Beispiel #1
0
class ResNet(nn.Module):
    def __init__(self,
                 block,
                 layers,
                 input_channels,
                 num_classes=10,
                 zero_init_residual=False,
                 groups=1,
                 width_per_group=64,
                 replace_stride_with_dilation=None,
                 norm_layer=None):
        super(ResNet, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        self._norm_layer = norm_layer

        self.inplanes = 64
        self.dilation = 1
        self.q_logvar_init = 0.05
        self.p_logvar_init = math.log(0.05)

        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError("replace_stride_with_dilation should be None "
                             "or a 3-element tuple, got {}".format(
                                 replace_stride_with_dilation))
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = BBBConv2d(self.q_logvar_init,
                               self.p_logvar_init,
                               input_channels,
                               self.inplanes,
                               kernel_size=7,
                               stride=2,
                               padding=3,
                               bias=False)
        self.bn1 = norm_layer(self.inplanes)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block,
                                       128,
                                       layers[1],
                                       stride=2,
                                       dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block,
                                       256,
                                       layers[2],
                                       stride=2,
                                       dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block,
                                       512,
                                       layers[3],
                                       stride=2,
                                       dilate=replace_stride_with_dilation[2])
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.drop = nn.Dropout(p=.5)
        self.classifier = BBBLinearFactorial(self.q_logvar_init,
                                             self.p_logvar_init,
                                             512 * block.expansion,
                                             num_classes,
                                             flow=False)
        print(block.expansion)

        layers2 = [
            self.conv1, self.bn1, self.relu, self.maxpool, self.layer1,
            self.layer2, self.layer3, self.layer4, self.avgpool
        ]

        self.layers2 = nn.ModuleList(layers2)

        for m in self.modules():
            if isinstance(m, BBBConv2d):
                m.reset_parameters()
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)

    def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
        norm_layer = self._norm_layer
        downsample = None
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes * block.expansion, stride),
                norm_layer(planes * block.expansion),
            )

        layers = []
        layers.append(
            block(self.inplanes, planes, stride, downsample, self.groups,
                  self.base_width, previous_dilation, norm_layer))
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(
                block(self.inplanes,
                      planes,
                      groups=self.groups,
                      base_width=self.base_width,
                      dilation=self.dilation,
                      norm_layer=norm_layer))

        return nn.Sequential(*layers)

    def probforward(self, x, dropout=False):
        loss = 0
        i = 0
        out, kl = self.conv1.probforward(x)
        out = self.relu(self.bn1(out))
        loss += kl

        out, kl = self.pf(out, self.layer1)
        loss += kl
        out, kl = self.pf(out, self.layer2)
        loss += kl
        out, kl = self.pf(out, self.layer3)
        loss += kl
        out, kl = self.pf(out, self.layer4)
        loss += kl
        out = F.avg_pool2d(out, 4)
        out = out.view(out.size(0), -1)
        if (dropout):
            x = self.drop(x)
        x, _kl = self.classifier.probforward(out)
        kl += loss
        logits = x
        return logits, kl

    def pf(self, x, layer):
        kl = 0

        for l in layer:
            #print(l)
            if hasattr(l, 'probforward') and callable(l.probforward):
                x, _kl, = l.probforward(x)
                kl += _kl
            else:
                print(l)
                x = l.forward(x)
        return x, kl
Beispiel #2
0
class BBBAlexNet(nn.Module):
    '''The architecture of AlexNet with Bayesian Layers'''
    def __init__(self, outputs, inputs):
        super(BBBAlexNet, self).__init__()
        flow = False
        self.q_logvar_init = 0.05
        self.p_logvar_init = math.log(0.05)

        self.classifier = BBBLinearFactorial(self.q_logvar_init,
                                             self.p_logvar_init,
                                             1 * 1 * 128,
                                             outputs,
                                             flow=flow)

        self.conv1 = BBBConv2d(self.q_logvar_init,
                               self.p_logvar_init,
                               inputs,
                               64,
                               kernel_size=11,
                               stride=4,
                               padding=5,
                               flow=flow)
        self.soft1 = nn.Softplus()
        self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)

        self.conv2 = BBBConv2d(self.q_logvar_init,
                               self.p_logvar_init,
                               64,
                               192,
                               kernel_size=5,
                               padding=2,
                               flow=flow)
        self.soft2 = nn.Softplus()
        self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)

        self.conv3 = BBBConv2d(self.q_logvar_init,
                               self.p_logvar_init,
                               192,
                               384,
                               kernel_size=3,
                               padding=1,
                               flow=flow)
        self.soft3 = nn.Softplus()

        self.conv4 = BBBConv2d(self.q_logvar_init,
                               self.p_logvar_init,
                               384,
                               256,
                               kernel_size=3,
                               padding=1,
                               flow=flow)
        self.soft4 = nn.Softplus()

        self.conv5 = BBBConv2d(self.q_logvar_init,
                               self.p_logvar_init,
                               256,
                               128,
                               kernel_size=3,
                               padding=1,
                               flow=flow)
        self.soft5 = nn.Softplus()
        self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)

        # self.flatten = FlattenLayer(1 * 1 * 128)
        # self.fc1 = BBBLinearFactorial(q_logvar_init, N, p_logvar_init, 1* 1 * 128, outputs)

        layers = [
            self.conv1, self.soft1, self.pool1, self.conv2, self.soft2,
            self.pool2, self.conv3, self.soft3, self.conv4, self.soft4,
            self.conv5, self.soft5, self.pool3
        ]

        self.layers = nn.ModuleList(layers)

    def probforward(self, x):
        kl = 0
        for layer in self.layers:
            if hasattr(layer, 'probforward') and callable(layer.probforward):
                x, _kl, = layer.probforward(x)
            else:
                x = layer.forward(x)
        x = x.view(x.size(0), -1)
        x, _kl = self.classifier.probforward(x)
        kl += _kl
        logits = x
        return logits, kl