Beispiel #1
0
def trainModel(model, X_train, y_train):
    Console.info("Create validation sets, training set, testing set...")
    # Split images dataset
    k = int(len(X_train) / 6)  # Decides split count

    hist_test = X_train[:k]
    hand_test = y_train[:k]

    hist_valid = X_train[k: 2 * k]
    hand_valid = y_train[k: 2 * k]

    hist_train = X_train[2 * k:]
    hand_train = y_train[2 * k:]

    Console.info("Training network...")
    history = model.fit(
        hist_train,
        hand_train,
        batch_size=BATCH_SIZE,
        epochs=EPOCHS,
        verbose=2,
        validation_data=(hist_valid, hand_valid),
        callbacks=loadCallBack(),
    )

    Console.info("Save model to disck...")
    # Path to save model
    PATHE_SAVE_MODEL = os.path.join(__location__, "model")

    # Save weights after every epoch
    if not os.path.exists(PATHE_SAVE_MODEL):
        os.makedirs(PATHE_SAVE_MODEL)

    # serialize model to YAML
    model_yaml = model.to_yaml()
    with open(
        os.path.join(PATHE_SAVE_MODEL, "model_hands_not_hands.yaml"), "w"
    ) as yaml_file:
        yaml_file.write(model_yaml)
    # serialize weights to HDF5
    model.save_weights(os.path.join(PATHE_SAVE_MODEL, "model_hands_not_hands.h5"))
    # save image of build model
    # save image of build model
    plot_model(
        model,
        to_file=os.path.join(PATHE_SAVE_MODEL, "model_hands_not_hands.png"),
        show_shapes=True
    )
    print("OK")

    # evaluate the network
    Console.info("Evaluating network...")
    score = model.evaluate([hist_test], [hand_test], batch_size=BATCH_SIZE, verbose=1)

    Console.log("Test loss:", score[0])
    Console.log("Test Acc:", score[1])

    # list all data in history
    Console.info("Save model history graphics...")
    print(history.history.keys())
Beispiel #2
0
def getFiles():
    rta = []
    # Read csv
    df = pd.read_csv(
        os.path.join(__location__, "dataset", "histogram-dataset.csv"))

    # file names on train_dir
    files = os.listdir(train_dir)
    # filter image files
    files = [f for f in files if fnmatch.fnmatch(f, "*.png")]
    # Sort randomly
    np.random.shuffle(files)

    for file_name in files:
        # Cut list of file
        if CUT_DATASET <= 0 or len(rta) < CUT_DATASET:
            # print(file_name)
            # Get row with id equil image's name
            csv_row = df[df.id == int(file_name[:-4])]
            # Get lower color
            lower = csv_row.lower.tolist()
            # Get upper color
            upper = csv_row.upper.tolist()
            if (lower and upper) and (not (lower[0] != lower[0]
                                           and upper[0] != upper[0])):
                rta.append((file_name, lower[0], upper[0]))
            else:
                Console.log("Not data for", file_name)

    return rta
def loadModel(dir_model_backup):
    Console.info("Get model and weights for", dir_model_backup)
    # load YAML and create model
    yaml_file = open(os.path.join(__location__, "model", dir_model_backup + ".yaml"), "r")
    loaded_model_yaml = yaml_file.read()
    yaml_file.close()
    model = model_from_yaml(loaded_model_yaml)
    # load weights into new model
    model.load_weights(os.path.join(__location__, "model", dir_model_backup + ".h5"))
    Console.log("Loaded model from disk")
    return model
def processeImg(files, y_lower_upper):
    total_file = len(files)
    Console.log("Process", total_file, "images")
    x_files = []
    for i in range(total_file):
        min_color = int(y_lower_upper[0][i])
        max_color = int(y_lower_upper[1][i])
        min_color = min_color if min_color > 0 else 0
        max_color = max_color if max_color < 255 else 255
        x_files.append((files[i], min_color, max_color))

    # Usado en caso de usar multiples core
    output = multiprocessing.Queue()
    num_processes = multiprocessing.cpu_count()
    if platform.system() == "Linux" and num_processes > 1:
        processes = []

        lot_size = int(total_file / num_processes)

        for x in range(1, num_processes + 1):
            if x < num_processes:
                lote = x_files[(x - 1) * lot_size: ((x - 1) * lot_size) + lot_size]
            else:
                lote = x_files[(x - 1) * lot_size:]
            processes.append(Process(target=mpProcessImg, args=(lote, output)))

        if len(processes) > 0:
            Console.info("Fix colors of the images...")
            for p in processes:
                p.start()

            result = []
            for x in range(num_processes):
                result.append(output.get(True))

            for p in processes:
                p.join()

