Beispiel #1
0
def Validation(cf, sess, sb):
    val_time = time.time()
    val_writer = sb.tensorBoard.save(
        cf.exp_folder + cf.log_path + 'validation/', sess)
    valid_image_path = os.path.join(cf.valid_dataset_path,
                                    cf.valid_folder_names[0])
    valid_gt_path = os.path.join(cf.valid_dataset_path,
                                 cf.valid_folder_names[1])
    valid_set = Data_loader(cf, valid_image_path, cf.valid_samples,
                            cf.size_image_valid, valid_gt_path)
    valid_set.Load_dataset(cf.valid_batch_size)
    valid_stats = Statistics(cf.valid_batch_size, sb)
    tf.summary.scalar("Mean_IoU/validation",
                      valid_stats.mean_IoU,
                      collections=['validation'])
    tf.summary.scalar("Mean_Acc/validation",
                      valid_stats.accuracy_class,
                      collections=['validation'])
    valid_loss_batch = np.zeros(valid_set.num_batches, dtype=np.float32)
    sess.run(valid_stats.running_vars_initializer)
    prog_bar = ProgressBar(valid_set.num_batches)
    for i in range(valid_set.num_batches):
        batch_x, batch_y = valid_set.Next_batch(cf.valid_batch_size)
        feed_dict = {
            sb.model.simb_image: batch_x,
            sb.model.simb_gt: batch_y,
            sb.model.simb_is_training: False
        }
        simbol_list = [
            sb.loss_fun, sb.model.annotation_pred, valid_stats.update_IoU,
            valid_stats.update_acc_class
        ]
        sess_return = sess.run(simbol_list, feed_dict)
        valid_loss_batch[i] = sess_return[0]
        pred = sess_return[1]
        conf_mat = sess_return[3]
        prog_bar.update()
    conf_mat = conf_mat / valid_set.num_batches
    img_conf_mat = confm_metrics2image(conf_mat, cf.labels)
    img_conf_mat = tf.expand_dims(img_conf_mat, 0)
    tf.summary.image("conf_mat/validation",
                     img_conf_mat,
                     max_outputs=2,
                     collections=['validation'])
    summary_op_val = sb.tensorBoard.set_up('validation')
    mIoU_valid, mAcc_valid, sammary_val = sess.run(
        [valid_stats.mean_IoU, valid_stats.accuracy_class, summary_op_val])
    val_time = time.time() - val_time
    print("\t Loss: %g, mIoU: %g, mAcc: %g, Time: %ds" % (np.mean(
        np.asarray(valid_loss_batch)), mIoU_valid, mAcc_valid, val_time))
    val_writer.add_summary(sammary_val)
Beispiel #2
0
        def start(self,
                  valid_set,
                  valid_loader,
                  mode='Validation',
                  epoch=None,
                  global_bar=None,
                  save_folder=None):
            confm_list = np.zeros((self.cf.num_classes, self.cf.num_classes))

            self.val_loss = AverageMeter()

            # Initialize epoch progress bar
            val_num_batches = math.ceil(valid_set.num_images /
                                        float(self.cf.valid_batch_size))
            prev_msg = '\n' + mode + ' estimated time...\n'
            bar = ProgressBar(val_num_batches, lenBar=20)
            bar.set_prev_msg(prev_msg)
            bar.update(show=False)

            # Validate model
            if self.cf.problem_type == 'detection':
                self.validation_loop(epoch, valid_loader, valid_set, bar,
                                     global_bar, save_folder)
            else:
                self.validation_loop(epoch, valid_loader, valid_set, bar,
                                     global_bar, confm_list)

            # Compute stats
            self.compute_stats(np.asarray(self.stats.val.conf_m),
                               self.val_loss)

            # Save stats
            self.save_stats(epoch)
            if mode == 'Epoch Validation':
                self.logger_stats.write_stat(
                    self.stats.train, epoch,
                    os.path.join(self.cf.train_json_path,
                                 'valid_epoch_' + str(epoch) + '.json'))
            elif mode == 'Validation':
                self.logger_stats.write_stat(self.stats.val, epoch,
                                             self.cf.val_json_file)
            elif mode == 'Test':
                self.logger_stats.write_stat(self.stats.val, epoch,
                                             self.cf.test_json_file)
        def start(self, criterion, valid_set, valid_loader, epoch=None, global_bar=None):
            confm_list = np.zeros((self.cf.num_classes,self.cf.num_classes))

            val_loss = AverageMeter()

            # Initialize epoch progress bar
            val_num_batches = math.ceil(valid_set.num_images / float(self.cf.valid_batch_size))
            prev_msg = '\nValidation estimated time...\n'
            bar = ProgressBar(val_num_batches, lenBar=20)
            bar.set_prev_msg(prev_msg)
            bar.update(show=False)

            # Validate model
            for vi, data in enumerate(valid_loader):
                # Read data
                inputs, gts = data
                n_images,w,h,c = inputs.size()
                inputs = Variable(inputs, volatile=True).cuda()
                gts = Variable(gts, volatile=True).cuda()

                # Predict model
                outputs = self.model.net(inputs)
                predictions = outputs.data.max(1)[1].cpu().numpy()

                # Compute batch stats
                val_loss.update(criterion(outputs, gts).data[0] / n_images, n_images)
                confm = compute_confusion_matrix(predictions,gts.cpu().data.numpy(),self.cf.num_classes,self.cf.void_class)
                confm_list = map(operator.add, confm_list, confm)

