSampler(dataset) batch_sampler = BatchSampler(sampler, batch_size, drop_last)
                                   num_workers=args.num_workers, # 4
                                   collate_fn=collate_fn) # merges a list of samples to form a mini-batch.
    dev_dataset = SQuAD(args.dev_record_file, args.use_squad_v2) #  dev_record_file =  './data/dev.npz'
    dev_loader = data.DataLoader(dev_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=args.num_workers,
                                 collate_fn=collate_fn)# Merge examples of different length by padding all examples to the maximum length in the batch.

    # Train
    log.info('Training...')
    steps_till_eval = args.eval_steps # 50000
    epoch = step // len(train_dataset) # len(train_dataset)= 7   epoch=0
    while epoch != args.num_epochs: # 30
        epoch += 1
        log.info(f'Starting epoch {epoch}...')
        with torch.enable_grad(), \
                tqdm(total=len(train_loader.dataset)) as progress_bar:
            for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in train_loader:
                # Setup for forward
                cw_idxs = cw_idxs.to(device)
                qw_idxs = qw_idxs.to(device)
                batch_size = cw_idxs.size(0)  # 64
                optimizer.zero_grad()

                # Forward
                log_p1, log_p2 = model(cw_idxs, qw_idxs)
                y1, y2 = y1.to(device), y2.to(device)
                loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
                loss_val = loss.item()

                # Backward
                loss.backward()
                nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)   # max_grad_norm : default=5.0
                optimizer.step()  # 进行1次optimize
                scheduler.step(step // batch_size)# train : step=0
                ema(model, step // batch_size)   # def __call__(self, model, num_updates):

                # Log info
                step += batch_size #step: 0   batch_size=64
                progress_bar.update(batch_size)
                progress_bar.set_postfix(epoch=epoch,
                                         NLL=loss_val)
                tbx.add_scalar('train/NLL', loss_val, step) # Add scalar data to summary.
                tbx.add_scalar('train/LR',
                               optimizer.param_groups[0]['lr'],
                               step)

                steps_till_eval -= batch_size
                if steps_till_eval <= 0:
                    steps_till_eval = args.eval_steps  # 50000

                    # Evaluate and save checkpoint
                    log.info(f'Evaluating at step {step}...')
                    ema.assign(model) ##
                    results, pred_dict = evaluate(model, dev_loader, device,
                                                  args.dev_eval_file, # './data/dev_eval.json'
                                                  args.max_ans_len,  # 15
                                                  args.use_squad_v2)
                    saver.save(step, model, results[args.metric_name], device)
                    ema.resume(model)

                    # Log to console
                    results_str = ', '.join(f'{k}: {v:05.2f}' for k, v in results.items())
                    log.info(f'Dev {results_str}')

                    # Log to TensorBoard
                    log.info('Visualizing in TensorBoard...')
                    for k, v in results.items():
                        tbx.add_scalar(f'dev/{k}', v, step)
                    util.visualize(tbx,
                                   pred_dict=pred_dict,
                                   eval_path=args.dev_eval_file,
                                   step=step,
                                   split='dev',
                                   num_visuals=args.num_visuals)
Beispiel #24
0
def main(args):
    # Set up logging and devices
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    log = util.get_logger(args.save_dir, args.name)
    tbx = SummaryWriter(args.save_dir)
    device, args.gpu_ids = util.get_available_devices()
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    args.batch_size *= max(1, len(args.gpu_ids))

    # Set random seed
    log.info(f'Using random seed {args.seed}...')
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)
    char_vec = util.torch_from_json(args.char_emb_file)

