Beispiel #1
0
    def compare(self, dist_1, dist_2):
        dist_1_interval = TimeInterval(*self.bounds_of(dist_1))
        dist_2_interval = TimeInterval(*self.bounds_of(dist_2))
        dictionary_input_output = {}
        for time_step in dist_1_interval + dist_2_interval:
            dictionary_input_output[time_step] = sqrt(
                dist_1.pdf(time_step) * dist_2.pdf(time_step))

        geometric_mean = FunctionPiecewiseLinear(
            dictionary_input_output, function_undefined=FUNCTION_ZERO)
        same = integral(geometric_mean, NEGATIVE_INFINITY, POSITIVE_INFINITY)

        dist_1_mean, dist_1_skewness, dist_1_kurtosis = dist_1.stats(
            moments='msk')
        dist_1_standard_deviation = dist_1.std()
        dist_2_mean, dist_2_skewness, dist_2_kurtosis = dist_2.stats(
            moments='msk')
        dist_2_standard_deviation = dist_2.std()

        distance = fabs(dist_1_standard_deviation -
                        dist_2_standard_deviation) + fabs(dist_1_skewness -
                                                          dist_2_skewness)
        distance += fabs(dist_1_kurtosis - dist_2_kurtosis)
        delta = dist_1_mean - dist_2_mean
        non_same_portion = 1.0 - same

        portion_after, portion_before = 1.0, 0.0
        if almost_equals(distance, 0):
            if delta < 0:
                portion_after, portion_before = 0.0, 1.0
        else:
            dist_1_standardized_pdf = lambda x: dist_1.pdf(
                dist_1_standard_deviation * x + dist_1_mean)
            dist_2_standardized_pdf = lambda x: dist_2.pdf(
                dist_2_standard_deviation * x + dist_2_mean)

            geometric_mean = lambda t: sqrt(
                dist_1_standardized_pdf(t) * dist_2_standardized_pdf(t))
            geometric_mean_scaled = lambda p: geometric_mean(p / distance)
            geometric_mean_scaled_length = max(self.duration_of(dist_1),
                                               self.duration_of(dist_2))

            dictionary_input_output = {}
            for time_step in TimeInterval(-geometric_mean_scaled_length / 2.0,
                                          geometric_mean_scaled_length / 2.0):
                dictionary_input_output[time_step] = geometric_mean_scaled(
                    time_step)

            geometric_mean_scaled = FunctionPiecewiseLinear(
                dictionary_input_output, function_undefined=FUNCTION_ZERO)
            portion_after = integral(geometric_mean_scaled, NEGATIVE_INFINITY,
                                     delta)
            portion_before = integral(geometric_mean_scaled, delta,
                                      POSITIVE_INFINITY)

        after = portion_after / (portion_after +
                                 portion_before) * non_same_portion
        return 1.0 - same - after, same, after
    def compare(self, dist_1, dist_2):
        convolution = self.function_convolution(dist_1, dist_2)
        before = integral(convolution, NEGATIVE_INFINITY, 0)
        after = integral(convolution, 0, POSITIVE_INFINITY)
        similarity = self.calculate_similarity(dist_1, dist_2)
        correlation = 1 - fabs(before - after)
        same = similarity * correlation

        return before, same, after
Beispiel #3
0
    def compare(self, dist_1, dist_2):
        convolution = self.function_convolution(dist_1, dist_2)
        before = integral(convolution, NEGATIVE_INFINITY, 0)
        after = integral(convolution, 0, POSITIVE_INFINITY)
        similarity = self.calculate_similarity(dist_1, dist_2)
        correlation = 1 - fabs(before - after)
        same = similarity * correlation

        return before, same, after
    def compare(self, dist_1, dist_2):
        dist_1_interval = TimeInterval(*self.bounds_of(dist_1))
        dist_2_interval = TimeInterval(*self.bounds_of(dist_2))
        dictionary_input_output = {}
        for time_step in dist_1_interval + dist_2_interval:
            dictionary_input_output[time_step] = sqrt(dist_1.pdf(time_step) * dist_2.pdf(time_step))

        geometric_mean = FunctionPiecewiseLinear(dictionary_input_output, function_undefined=FUNCTION_ZERO)
        same = integral(geometric_mean, NEGATIVE_INFINITY, POSITIVE_INFINITY)

        dist_1_mean, dist_1_skewness, dist_1_kurtosis = dist_1.stats(moments='msk')
        dist_1_standard_deviation = dist_1.std()
        dist_2_mean, dist_2_skewness, dist_2_kurtosis = dist_2.stats(moments='msk')
        dist_2_standard_deviation = dist_2.std()

        distance = fabs(dist_1_standard_deviation - dist_2_standard_deviation) + fabs(dist_1_skewness - dist_2_skewness)
        distance += fabs(dist_1_kurtosis - dist_2_kurtosis)
        delta = dist_1_mean - dist_2_mean
        non_same_portion = 1.0 - same

        portion_after, portion_before = 1.0, 0.0
        if almost_equals(distance, 0):
            if delta < 0:
                portion_after, portion_before = 0.0, 1.0
        else:
            dist_1_standardized_pdf = lambda x: dist_1.pdf(dist_1_standard_deviation * x + dist_1_mean)
            dist_2_standardized_pdf = lambda x: dist_2.pdf(dist_2_standard_deviation * x + dist_2_mean)

