def inference_test(args):
    '''Inference and calculate metrics on validation data. 
    
    Args: 
      dataset_dir: string, directory of dataset
      workspace: string, directory of workspace
      train_sources: 'curated' | 'noisy' | 'curated_and_noisy'
      segment_seconds: float, duration of audio recordings to be padded or split
      hop_seconds: float, hop seconds between segments
      pad_type: 'constant' | 'repeat'
      model_type: string, e.g. 'Cnn_9layers_AvgPooling'
      iteration: int, load model of this iteration
      batch_size: int
      cuda: bool
      mini_data: bool, set True for debugging on a small part of data
      visualize: bool, visualize the logmel spectrogram of segments
    '''

    # Arugments & parameters
    dataset_dir = DATASET_DIR
    workspace = WORKSPACE
    train_source = args.train_source
    segment_seconds = args.segment_seconds
    hop_seconds = args.hop_seconds
    pad_type = args.pad_type
    model_type = args.model_type
    iteration = args.iteration
    batch_size = args.batch_size
    resume = args.resume
    cuda = args.cuda and torch.cuda.is_available()
    mini_data = args.mini_data
    filename = args.filename

    holdout_fold = args.holdout_fold  # Use model trained on full data without validation
    mel_bins = config.mel_bins
    classes_num = config.classes_num
    frames_per_second = config.frames_per_second

    # Paths
    if mini_data:
        prefix = 'minidata_'
    else:
        prefix = ''

    test_feature_hdf5_path = os.path.join(
        workspace, 'features',
        '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second,
                                             mel_bins), 'test.h5')

    scalar_path = os.path.join(
        workspace, 'scalars',
        '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second,
                                             mel_bins), 'train_noisy.h5')

    if not resume:
        checkpoint_path = os.path.join(
            workspace, 'checkpoints', filename,
            'logmel_{}frames_{}melbins'.format(frames_per_second, mel_bins),
            'train_source={}'.format(train_source),
            'segment={}s,hop={}s,pad_type={}'
            ''.format(segment_seconds, hop_seconds,
                      pad_type), 'holdout_fold={}'
            ''.format(holdout_fold), model_type,
            '{}_iterations.pth'.format(iteration))

        submission_path = os.path.join(
            workspace, 'submissions', filename,
            'logmel_{}frames_{}melbins'.format(frames_per_second, mel_bins),
            'train_source={}'.format(train_source),
            'segment={}s,hop={}s,pad_type={}'
            ''.format(segment_seconds, hop_seconds,
                      pad_type), 'holdout_fold={}'
            ''.format(holdout_fold), model_type, '{}_iterations_submission.csv'
            ''.format(iteration))
        create_folder(os.path.dirname(submission_path))
    else:
        checkpoint_path = os.path.join(
            workspace, 'checkpoints', filename,
            'logmel_{}frames_{}melbins'.format(frames_per_second, mel_bins),
            'train_source={}'.format(train_source),
            'segment={}s,hop={}s,pad_type={}'
            ''.format(segment_seconds, hop_seconds,
                      pad_type), 'holdout_fold={}'
            ''.format(holdout_fold), model_type, 'resume',
            '{}_iterations.pth'.format(iteration))

        submission_path = os.path.join(
            workspace, 'submissions', filename,
            'logmel_{}frames_{}melbins'.format(frames_per_second, mel_bins),
            'train_source={}'.format(train_source),
            'segment={}s,hop={}s,pad_type={}'
            ''.format(segment_seconds, hop_seconds,
                      pad_type), 'holdout_fold={}'
            ''.format(holdout_fold), model_type, 'resume',
            '{}_iterations_submission.csv'
            ''.format(iteration))
        create_folder(os.path.dirname(submission_path))

    # Load scalar
    scalar = load_scalar(scalar_path)

    # Model
    Model = eval(model_type)
    if model_type == 'cbam_ResNet18':
        model = Model(18, classes_num * 2, 'CBAM')
    else:
        model = Model(classes_num * 2)

    checkpoint = torch.load(checkpoint_path)
    model.load_state_dict(checkpoint['model'])

    if cuda:
        model.cuda()

    # Data generator
    data_generator = TestDataGenerator(
        test_feature_hdf5_path=test_feature_hdf5_path,
        segment_seconds=segment_seconds,
        hop_seconds=hop_seconds,
        pad_type=pad_type,
        scalar=scalar,
        batch_size=batch_size)

    generate_func = data_generator.generate_test()

    # Results of segments
    output_dict = forward_infer(model=model,
                                generate_func=generate_func,
                                cuda=cuda)

    # Results of audio recordings
    result_dict = segment_prediction_to_clip_prediction(output_dict,
                                                        average='arithmetic')

    # Write submission
    write_submission(result_dict, submission_path)
Beispiel #2
0
    def evaluate(self,
                 data_type,
                 target_source,
                 max_iteration=None,
                 verbose=False):
        '''Evaluate the performance. 
        
        Args: 
          data_type: 'train' | 'validate'
          target_source: 'curated' | 'noisy'
          max_iteration: None | int, maximum iteration to run to speed up evaluation
          verbose: bool
        '''

        assert (data_type in ['train', 'validate'])
        assert (target_source in ['curated', 'noisy'])

        generate_func = self.data_generator.generate_validate(
            data_type=data_type,
            target_source=target_source,
            max_iteration=max_iteration)

        # Results of segments
        output_dict = forward_infer(model=self.model,
                                    generate_func=generate_func,
                                    cuda=self.cuda,
                                    return_target=True)

        # Results of audio recordings
        result_dict = segment_prediction_to_clip_prediction(
            output_dict, average='arithmetic')

        output = result_dict['output']
        target = result_dict['target']

        # Mean average precision
        average_precision = metrics.average_precision_score(target,
                                                            output,
                                                            average=None)
        mAP = np.mean(average_precision)

        # Label-weighted label-ranking average precision
        (per_class_lwlrap,
         weight_per_class) = calculate_per_class_lwlrap(target, output)
        mean_lwlrap = np.sum(per_class_lwlrap * weight_per_class)

        logging.info('    Target source: {}, mAP: {:.3f}, mean_lwlrap: {:.3f}'
                     ''.format(target_source, mAP, mean_lwlrap))

        statistics = {
            'average_precision': average_precision,
            'per_class_lwlrap': per_class_lwlrap,
            'weight_per_class': weight_per_class
        }

        if verbose:
            for n in range(self.classes_num):
                logging.info('    {:<20}{:.3f}'.format(self.labels[n],
                                                       per_class_lwlrap[n]))
            logging.info('')

        return statistics