    # Get model
    log.info('Building model...')
    if args.name == 'baseline':
        model = BiDAF(word_vectors=word_vectors,
                      hidden_size=args.hidden_size,
                      drop_prob=args.drop_prob)
    elif args.name == 'charembeddings':
        model = BiDAFChar(word_vectors=word_vectors,
                          char_vec=char_vec,
                          word_len=16,
                          hidden_size=args.hidden_size,
                          drop_prob=args.drop_prob)
    elif args.name == 'charembeddings2':
        model = BiDAFChar2(word_vectors=word_vectors,
                           char_vec=char_vec,
                           word_len=16,
                           hidden_size=args.hidden_size,
                           drop_prob=args.drop_prob)
    elif args.name == 'qanet':
        model = QANet(word_vectors=word_vectors,
                      char_vec=char_vec,
                      word_len=16,
                      emb_size=args.hidden_size,
                      drop_prob=args.drop_prob,
                      enc_size=args.enc_size,
                      n_head=args.n_head,
                      LN_train=args.ln_train,
                      DP_residual=args.dp_res,
                      mask_pos=args.mask_pos,
                      two_pos=args.two_pos,
                      total_prob=args.total_drop,
                      final_prob=args.final_prob)
    elif args.name == 'qanet2':
        model = QANet2(word_vectors=word_vectors,
                       char_vec=char_vec,
                       word_len=16,
                       emb_size=args.hidden_size,
                       drop_prob=args.drop_prob,
                       enc_size=args.enc_size,
                       n_head=args.n_head,
                       LN_train=args.ln_train,
                       DP_residual=args.dp_res,
                       mask_pos=args.mask_pos,
                       two_pos=args.two_pos,
                       rel=args.rel_att,
                       total_prob=args.total_drop,
                       final_prob=args.final_prob,
                       freeze=args.freeze_emb)
    elif args.name == 'qanet3':
        model = QANet3(word_vectors=word_vectors,
                       char_vec=char_vec,
                       word_len=16,
                       emb_size=args.hidden_size,
                       drop_prob=args.drop_prob,
                       enc_size=args.enc_size,
                       n_head=args.n_head,
                       LN_train=args.ln_train,
                       DP_residual=args.dp_res,
                       mask_pos=args.mask_pos,
                       two_pos=args.two_pos,
                       rel=args.rel_att,
                       total_prob=args.total_drop,
                       final_prob=args.final_prob,
                       freeze=args.freeze_emb)
    elif args.name == 'qanet4':
        model = QANet4(word_vectors=word_vectors,
                       char_vec=char_vec,
                       word_len=16,
                       emb_size=args.hidden_size,
                       drop_prob=args.drop_prob,
                       enc_size=args.enc_size,
                       n_head=args.n_head,
                       LN_train=args.ln_train,
                       DP_residual=args.dp_res,
                       mask_pos=args.mask_pos,
                       two_pos=args.two_pos,
                       rel=args.rel_att,
                       total_prob=args.total_drop,
                       final_prob=args.final_prob,
                       freeze=args.freeze_emb)
    else:
        raise ValueError('Wrong model name')

    model = nn.DataParallel(model, args.gpu_ids)
    if args.load_path:
        log.info(f'Loading checkpoint from {args.load_path}...')
        model, step = util.load_model(model, args.load_path, args.gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()
    ema = util.EMA(model, args.ema_decay)

    # Get saver
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints,
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)

    # Get optimizer and scheduler

    if args.name == 'qanet':
        optimizer = optim.Adam(model.parameters(),
                               args.lr,
                               betas=(0.8, 0.999),
                               weight_decay=3 * 1e-7,
                               eps=1e-7)
        scheduler = warmup(optimizer, 1, 2000)
    elif args.opt == 'adam':
        if args.grad_cent:
            optimizer = AdamWGC(model.parameters(),
                                args.lr,
                                betas=(0.9, 0.999),
                                weight_decay=3 * 1e-7,
                                eps=1e-7,
                                use_gc=True)
        else:
            optimizer = AdamW(model.parameters(),
                              args.lr,
                              betas=(0.8, 0.999),
                              weight_decay=3 * 1e-7,
                              eps=1e-7)
        scheduler = warmup(optimizer, 1, 2000)
    elif args.opt == 'adadelta':
        optimizer = optim.Adadelta(model.parameters(),
                                   args.lr,
                                   weight_decay=3 * 1e-7)
        scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR
    elif args.opt == 'sgd':
        optimizer = optim.SGD(model.parameters(),
                              args.lr,
                              weight_decay=3 * 1e-7)
        scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR

    # Get data loader
    log.info('Building dataset...')
    train_dataset = SQuAD(args.train_record_file, args.use_squad_v2)
    train_loader = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   shuffle=True,
                                   num_workers=args.num_workers,
                                   collate_fn=collate_fn)
    dev_dataset = SQuAD(args.dev_record_file, args.use_squad_v2)
    dev_loader = data.DataLoader(dev_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=args.num_workers,
                                 collate_fn=collate_fn)

    # Train
    log.info('Training...')
    steps_till_eval = args.eval_steps
    epoch = step // len(train_dataset)
    i = 0
    while epoch != args.num_epochs:
        epoch += 1
        log.info(f'Starting epoch {epoch}...')
        with torch.enable_grad(), \
                tqdm(total=len(train_loader.dataset)) as progress_bar:
            for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in train_loader:
                # Setup for forward
                cw_idxs = cw_idxs.to(device)
                qw_idxs = qw_idxs.to(device)
                batch_size = cw_idxs.size(0)

                # Forward
                log_p1, log_p2 = model(cw_idxs, cc_idxs, qw_idxs, qc_idxs)
                y1, y2 = y1.to(device), y2.to(device)
                loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
                loss_val = loss.item()
                i += 1
                loss /= args.acc_step

                # Backward
                loss.backward()
                if i % args.acc_step == 0:
                    nn.utils.clip_grad_norm_(model.parameters(),
                                             args.max_grad_norm)
                    optimizer.step()
                    scheduler.step(i // (args.acc_step))
                    ema(model, i // (args.acc_step))
                    optimizer.zero_grad()