            geometric_mean = lambda t: sqrt(dist_1_standardized_pdf(t) * dist_2_standardized_pdf(t))
            geometric_mean_scaled = lambda p: geometric_mean(p / distance)
            geometric_mean_scaled_length = max(self.duration_of(dist_1), self.duration_of(dist_2))

            dictionary_input_output = {}
            for time_step in TimeInterval(-geometric_mean_scaled_length / 2.0, geometric_mean_scaled_length / 2.0):
                dictionary_input_output[time_step] = geometric_mean_scaled(time_step)

            geometric_mean_scaled = FunctionPiecewiseLinear(dictionary_input_output, function_undefined=FUNCTION_ZERO)
            portion_after = integral(geometric_mean_scaled, NEGATIVE_INFINITY, delta)
            portion_before = integral(geometric_mean_scaled, delta, POSITIVE_INFINITY)

        after = portion_after / (portion_after + portion_before) * non_same_portion
        return 1.0 - same - after, same, after
    def calculate_similarity(self, dist_1, dist_2):
        if (type(dist_1.dist), type(dist_2.dist)) == (uniform_gen, uniform_gen):
            length_dist_1 = self.duration_of(dist_1)
            length_dist_2 = self.duration_of(dist_2)
            return min(length_dist_1, length_dist_2) / sqrt(length_dist_1 * length_dist_2)

        dist_1_mean, dist_2_mean = dist_1.mean(), dist_2.mean()

        dist_1_transformed = lambda t: dist_1.pdf(t + dist_1_mean)
        dist_2_transformed = lambda t: dist_2.pdf(t + dist_2_mean)

        geometric_mean = lambda t: sqrt(dist_1_transformed(t) * dist_2_transformed(t))
        return integral(geometric_mean, NEGATIVE_INFINITY, POSITIVE_INFINITY)
Beispiel #6
0
    def degree(self, time_step=None, a=None, b=None, interval=None):
        """
        usage: provide 'time_step' or 'a' and 'b' or 'interval'
        """
        if time_step is not None:
            return self.membership_function(time_step)

        if interval is None:
            if (a, b) == (None, None):
                interval = self
            else:
                interval = TimeInterval(a, b)
        else:
            check_is_time_interval(interval)
        return integral(self.membership_function, interval.a, interval.b)
Beispiel #7
0
    def calculate_similarity(self, dist_1, dist_2):
        if (type(dist_1.dist), type(dist_2.dist)) == (uniform_gen,
                                                      uniform_gen):
            length_dist_1 = self.duration_of(dist_1)
            length_dist_2 = self.duration_of(dist_2)
            return min(length_dist_1, length_dist_2) / sqrt(
                length_dist_1 * length_dist_2)

        dist_1_mean, dist_2_mean = dist_1.mean(), dist_2.mean()

        dist_1_transformed = lambda t: dist_1.pdf(t + dist_1_mean)
        dist_2_transformed = lambda t: dist_2.pdf(t + dist_2_mean)

        geometric_mean = lambda t: sqrt(
            dist_1_transformed(t) * dist_2_transformed(t))
        return integral(geometric_mean, NEGATIVE_INFINITY, POSITIVE_INFINITY)
 def after(self, dist_1, dist_2):
     return integral(lambda x: self.after_point(dist_1.pdf(x), dist_2.pdf(x)),
                     *self.after_integral_bounds(dist_1, dist_2))
 def same(self, dist_1, dist_2):
     return integral(lambda x: self.same_point(dist_1.pdf(x), dist_2.pdf(x)),
                     *self.same_integral_bounds(dist_1, dist_2))
Beispiel #10
0
 def after(self, dist_1, dist_2):
     return integral(
         lambda x: self.after_point(dist_1.pdf(x), dist_2.pdf(x)),
         *self.after_integral_bounds(dist_1, dist_2))
Beispiel #11
0
 def same(self, dist_1, dist_2):
     return integral(
         lambda x: self.same_point(dist_1.pdf(x), dist_2.pdf(x)),
         *self.same_integral_bounds(dist_1, dist_2))
Beispiel #12
0

if __name__ == '__main__':
    from utility.functions import integral
    from scipy.stats import norm
    import matplotlib.pyplot as plt

    #event = TemporalInstance(datetime(2010, 1, 1), datetime(2011, 2, 1))
    #plt = event.plot()
    #plt.show()

    events = [
        # TemporalEvent(norm(loc=10, scale=2), norm(loc=30, scale=2), 100),
        # TemporalEvent(norm(loc=5, scale=2), norm(loc=15, scale=4), 100),

        TemporalEventPiecewiseLinear({1: 0, 2: 0.1, 3: 0.3, 4: 0.7, 5: 1}, {6: 1, 7: 0.9, 8: 0.6, 9: 0.1, 10: 0}),
        TemporalEventPiecewiseLinear({1: 0, 2: 0.1, 3: 0.3, 4: 0.7, 5: 1}, {3.5: 1, 4.5: 0.9, 8: 0.6, 9: 0.1, 10: 0})
    ]

    print type(events[0])

    print events[0] * events[1]

    for event in events:
        plt = event.plot()
        print integral(event.distribution_beginning.pdf, event.a, event.beginning)
        print event.distribution_beginning.rvs(10)
        plt.ylim(ymax=1.1)
        #plt.figure()
    plt.show()