def make_tifs(animal, channel, njobs):
    """
    This method will:
        1. Fetch the sections from the database
        2. Yank the tif out of the czi file according to the index and channel with the bioformats tool.
        3. Then updates the database with updated meta information
    Args:
        animal: the prep id of the animal
        channel: the channel of the stack to process
        njobs: number of jobs for parallel computing
        compression: default is no compression so we can create jp2 files for CSHL. The files get
        compressed using LZW when running create_preps.py

    Returns:
        nothing
    """

    logger = get_logger(animal)
    fileLocationManager = FileLocationManager(animal)
    sqlController = SqlController(animal)
    INPUT = fileLocationManager.czi
    OUTPUT = fileLocationManager.tif
    os.makedirs(OUTPUT, exist_ok=True)
    sections = sqlController.get_distinct_section_filenames(animal, channel)

    sqlController.set_task(animal, QC_IS_DONE_ON_SLIDES_IN_WEB_ADMIN)
    sqlController.set_task(animal, CZI_FILES_ARE_CONVERTED_INTO_NUMBERED_TIFS_FOR_CHANNEL_1)

    commands = []
    for section in sections:
        input_path = os.path.join(INPUT, section.czi_file)
        output_path = os.path.join(OUTPUT, section.file_name)
        cmd = ['/usr/local/share/bftools/bfconvert', '-bigtiff', '-separate', '-series', str(section.scene_index),
                '-channel', str(section.channel_index),  '-nooverwrite', input_path, output_path]

        if not os.path.exists(input_path):
            continue

        if os.path.exists(output_path):
            continue

        commands.append(cmd)

    with Pool(njobs) as p:
        p.map(workernoshell, commands)
import unittest, os
from flask import Flask
from flask_sqlalchemy import SQLAlchemy
from unittest.mock import Mock, patch
from sqlalchemy.orm import sessionmaker
from utilities.logger import get_logger
from order_app.order_list import OrderList
from order_app.models import create_db_if_not_exists, db_connect, create_tables

logger = get_logger('test')


class PlaceOrderDBTestCase(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        """
		Define integration test DB connection string, and the databaes for test,
		followed by creating the TestDB and the related tables.
		Initialize args for PlaceOrder, with predefinitions in json file.
		Start all mocking necessary for testing.
		"""
        cls.db_test_name = 'TestDB'
        cls.global_db_config = {
            'drivername': 'postgresql',
            'host': os.getenv('DB_HOST'),
            'port': os.getenv('DB_PORT'),
            'username': os.getenv('DB_USERNAME'),
            'password': os.getenv('DB_PASSWORD'),
            'database': cls.db_test_name
        }
    try:
        os.listdir(INPUT)
    except OSError as e:
        print(e)
        sys.exit()

    for i, tif in enumerate(tqdm(tifs)):
        print(tif.file_name)
        input_path = os.path.join(INPUT, str(i).zfill(3) + '.tif')
        if os.path.exists(input_path):
            print(input_path)
            tif.file_size = os.path.getsize(input_path)
            sqlController.update_row(tif)


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Work on Animal')
    parser.add_argument('--animal',
                        help='Enter the animal animal',
                        required=True)
    parser.add_argument('--channel', help='Enter channel', required=True)
    args = parser.parse_args()
    animal = args.animal
    channel = int(args.channel)

    # TEST loggers
    logger = get_logger(animal)
    logger.info('Update channel {} tifs'.format(channel))

    update_tifs(animal, channel)
import json, requests
from flask import request
from utilities.logger import get_logger
from werkzeug import exceptions
from order_app.models import Order

logger = get_logger('flask_order_app')


class OrderList():
    def __init__(self, page, limit):
        self.page = page
        self.limit = limit

    def query_paginated_orders(self):
        order_items = None
        err_msg = None
        try:
            #only get columns: id, distance, status, and order by id descending.
            order_paged = Order.query.with_entities(
                Order.id, Order.distance, Order.status).order_by(
                    Order.id.desc()).paginate(self.page, self.limit)
            order_items = [{
                'id': order[0],
                'distance': order[1],
                'status': order[2]
            } for order in order_paged.items]
            logger.info(
                "Successfully retrieved orders with pagination %s on page %s."
                % (self.limit, self.page))
            logger.info("Has previous page: %s, and has next page: %s." %
Beispiel #5
0
def make_combined(animal, channel):
    """
    This method takes all tif files by channel and creates a histogram of the combined image space.
    :param animal: the prep_id of the animal we are working with
    :param channel: the channel {1,2,3}
    :return: nothing
    """
    logger = get_logger(animal)
    fileLocationManager = FileLocationManager(animal)
    INPUT = os.path.join(fileLocationManager.prep, f'CH{channel}', 'thumbnail')
    MASK_INPUT = fileLocationManager.thumbnail_masked
    OUTPUT = os.path.join(fileLocationManager.histogram, f'CH{channel}')
    os.makedirs(OUTPUT, exist_ok=True)
    tifs = os.listdir(INPUT)
    lfiles = len(tifs)
    hist_dict = Counter({})

    for i, tif in enumerate(tqdm(tifs)):
        filename = str(i).zfill(3) + '.tif'
        input_path = os.path.join(INPUT, filename)
        mask_path = os.path.join(MASK_INPUT, filename)

        try:
            img = io.imread(input_path)
        except:
            logger.error(f'Could not read {input_path}')
            lfiles -= 1
            break

        try:
            mask = io.imread(mask_path)
        except:
            logger.warning(f'Could not open {mask_path}')
            continue