                # Log info
                step += batch_size
                progress_bar.update(batch_size)
                progress_bar.set_postfix(epoch=epoch, NLL=loss_val)
                tbx.add_scalar('train/NLL', loss_val, step)
                tbx.add_scalar('train/LR', optimizer.param_groups[0]['lr'],
                               step)

                steps_till_eval -= batch_size
                if steps_till_eval <= 0 and i % args.acc_step == 0:
                    steps_till_eval = args.eval_steps

                    # Evaluate and save checkpoint
                    log.info(f'Evaluating at step {step}...')
                    ema.assign(model)
                    results, pred_dict = evaluate(model, dev_loader, device,
                                                  args.dev_eval_file,
                                                  args.max_ans_len,
                                                  args.use_squad_v2)
                    saver.save(step, model, results[args.metric_name], device)
                    ema.resume(model)

                    # Log to console
                    results_str = ', '.join(f'{k}: {v:05.2f}'
                                            for k, v in results.items())
                    log.info(f'Dev {results_str}')

                    # Log to TensorBoard
                    log.info('Visualizing in TensorBoard...')
                    for k, v in results.items():
                        tbx.add_scalar(f'dev/{k}', v, step)
                    util.visualize(tbx,
                                   pred_dict=pred_dict,
                                   eval_path=args.dev_eval_file,
                                   step=step,
                                   split='dev',
                                   num_visuals=args.num_visuals)
Beispiel #25
0
def train_QaNet(args):
    device, args.gpu_ids = util.get_available_devices()
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    word_mat = util.torch_from_json(args.word_emb_file)
    char_mat = util.torch_from_json(args.char_emb_file)

    with open(args.dev_eval_file, 'r') as fh:
        dev_eval_file = json_load(fh)

    print("Building model...")


    train_dataset = SQuAD(args.train_record_file, args.use_squad_v2)
    train_dataset = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   shuffle=True,
                                   num_workers=args.num_workers,
                                   collate_fn=collate_fn)
    dev_dataset = SQuAD(args.dev_record_file, args.use_squad_v2)
    dev_dataset = data.DataLoader(dev_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=args.num_workers,
                                 collate_fn=collate_fn)



    lr = args.lr
    base_lr = 1
    lr_warm_up_num = args.lr_warm_up_num

    model = QaNet(word_mat,
                  char_mat,
                  args.connector_dim,
                  args.glove_dim,
                  args.char_dim,
                  args.drop_prob,
                  args.dropout_char,
                  args.num_heads,
                  args.c_len,
                  args.q_len).to(device)
    ema = util.EMA(model, args.ema_decay)


    parameters = filter(lambda param: param.requires_grad, model.parameters())
    optimizer = optim.Adam(lr=base_lr, betas=(0.9, 0.999), eps=1e-7, weight_decay=5e-8, params=parameters)
    cr = lr / math.log2(lr_warm_up_num)
    scheduler = optim.lr_scheduler.LambdaLR(
        optimizer,
        lr_lambda=lambda ee: cr * math.log2(ee + 1) if ee < lr_warm_up_num else lr)

    best_f1 = 0
    best_em = 0
    patience = 0
    unused = False
    for iter in range(args.num_epochs):

        train(model, optimizer, scheduler, train_dataset, dev_dataset, dev_eval_file, iter, ema, device)

        ema.assign(model)
        metrics = test(model, dev_dataset, dev_eval_file, (iter + 1) * len(train_dataset))
        dev_f1 = metrics["f1"]
        dev_em = metrics["exact_match"]
        if dev_f1 < best_f1 and dev_em < best_em:
            patience += 1
            if patience > args.early_stop:
                break
        else:
            patience = 0
            best_f1 = max(best_f1, dev_f1)
            best_em = max(best_em, dev_em)

        fn = os.path.join(args.save_dir, "model.pt")
        torch.save(model, fn)
        ema.resume(model)
def main(data, flags):
    # Set up logging and devices
    log_dir = data.logging_dir
    log = util.get_logger(log_dir, "toy")
    tbx = SummaryWriter(data.logging_dir)
    device, data.gpu_ids = util.get_available_devices()
    log.info('Config: {}'.format(dumps(vars(data), indent=4, sort_keys=True)))
    data.batch_size *= max(1, len(data.gpu_ids))

    # Set random seed
    log.info('Using random seed {}...'.format(data.random_seed))
    random.seed(data.random_seed)
    np.random.seed(data.random_seed)
    torch.manual_seed(data.random_seed)
    torch.cuda.manual_seed_all(data.random_seed)

    if flags[1] == "toy":
        word_emb_file = data.toy_word_emb_file
        training_data = data.toy_record_file_exp3
        test_data = data.dev_record_file_exp3
        eval_file = data.toy_eval_exp3
    elif flags[1] == "train":
        word_emb_file = data.word_emb_file
        training_data = data.train_record_file_exp3
        test_data = data.dev_record_file_exp3
        eval_file = data.train_eval_exp3
    elif flags[1] == "dev":
        word_emb_file = data.word_emb_file
        training_data = data.dev_record_file_exp3
        test_data = data.toy_record_file_exp3
        eval_file = data.dev_eval_exp3