            X_values = []
            for x in result:
                X_values = X_values + x
            updateProgress(1, total_file, total_file, "")
            Console.log("Image processed:", len(X_values))

    else:
        Console.info("We can not divide the load into different processors")
        # X_values = mpGetHistogramFormFiles(files)
        exit(0)

    return X_values
Beispiel #5
0
def writeFile(dataset, X_img, y_img):
    Console.log("Saving", dataset, "data...")
    file_name = "img-for-autoencoder-" + dataset + ".hdf5"
    path_to_save = os.path.join(__location__, "dataset", file_name)

    with h5py.File(os.path.join(path_to_save), "w") as f:
        f.create_dataset(
            "x_img",
            data=X_img,
            dtype=np.float16,
            compression="gzip",
            compression_opts=5,
        )
        f.create_dataset("y_img", data=y_img, dtype=np.uint8)
        f.close()
def getHistogramFormFiles(files=[]):
    total_file = len(files)
    Console.log("Process", total_file, "images")

    # Usado en caso de usar multiples core
    output = multiprocessing.Queue()
    num_processes = multiprocessing.cpu_count()
    if platform.system() == "Linux" and num_processes > 1:
        processes = []

        lot_size = int(total_file / num_processes)

        for x in range(1, num_processes + 1):
            if x < num_processes:
                lote = files[(x - 1) * lot_size: ((x - 1) * lot_size) + lot_size]
            else:
                lote = files[(x - 1) * lot_size:]
            processes.append(Process(target=mpGetHistogramFormFiles, args=(lote, output)))

        if len(processes) > 0:
            Console.info("Get histogram of the images...")
            for p in processes:
                p.start()

            result = []
            for x in range(num_processes):
                result.append(output.get(True))

            for p in processes:
                p.join()

            X_values = []
            for x in result:
                X_values = X_values + x
            updateProgress(1, total_file, total_file, "")
            Console.log("Image processed:", len(X_values))

    else:
        Console.info("We can not divide the load into different processors")
        # X_values = mpGetHistogramFormFiles(files)
        exit(0)

    return X_values
Beispiel #7
0
        Console.info("No podemos dividir la cargan en distintos procesadores")
        exit(0)


if __name__ == "__main__":
    if MAKE_HANDS_FROM_HUMAN:
        makeHandsHuman()

    TRAIN_DIR = ["dataset_hands", "hands"]
    files = getFiles(TRAIN_DIR)
    (X_train, y_train) = progressFiles(TRAIN_DIR, files, hands_valid=1)

    TRAIN_DIR = ["dataset_hands", "not_hands"]
    files = getFiles(TRAIN_DIR)
    (X2_train, y2_train) = progressFiles(TRAIN_DIR, files, hands_valid=0)

    X_train = X_train + X2_train
    y_train = y_train + y2_train

    # Sort randomly
    random_id = np.random.choice(len(X_train),
                                 size=len(y_train),
                                 replace=False)
    X_train = np.asarray(X_train)[random_id]
    y_train = np.asarray(y_train)[random_id]

    saveDataSet(X_train, y_train)

    hist, valid = openDataSet()
    Console.log("Dataset", len(hist[0]), len(valid))
Beispiel #8
0
    Console.log("Test loss:", score[0])
    Console.log("Test Acc:", score[1])

    # list all data in history
    Console.info("Save model history graphics...")
    print(history.history.keys())


# Como vamos a usar multi procesos uno por core.
# Los procesos hijos cargan el mismo código.
# Este if permite que solo se ejecute lo que sigue si es llamado
# como proceso raíz.
if __name__ == "__main__":
    if args["predict"] == None or args["predict"] == "True":
        (X_train, y_train) = openDataSet()
        Console.log("Dataset file count", len(y_train))

    # Create model
    model = makerModel()

    if args["train"] == "True":
        trainModel(model, X_train, y_train)

    if args["evaluate"] == "True":
        Console.info("Evaluating model...")
        score = model.evaluate([X_train], [y_train], batch_size=BATCH_SIZE, verbose=1)
        Console.log("Test loss:", score[0])
        Console.log("Test Acc:", score[1])

    if args["predict"] != None and args["predict"] != "False":
        if args["predict"] != "True":
Beispiel #9
0
            for x in range(num_processes):
                result.append(output.get(True))

            for p in processes:
                p.join()

            X_img = []
            y_img = []
            for mp_X_img, mp_y_img in result:
                X_img = X_img + mp_X_img
                y_img = y_img + mp_y_img
            updateProgress(1, total_file, total_file, "")

            return X_img, y_img
    else:
        Console.info("No podemos dividir la cargan en distintos procesadores")
        exit(0)


if __name__ == "__main__":
    # Make two folder for hands and not_hands, with histogram values on csv file
    if MAKE_HANDS_FROM_HUMAN:
        makeHandsHuman()

    files = getFiles()
    X_img, y_img = progressFiles(files)
    saveDataSet(X_img, y_img)

    X_img, y_img = openDataSet("training")
    Console.log("Dataset", len(X_img), len(y_img))