def __init__( self, args=utility.parse_args(), det_model_dir=r"D:\python_work\Ar_project\PaddleOCR\inference\ch_det_mv3_db", rec_model_dir=r"D:\python_work\Ar_project\PaddleOCR\inference\ch_rec_mv3_crnn", rec_char_dict_path=r"D:\python_work\Ar_project\PaddleOCR\ppocr\utils\ppocr_keys_v1.txt" ): print("init ocrsystem") args.det_model_dir = det_model_dir args.rec_model_dir = rec_model_dir args.rec_char_dict_path = rec_char_dict_path # print(args,111) # image_file_list = get_image_file_list(args.image_dir) self.text_sys = TextSystem(args) print("ocrsystem ready!")
def main(): args = util.parse_args() session = init_oculus() port = args['port'] baud = args['baud'] dryrun = args['dryrun'] gp = inputs.devices.gamepads if len(gp) == 0 or 'microsoft' not in str(gp[0]).lower(): print("Xbox controller not detected") exit(session) return # Read from the gamepad in a different thread since the inputs library # blocks program execution try: gamepad_thread = Thread(target=gamepad_loop) gamepad_thread.daemon = True gamepad_thread.start() # If we are developing, we don't worry about the serial port if dryrun: stream_loop(session, -1, True) num_tries = 0 while(True): try: with serial.Serial(port, baud, timeout=0) as ser: print("Connected to embedded") tx = Transmitter(ser) stream_loop(session, tx) except serial.serialutil.SerialException as e: if(num_tries % 100 == 0): if(str(e).find("FileNotFoundError")): print("Port not found. Retrying...(attempt {0})".format(num_tries)) else: print("Serial exception. Retrying...(attempt {0})".format(num_tries)) time.sleep(0.01) num_tries = num_tries + 1 except (KeyboardInterrupt, SystemExit) as e: print("Interrupted: {0}".format(e)) pass exit(session)
if (iter_id + 1) % cfg.snapshot_iter == 0: save_model("model_iter{}".format(iter_id)) print("Snapshot {} saved, average loss: {}, \ average time: {}".format( iter_id + 1, snapshot_loss / float(cfg.snapshot_iter), snapshot_time / float(cfg.snapshot_iter))) if args.enable_ce and iter_id == cfg.max_iter - 1: if devices_num == 1: print("kpis\ttrain_cost_1card\t%f" % (snapshot_loss / float(cfg.snapshot_iter))) print("kpis\ttrain_duration_1card\t%f" % (snapshot_time / float(cfg.snapshot_iter))) else: print("kpis\ttrain_cost_8card\t%f" % (snapshot_loss / float(cfg.snapshot_iter))) print("kpis\ttrain_duration_8card\t%f" % (snapshot_time / float(cfg.snapshot_iter))) snapshot_loss = 0 snapshot_time = 0 except fluid.core.EOFException: py_reader.reset() save_model('model_final') if __name__ == '__main__': args = parse_args() print_arguments(args) train()
kmer_sample_file=kmer_sample_file_ref, kmer_pheno_file=kmer_pheno_file) process_file(create_kmer_sample_map, unique_kmers_file, q=q, lock=lock, **kwargs) sample_matrix = np.zeros((n_samples, n_samples)) num_kmers = 0 # write all chunks to output files sequentially while not q.empty(): q_num_kmers, q_sample_matrix = q.get() num_kmers += q_num_kmers sample_matrix += q_sample_matrix # create sample similarity file if the similarities tsv does not exist if not file_exists(similar_sample_file) or not file_exists(dissimilar_sample_file): similar_sample(sample_matrix, num_kmers, similarities_tsv, hist_orig_file, hist_sim_scaled_file, hist_dissim_scaled_file, similar_sample_file, dissimilar_sample_file) if (not file_exists(similar_sample_file) or not file_exists(dissimilar_sample_file)) and file_exists(similarities_tsv): similar_sample(None, None, similarities_tsv, hist_orig_file, hist_sim_scaled_file, hist_dissim_scaled_file, similar_sample_file, dissimilar_sample_file) # create kmer int map if not file_exists(uim_file): int_maps.create_kmer_int_map(kmer_sample_file, uim_file) if __name__ == '__main__': parse_args() main()
def visualize_read_write(model, criterion, optimizer, config_obj): T = 10 config_obj.config_dict['num_batches'] = 20 config_obj.config_dict['batch_size'] = 1 seqs_loader = utility.load_dataset(config_obj, max=T, min=T) for batch_num, X, Y, act in seqs_loader: result = evaluate_single_batch(model, criterion, X, Y) plot_visualization(X, result, model.N) if __name__ == '__main__': # pdb.set_trace() args = utility.parse_args() config_type = args['configtype'] config_file = args['configfile'] load_checkpoint = args['load_checkpoint'] plot_all_average_flag = args['plot_all_average'] visualize_read_write_flag = args['visualize_read_write'] if plot_all_average_flag: plot_all_average_costs() else: config_obj = config.Configuration(config_type, config_file) config = config_obj.config_dict model, criterion, optimizer = models.build_model(config) seqs_loader = utility.load_dataset(config_obj) if visualize_read_write_flag: model, list_seq_num, list_loss, list_cost = loadCheckpoint( path=config['filename'])
auc_metric.accumulate(), 100 * args.batch_size / (time.time() - batch_begin))) batch_begin = time.time() total_loss = 0.0 batch_id += 1 logger.info("epoch %d is finished and takes %f s" % (epoch, time.time() - begin)) # save model and optimizer logger.info( "going to save epoch {} model and optimizer.".format(epoch)) paddle.save(deepfm.state_dict(), path=os.path.join(args.model_output_dir, "epoch_" + str(epoch), ".pdparams")) paddle.save(optimizer.state_dict(), path=os.path.join(args.model_output_dir, "epoch_" + str(epoch), ".pdopt")) logger.info("save epoch {} finished.".format(epoch)) # eval model deepfm.eval() eval(epoch) deepfm.train() paddle.enable_static() if __name__ == '__main__': args = utils.parse_args() utils.print_arguments(args) train(args)
for image_file in image_file_list: img, flag = check_and_read_gif(image_file) if not flag: img = cv2.imread(image_file) if img is None: logger.info("error in loading image:{}".format(image_file)) continue valid_image_file_list.append(image_file) img_list.append(img) try: rec_res, predict_time = text_recognizer(img_list) except Exception as e: print(e) logger.info( "ERROR!!!! \n" "Please read the FAQ: https://github.com/PaddlePaddle/PaddleOCR#faq \n" "If your model has tps module: " "TPS does not support variable shape.\n" "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' " ) exit() for ino in range(len(img_list)): print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino])) print("Total predict time for %d images:%.3f" % (len(img_list), predict_time)) if __name__ == "__main__": main(utility.parse_args())
#!/usr/bin/env python from bhmm import BHMM from utility import parse_args if __name__ == "__main__": args = parse_args() bhmm = BHMM(args) bhmm.run()