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(word_emb_file)

    # Get model
    log.info('Building model...')
    model = BiDAF(word_vectors=word_vectors,
                  hidden_size=data.hidden_size,
                  drop_prob=data.drop_prob)
    model = nn.DataParallel(model, data.gpu_ids)
    if data.load_path:
        log.info('Loading checkpoint from {}...'.format(data.load_path))
        model, step = util.load_model(model, data.load_path, data.gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()
    ema = util.EMA(model, data.ema_decay)

    # Get saver
    saver = util.CheckpointSaver(data.logging_dir,
                                 max_checkpoints=10,
                                 metric_name=data.metric_name,
                                 maximize_metric=data.maximize_metric,
                                 log=log)

    # Get optimizer and scheduler
    optimizer = optim.Adadelta(model.parameters(),
                               data.learning_rate,
                               weight_decay=data.learning_weight_decay)
    scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR

    # Get data loader
    log.info('Building dataset...')
    # np.load(data.toy_record_file_exp3)
    train_dataset = SQuAD3(training_data, use_v2=True)
    train_loader = torchdata.DataLoader(train_dataset,
                                        batch_size=data.batch_size,
                                        shuffle=True,
                                        num_workers=data.num_workers,
                                        collate_fn=collate_fn)

    test_dataset = SQuAD3(test_data, use_v2=True)
    test_loader = torchdata.DataLoader(test_dataset,
                                       batch_size=data.batch_size,
                                       shuffle=False,
                                       num_workers=data.num_workers,
                                       collate_fn=collate_fn)

    # Train
    log.info('Training...')
    steps_till_eval = data.eval_steps
    epoch = step // len(test_dataset)
    while epoch != data.num_epochs:
        epoch += 1
        log.info('Starting epoch {}...'.format(epoch))
        with torch.enable_grad(), \
                tqdm(total=len(train_loader.dataset)) as progress_bar:
            for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in train_loader:
                # Setup for forward
                cw_idxs = cw_idxs.to(device)
                qw_idxs = qw_idxs.to(device)
                batch_size = cw_idxs.size(0)
                optimizer.zero_grad()

                # Forward
                log.info("cw_idxs length: {}".format(str(len(cw_idxs))))
                log.info("qw_idxs length: {}".format(str(len(qw_idxs))))
                log.info("cw_idxs size: {}".format(str(
                    sys.getsizeof(cw_idxs))))
                log.info("qw_idxs size: {}".format(str(
                    sys.getsizeof(qw_idxs))))
                log.info("cw_idxs shape: {}".format(str(cw_idxs.shape)))
                log.info("qw_idxs shape: {}".format(str(qw_idxs.shape)))

                log_p1, log_p2 = model(cw_idxs, qw_idxs)
                y1, y2 = y1.to(device), y2.to(device)
                loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
                loss_val = loss.item()

                # Backward
                loss.backward()
                nn.utils.clip_grad_norm_(model.parameters(),
                                         data.max_grad_norm)
                optimizer.step()
                scheduler.step(step // batch_size)
                ema(model, step // batch_size)

                # Log info
                step += batch_size
                progress_bar.update(batch_size)
                progress_bar.set_postfix(epoch=epoch, NLL=loss_val)
                tbx.add_scalar('toy/NLL', loss_val, step)
                tbx.add_scalar('toy/LR', optimizer.param_groups[0]['lr'], step)

                steps_till_eval -= batch_size
                if steps_till_eval <= 0:
                    steps_till_eval = data.eval_steps

                    # Evaluate and save checkpoint
                    log.info('Evaluating at step {}...'.format(step))
                    ema.assign(model)
                    results, pred_dict = evaluate(model,
                                                  test_loader,
                                                  device,
                                                  eval_path=eval_file,
                                                  max_len=sys.maxsize,
                                                  use_squad_v2=True)
                    saver.save(step, model, results[data.metric_name], device)
                    ema.resume(model)

                    # Log to console
                    results_str = ', '.join('{}: {:05.2f}'.format(k, v)
                                            for k, v in results.items())
                    log.info('Dev {}'.format(results_str))

                    # Log to TensorBoard
                    log.info('Visualizing in TensorBoard...')
                    for k, v in results.items():
                        tbx.add_scalar('dev/{}'.format(k), v, step)
                    util.visualize(tbx,
                                   pred_dict=pred_dict,
                                   eval_path=eval_file,
                                   step=step,
                                   split='dev',
                                   num_visuals=data.num_visuals)
def main(args):
  print("in main")
  print("args: ", args)

  if True: 
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    log = util.get_logger(args.save_dir, args.name)
    tbx = SummaryWriter(args.save_dir)
    device, args.gpu_ids = util.get_available_devices()
    log.info('Args: {}'.format(dumps(vars(args), indent=4, sort_keys=True)))
    args.batch_size *= max(1, len(args.gpu_ids))

    # Set random seed
    log.info('Using random seed {}...'.format(args.seed))
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Get embeddings
    log.info('Loading embeddings...')