        # mask image
        img = cv2.bitwise_and(img, img, mask=mask)

        try:
            flat = img.flatten()
            #flat = np.random.choice(flat, 1000)
            del img
        except:
            logger.error(f'Could not flatten file {input_path}')
            lfiles -= 1
            break
        try:
            #hist,bins = np.histogram(flat, bins=nbins)
            img_counts = np.bincount(flat)
        except:
            logger.error(f'Could not create counts {input_path}')
            lfiles -= 1
            break
        try:
            img_dict = Counter(
                dict(zip(np.unique(flat), img_counts[img_counts.nonzero()])))
        except:
            logger.error(f'Could not create counter {input_path}')
            lfiles -= 1
            break
        try:
            hist_dict = hist_dict + img_dict
        except:
            logger.error(f'Could not add files {input_path}')
            lfiles -= 1
            break

    hist_dict = dict(hist_dict)
    hist_values = [i / lfiles for i in hist_dict.values()]

    fig = plt.figure()
    plt.rcParams['figure.figsize'] = [10, 6]
    plt.bar(list(hist_dict.keys()), hist_values, color=COLORS[channel])
    plt.yscale('log')
    plt.grid(axis='y', alpha=0.75)
    plt.xlabel('Value')
    plt.ylabel('Frequency')
    plt.title(f'{animal} channel {channel} @16bit with {lfiles} tif files')
    outfile = f'{animal}.png'
    outpath = os.path.join(OUTPUT, outfile)
    fig.savefig(outpath, bbox_inches='tight')
    print('Finished')
Beispiel #6
0
def make_histogram(animal, channel):
    """
    This method creates an individual histogram for each tif file by channel.
    Args:
        animal: the prep id of the animal
        channel: the channel of the stack to process  {1,2,3}
    Returns:
        nothing
    """

    logger = get_logger(animal)
    fileLocationManager = FileLocationManager(animal)
    sqlController = SqlController(animal)
    INPUT = os.path.join(fileLocationManager.prep, f'CH{channel}', 'thumbnail')
    MASK_INPUT = fileLocationManager.thumbnail_masked
    tifs = sqlController.get_sections(animal, channel)
    error = test_dir(animal, INPUT, downsample=True, same_size=False)
    if len(tifs) == 0:
        error += " No sections in the database"
    if len(error) > 0:
        print(error)
        sys.exit()
    ch_dir = f'CH{channel}'
    OUTPUT = os.path.join(fileLocationManager.histogram, ch_dir)
    os.makedirs(OUTPUT, exist_ok=True)
    progress_id = sqlController.get_progress_id(True, channel, 'HISTOGRAM')
    sqlController.set_task(animal, progress_id)

    for i, tif in enumerate(tqdm(tifs)):
        filename = str(i).zfill(3) + '.tif'
        input_path = os.path.join(INPUT, filename)
        mask_path = os.path.join(MASK_INPUT, filename)
        output_path = os.path.join(OUTPUT,
                                   os.path.splitext(tif.file_name)[0] + '.png')
        if not os.path.exists(input_path):
            print('Input tif does not exist', input_path)
            continue

        if os.path.exists(output_path):
            continue

        try:
            img = io.imread(input_path)
        except:
            logger.warning(f'Could not open {input_path}')
            continue
        try:
            mask = io.imread(mask_path)
        except:
            logger.warning(f'Could not open {mask_path}')
            continue

        img = cv2.bitwise_and(img, img, mask=mask)

        if img.shape[0] * img.shape[1] > 1000000000:
            scale = 1 / float(2)
            img = img[::int(1. / scale), ::int(1. / scale)]

        try:
            flat = img.flatten()
        except:
            logger.warning(f'Could not flat {input_path}')
            continue

        fig = plt.figure()
        plt.rcParams['figure.figsize'] = [10, 6]
        plt.hist(flat, flat.max(), [0, 10000], color=COLORS[channel])
        plt.style.use('ggplot')
        plt.yscale('log')
        plt.grid(axis='y', alpha=0.75)
        plt.xlabel('Value')
        plt.ylabel('Frequency')
        plt.title(f'{tif.file_name} @16bit')
        plt.close()
        fig.savefig(output_path, bbox_inches='tight')
Beispiel #7
0
from sqlalchemy.ext.compiler import compiles
from sqlalchemy.types import DateTime
from sqlalchemy.exc import OperationalError
from sqlalchemy.engine.url import URL
from sqlalchemy import create_engine
from flask_sqlalchemy import SQLAlchemy

import datetime
from order_app import settings
from order_app.settings import app
from utilities.logger import get_logger

DeclarativeBase = declarative_base(
)  #For SQLAlchemy (can make use of SQLAlchemy sessions, row lock etc.)

logger = get_logger('database')

global_db_config = settings.DATABASE

db = SQLAlchemy(app)  #For Flask


def create_db_if_not_exists(db_config=None):
    """
	Create Database if not exists, using postgres default user. 
	"""
    try:  #Test if connects to order_app-specific database successfully
        if not db_config:
            db_config = global_db_config.copy()
        engine = create_engine(URL(**db_config))
        conn = engine.connect()