    # CHECK IF WE NEED TO USE ALL OF THESE???? 
    word_vectors = util.torch_from_json(args.word_emb_file)

    # Get model
    log.info('Building model...')
    model = BiDAF(word_vectors=word_vectors,
                  hidden_size=args.hidden_size,
                  drop_prob=args.drop_prob)
    model = nn.DataParallel(model, args.gpu_ids)
    if args.load_path:
        log.info('Loading checkpoint from {}...'.format(args.load_path))
        model, step = util.load_model(model, args.load_path, args.gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()
    ema = util.EMA(model, args.ema_decay)

    # Get saver
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints,
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)

    # Get optimizer and scheduler
    optimizer = optim.Adadelta(model.parameters(), args.lr,
                               weight_decay=args.l2_wd)
    scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR


    # Get data loader
    log.info('Building dataset...')
    train_dataset = SQuAD(args.train_record_file, args.use_squad_v2)
    print("train dataset!: ", train_dataset)
    train_loader = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   shuffle=True,
                                   num_workers=args.num_workers,
                                   collate_fn=collate_fn)
    dev_dataset = SQuAD(args.dev_record_file, args.use_squad_v2)
    dev_loader = data.DataLoader(dev_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=args.num_workers,
                                 collate_fn=collate_fn)


# Train
    log.info('Training...')
    steps_till_eval = args.eval_steps
    epoch = step // len(train_dataset)
    while epoch != args.num_epochs:
        epoch += 1
        log.info('Starting epoch {}...'.format(epoch))
        with torch.enable_grad(), \
                tqdm(total=len(train_loader.dataset)) as progress_bar:
            for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in train_loader:
                # Setup for forward
                cw_idxs = cw_idxs.to(device)
                qw_idxs = qw_idxs.to(device)
                batch_size = cw_idxs.size(0)
                optimizer.zero_grad()

                # Forward
                log_p1, log_p2 = model(cw_idxs, qw_idxs)
                y1, y2 = y1.to(device), y2.to(device)
                loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
                loss_val = loss.item()

                # Backward
                loss.backward()
                nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
                optimizer.step()
                scheduler.step(step // batch_size)
                ema(model, step // batch_size)

                # Log info
                step += batch_size
                progress_bar.update(batch_size)
                progress_bar.set_postfix(epoch=epoch,
                                         NLL=loss_val)
                tbx.add_scalar('train/NLL', loss_val, step)
                tbx.add_scalar('train/LR',
                               optimizer.param_groups[0]['lr'],
                               step)

                steps_till_eval -= batch_size
                if steps_till_eval <= 0:
                    steps_till_eval = args.eval_steps

                    # Evaluate and save checkpoint
                    log.info('Evaluating at step {}...'.format(step))
                    ema.assign(model)
                    results, pred_dict = evaluate(model, dev_loader, device,
                                                  args.dev_eval_file,
                                                  args.max_ans_len,
                                                  args.use_squad_v2)
                    saver.save(step, model, results[args.metric_name], device)
                    ema.resume(model)

                    # Log to console
                    results_str = ', '.join('{}: {:05.2f}'.format(k, v)
                                            for k, v in results.items())
                    log.info('Dev {}'.format(results_str))

                    # Log to TensorBoard
                    log.info('Visualizing in TensorBoard...')
                    for k, v in results.items():
                        tbx.add_scalar('dev/{}'.format(k), v, step)
                    util.visualize(tbx,
                                   pred_dict=pred_dict,
                                   eval_path=args.dev_eval_file,
                                   step=step,
                                   split='dev',
                                   num_visuals=args.num_visuals)
Beispiel #28
0
def main(args):
    if args.large:
        args.train_record_file += '_large'
        args.dev_eval_file += '_large'
        model_name = "albert-xlarge-v2"
    else:
        model_name = "albert-base-v2"
    if args.xxlarge:
        args.train_record_file += '_xxlarge'
        args.dev_eval_file += '_xxlarge'
        model_name = "albert-xxlarge-v2"
    # Set up logging and devices
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    log = util.get_logger(args.save_dir, args.name)
    tbx = SummaryWriter(args.save_dir)
    device, args.gpu_ids = util.get_available_devices()
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    args.batch_size *= max(1, len(args.gpu_ids))

    # Set random seed
    log.info(f'Using random seed {args.seed}...')
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Get model
    log.info('Building model...')
    if args.bidaf:
        char_vectors = util.torch_from_json(args.char_emb_file)

    if args.model_name == 'albert_highway':
        model = models.albert_highway(model_name)
    elif args.model_name == 'albert_lstm_highway':
        model = models.LSTM_highway(model_name, hidden_size=args.hidden_size)
    elif args.model_name == 'albert_bidaf':
        model = models.BiDAF(char_vectors=char_vectors,
                             hidden_size=args.hidden_size,
                             drop_prob=args.drop_prob)
    elif args.model_name == 'albert_bidaf2':
        model = models.BiDAF2(model_name=model_name,
                              char_vectors=char_vectors,
                              hidden_size=args.hidden_size,
                              drop_prob=args.drop_prob)
    else:
        model = AlbertForQuestionAnswering.from_pretrained(args.model_name)

    model = nn.DataParallel(model, args.gpu_ids)
    if args.load_path:
        log.info(f'Loading checkpoint from {args.load_path}...')
        model, step = util.load_model(model, args.load_path, args.gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()
    ema = util.EMA(model, args.ema_decay)

    # Get saver
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints,
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)

    # Get optimizer and scheduler
    optimizer = AdamW(model.parameters(), lr=args.lr, weight_decay=args.l2_wd)
    scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR

    # Get data loader
    log.info('Building dataset...')
    train_dataset = SQuAD(args.train_record_file, args.use_squad_v2,
                          args.bidaf)
    train_loader = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   shuffle=True,
                                   num_workers=args.num_workers)
    dev_dataset = SQuAD(args.dev_eval_file, args.use_squad_v2, args.bidaf)
    dev_loader = data.DataLoader(dev_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=args.num_workers)

    with open(args.dev_gold_file) as f:
        gold_dict = json.load(f)

    tokenizer = AlbertTokenizer.from_pretrained(model_name)

    # Train
    log.info('Training...')
    steps_till_eval = args.eval_steps
    epoch = step // len(train_dataset)
    while epoch != args.num_epochs:
        epoch += 1
        log.info(f'Starting epoch {epoch}...')
        with torch.enable_grad(), \
                tqdm(total=len(train_loader.dataset)) as progress_bar:
            for batch in train_loader:
                batch = tuple(t.to(device) for t in batch)
                inputs = {
                    "input_ids": batch[0],
                    "attention_mask": batch[1],
                    "token_type_ids": batch[2],
                    'start_positions': batch[3],
                    'end_positions': batch[4],
                }
                if args.bidaf:
                    inputs['char_ids'] = batch[6]
                y1 = batch[3]
                y2 = batch[4]
                # Setup for forward
                batch_size = inputs["input_ids"].size(0)
                optimizer.zero_grad()

                # Forward
                # log_p1, log_p2 = model(**inputs)
                y1, y2 = y1.to(device), y2.to(device)
                outputs = model(**inputs)
                loss = outputs[0]
                loss = loss.mean()
                # loss_fct = nn.CrossEntropyLoss()
                # loss = loss_fct(log_p1, y1) + loss_fct(log_p2, y2)
                # loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
                loss_val = loss.item()

                # Backward
                loss.backward()
                nn.utils.clip_grad_norm_(model.parameters(),
                                         args.max_grad_norm)
                optimizer.step()
                scheduler.step(step // batch_size)
                ema(model, step // batch_size)

                # Log info
                step += batch_size
                progress_bar.update(batch_size)
                progress_bar.set_postfix(epoch=epoch, NLL=loss_val)
                tbx.add_scalar('train/NLL', loss_val, step)
                tbx.add_scalar('train/LR', optimizer.param_groups[0]['lr'],
                               step)

                steps_till_eval -= batch_size
                if steps_till_eval <= 0:
                    steps_till_eval = args.eval_steps

                    # Evaluate and save checkpoint
                    log.info(f'Evaluating at step {step}...')
                    ema.assign(model)
                    results, pred_dict = evaluate(args, model, dev_dataset,
                                                  dev_loader, gold_dict,
                                                  tokenizer, device,
                                                  args.max_ans_len,
                                                  args.use_squad_v2)
                    saver.save(step, model, results[args.metric_name], device)
                    ema.resume(model)

                    # Log to console
                    results_str = ', '.join(f'{k}: {v:05.2f}'
                                            for k, v in results.items())
                    log.info(f'Dev {results_str}')

                    # Log to TensorBoard
                    log.info('Visualizing in TensorBoard...')
                    for k, v in results.items():
                        tbx.add_scalar(f'dev/{k}', v, step)
Beispiel #29
0
def main(args):
    # Set up logging
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=False)
    log = util.get_logger(args.save_dir, args.name)
    device, gpu_ids = util.get_available_devices()
    args.batch_size *= max(1, len(gpu_ids))
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)

    models = {}

    if args.use_ensemble:

        total_models = 0
        for model_name in ['bidaf', 'bidafextra', 'fusionnet']:

            models_list = []

            for model_file in glob.glob(
                    f'{args.load_path}/{model_name}-*/{args.ensemble_models}'):

                # Get model
                log.info('Building model...')
                if model_name == 'bidaf':
                    model = BiDAF(word_vectors=word_vectors,
                                  hidden_size=args.hidden_size)
                elif model_name == 'bidafextra':
                    model = BiDAFExtra(word_vectors=word_vectors, args=args)
                elif model_name == 'fusionnet':
                    model = FusionNet(word_vectors=word_vectors, args=args)

                model = nn.DataParallel(model, gpu_ids)
                log.info(f'Loading checkpoint from {model_file}...')
                model = util.load_model(model,
                                        model_file,
                                        gpu_ids,
                                        return_step=False)

                # Load each model on CPU (have plenty of RAM ...)
                model = model.cpu()
                model.eval()

                models_list.append(model)

            models[model_name] = models_list

            total_models += len(models_list)

        log.info(f'Using an ensemble of {total_models} models')

    else:

        device, gpu_ids = util.get_available_devices()

        # Get model
        log.info('Building model...')
        if args.model == 'bidaf':
            model = BiDAF(word_vectors=word_vectors,
                          hidden_size=args.hidden_size)
        elif args.model == 'bidafextra':
            model = BiDAFExtra(word_vectors=word_vectors, args=args)
        elif args.model == 'fusionnet':
            model = FusionNet(word_vectors=word_vectors, args=args)

        model = nn.DataParallel(model, gpu_ids)
        log.info(f'Loading checkpoint from {args.load_path}...')
        model = util.load_model(model,
                                args.load_path,
                                gpu_ids,
                                return_step=False)
        model = model.to(device)
        model.eval()

        models[args.model] = [model]

    # Get data loader
    log.info('Building dataset...')
    record_file = vars(args)[f'{args.split}_record_file']
    dataset = SQuAD(record_file, args)
    data_loader = data.DataLoader(dataset,
                                  batch_size=args.batch_size,
                                  shuffle=False,
                                  num_workers=args.num_workers,
                                  collate_fn=collate_fn)

    # Evaluate
    log.info(f'Evaluating on {args.split} split...')
    nll_meter = util.AverageMeter()
    pred_dict = {}  # Predictions for TensorBoard
    sub_dict = {}  # Predictions for submission
    eval_file = vars(args)[f'{args.split}_eval_file']
    with open(eval_file, 'r') as fh:
        gold_dict = json_load(fh)
    with torch.no_grad(), \
            tqdm(total=len(dataset)) as progress_bar:
        for cw_idxs, cc_idxs, qw_idxs, qc_idxs, cw_pos, cw_ner, cw_freq, cqw_extra, y1, y2, ids in data_loader:
            # Setup for forward
            cw_idxs = cw_idxs.to(device)
            qw_idxs = qw_idxs.to(device)
            batch_size = cw_idxs.size(0)

            p1s = []
            p2s = []

            for model_name in models:
                for model in models[model_name]:
                    # Move model to GPU to evaluate
                    model = model.to(device)

                    # Forward
                    if model_name == 'bidaf':
                        log_p1, log_p2 = model.to(device)(cw_idxs, qw_idxs)
                    else:
                        log_p1, log_p2 = model.to(device)(cw_idxs, qw_idxs,
                                                          cw_pos, cw_ner,
                                                          cw_freq, cqw_extra)

                    log_p1, log_p2 = log_p1.cpu(), log_p2.cpu()

                    if not args.use_ensemble:
                        y1, y2 = y1.to(device), y2.to(device)
                        log_p1, log_p2 = log_p1.to(device), log_p2.to(device)

                        loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
                        nll_meter.update(loss.item(), batch_size)

                    # Move model back to CPU to release GPU memory
                    model = model.cpu()

                    # Get F1 and EM scores
                    p1, p2 = log_p1.exp().unsqueeze(
                        -1).cpu(), log_p2.exp().unsqueeze(-1).cpu()
                    p1s.append(p1), p2s.append(p2)

            best_ps = torch.max(
                torch.cat([
                    torch.cat(p1s, -1).unsqueeze(-1),
                    torch.cat(p2s, -1).unsqueeze(-1)
                ], -1), -2)[0]

            p1, p2 = best_ps[:, :, 0], best_ps[:, :, 1]
            starts, ends = util.discretize(p1, p2, args.max_ans_len,
                                           args.use_squad_v2)

            # Log info
            progress_bar.update(batch_size)
            if args.split != 'test':
                # No labels for the test set, so NLL would be invalid
                progress_bar.set_postfix(NLL=nll_meter.avg)

            idx2pred, uuid2pred = util.convert_tokens(gold_dict, ids.tolist(),
                                                      starts.tolist(),
                                                      ends.tolist(),
                                                      args.use_squad_v2)
            pred_dict.update(idx2pred)
            sub_dict.update(uuid2pred)

    # Log results (except for test set, since it does not come with labels)
    if args.split != 'test':
        results = util.eval_dicts(gold_dict, pred_dict, args.use_squad_v2)
        results_list = [('NLL', nll_meter.avg), ('F1', results['F1']),
                        ('EM', results['EM'])]
        if args.use_squad_v2:
            results_list.append(('AvNA', results['AvNA']))
        results = OrderedDict(results_list)

        # Log to console
        results_str = ', '.join(f'{k}: {v:05.2f}' for k, v in results.items())
        log.info(f'{args.split.title()} {results_str}')

        # Log to TensorBoard
        tbx = SummaryWriter(args.save_dir)
        util.visualize(tbx,
                       pred_dict=pred_dict,
                       eval_path=eval_file,
                       step=0,
                       split=args.split,
                       num_visuals=args.num_visuals)

    # Write submission file
    sub_path = join(args.save_dir, args.split + '_' + args.sub_file)
    log.info(f'Writing submission file to {sub_path}...')
    with open(sub_path, 'w', newline='', encoding='utf-8') as csv_fh:
        csv_writer = csv.writer(csv_fh, delimiter=',')
        csv_writer.writerow(['Id', 'Predicted'])
        for uuid in sorted(sub_dict):
            csv_writer.writerow([uuid, sub_dict[uuid]])
Beispiel #30
0
def main(args):
    args.save_dir = util.get_save_dir(args.save_dir,
                                      "exp1_training",
                                      training=False)
    log = get_logger(args.logging_dir, "exp1_training")
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    device, gpu_ids = util.get_available_devices()
    args.batch_size *= max(1, len(gpu_ids))

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)

    # Get model
    log.info('Building model...')
    model = BiDAF(word_vectors=word_vectors, hidden_size=args.hidden_size)
    model = nn.DataParallel(model, gpu_ids)

    log.info(f'Loading checkpoint from {args.load_path}...')
    model = util.load_model(model, c.load_path, gpu_ids, return_step=False)
    model = model.to(device)
    model.eval()

    # Get data loader
    log.info('Building dataset...')
    dataset = SQuAD(args.test_record_file, True)
    data_loader = data.DataLoader(dataset,
                                  batch_size=args.batch_size,
                                  shuffle=False,
                                  num_workers=args.num_workers,
                                  collate_fn=collate_fn)

    # Evaluate
    log.info(f'Evaluating on {args.datasplit} split...')
    nll_meter = util.AverageMeter()
    pred_dict = {}  # Predictions for TensorBoard
    sub_dict = {}  # Predictions for submission
    with open(args.test_eval_file, 'r') as fh:
        gold_dict = json_load(fh)
    with torch.no_grad(), \
            tqdm(total=len(dataset)) as progress_bar:
        for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in data_loader:
            # Setup for forward
            cw_idxs = cw_idxs.to(device)
            qw_idxs = qw_idxs.to(device)
            batch_size = cw_idxs.size(0)

            # Forward
            log_p1, log_p2 = model(cw_idxs, qw_idxs)
            y1, y2 = y1.to(device), y2.to(device)
            loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
            nll_meter.update(loss.item(), batch_size)

            # Get F1 and EM scores
            p1, p2 = log_p1.exp(), log_p2.exp()
            starts, ends = util.discretize(p1, p2, c.max_ans_len, True)

            # Log info
            progress_bar.update(batch_size)

            # Not using the unlabeled test set
            #            if args.split != 'test':
            #                # No labels for the test set, so NLL would be invalid
            #                progress_bar.set_postfix(NLL=nll_meter.avg)

            idx2pred, uuid2pred = util.convert_tokens(gold_dict, ids.tolist(),
                                                      starts.tolist(),
                                                      ends.tolist(), True)
            pred_dict.update(idx2pred)
            sub_dict.update(uuid2pred)

    # Log results (except for test set, since it does not come with labels)
    results = util.eval_dicts(gold_dict, pred_dict, True)
    results_list = [('NLL', nll_meter.avg), ('F1', results['F1']),
                    ('EM', results['EM'])]
    results_list.append(('AvNA', results['AvNA']))
    results = OrderedDict(results_list)
    # Log to console
    results_str = ', '.join(f'{k}: {v:05.2f}' for k, v in results.items())
    log.info(f'{args.datasplit} {results_str}')
    # Log to TensorBoard
    tbx = SummaryWriter(c.save_dir)
    util.visualize(tbx,
                   pred_dict=pred_dict,
                   eval_path=args.test_eval_file,
                   step=0,
                   split=args.datasplit,
                   num_visuals=args.num_visuals)