                # Save epoch stats
                self.stats.val.conf_m = confm_list
                self.stats.val.loss = val_loss.avg / (w * h * c)

                # Update messages
                self.update_msg(bar, global_bar)

            # Compute stats
            self.compute_stats(np.asarray(self.stats.val.conf_m), val_loss)

            # Save stats
            self.save_stats(epoch)
Beispiel #4
0
def Predict(cf, sess, sb):
    predict_time = time.time()
    test_image_path = os.path.join(cf.test_dataset_path,
                                   cf.test_folder_names[0])
    test_set = Data_loader(cf, test_image_path, cf.test_samples,
                           cf.resize_image_test)
    test_set.Load_dataset(cf.test_batch_size)
    prog_bar = ProgressBar(test_set.num_batches)
    for i in range(test_set.num_batches):
        batch_x, batch_names = test_set.Next_batch_pred(cf.test_batch_size)
        feed_dict = {
            sb.model.simb_image: batch_x,
            sb.model.simb_is_training: False
        }
        simbol_list = [sb.model.annotation_pred]
        sess_return = sess.run(simbol_list, feed_dict)
        pred = sess_return[0]
        save_prediction(cf.predict_output, pred, batch_names)
        prog_bar.update()
    predict_time = time.time() - predict_time
    print("\t Time: %ds" % (predict_time))
Beispiel #5
0
        def start(self,
                  train_loader,
                  train_set,
                  valid_set=None,
                  valid_loader=None):
            self.train_num_batches = math.ceil(train_set.num_images /
                                               float(self.cf.train_batch_size))
            self.val_num_batches = 0 if valid_set is None else math.ceil(valid_set.num_images / \
                                                                    float(self.cf.valid_batch_size))
            # Define early stopping control
            if self.cf.early_stopping:
                early_Stopping = Early_Stopping(self.cf)
            else:
                early_Stopping = None

            prev_msg = '\nTotal estimated training time...\n'
            self.global_bar = ProgressBar(
                (self.cf.epochs + 1 - self.curr_epoch) *
                (self.train_num_batches + self.val_num_batches),
                lenBar=20)
            self.global_bar.set_prev_msg(prev_msg)

            # Train process
            for epoch in range(self.curr_epoch, self.cf.epochs + 1):
                # Shuffle train data
                train_set.update_indexes()

                # Initialize logger
                epoch_time = time.time()
                self.logger_stats.write('\t ------ Epoch: ' + str(epoch) +
                                        ' ------ \n')

                # Initialize epoch progress bar
                self.msg.accum_str = '\n\nEpoch %d/%d estimated time...\n' % \
                                     (epoch, self.cf.epochs)
                epoch_bar = ProgressBar(self.train_num_batches, lenBar=20)
                epoch_bar.update(show=False)

                # Initialize stats
                self.stats.epoch = epoch
                self.train_loss = AverageMeter()
                self.confm_list = np.zeros(
                    (self.cf.num_classes, self.cf.num_classes))

                # Train epoch
                self.training_loop(epoch, train_loader, epoch_bar)

                # Save stats
                self.stats.train.conf_m = self.confm_list
                self.compute_stats(np.asarray(self.confm_list),
                                   self.train_loss)
                self.save_stats_epoch(epoch)
                self.logger_stats.write_stat(
                    self.stats.train, epoch,
                    os.path.join(self.cf.train_json_path,
                                 'train_epoch_' + str(epoch) + '.json'))

                # Validate epoch
                self.validate_epoch(valid_set, valid_loader, early_Stopping,
                                    epoch, self.global_bar)

                # Update scheduler
                if self.model.scheduler is not None:
                    self.model.scheduler.step(self.stats.val.loss)

                # Saving model if score improvement
                new_best = self.model.save(self.stats)
                if new_best:
                    self.logger_stats.write_best_stats(self.stats, epoch,
                                                       self.cf.best_json_file)

                # Update display values
                self.update_messages(epoch, epoch_time, new_best)

                if self.stop:
                    return

            # Save model without training
            if self.cf.epochs == 0:
                self.model.save_model()
        def start(self, criterion, optimizer, train_loader, train_set, valid_set=None, valid_loader=None, scheduler=None):
            train_num_batches = math.ceil(train_set.num_images / float(self.cf.train_batch_size))
            val_num_batches = 0 if valid_set is None else math.ceil(valid_set.num_images / float(self.cf.valid_batch_size))
            # Define early stopping control
            if self.cf.early_stopping:
                early_Stopping = Early_Stopping(self.cf)
            else:
                early_Stopping = None

            prev_msg = '\nTotal estimated training time...\n'
            global_bar = ProgressBar((self.cf.epochs+1-self.curr_epoch)*(train_num_batches+val_num_batches), lenBar=20)
            global_bar.set_prev_msg(prev_msg)


            # Train process
            for epoch in range(self.curr_epoch, self.cf.epochs + 1):
                # Shuffle train data
                train_set.update_indexes()

                # Initialize logger
                epoch_time = time.time()
                self.logger_stats.write('\t ------ Epoch: ' + str(epoch) + ' ------ \n')

                # Initialize epoch progress bar
                self.msg.accum_str = '\n\nEpoch %d/%d estimated time...\n' % (epoch, self.cf.epochs + 1 - self.curr_epoch)
                epoch_bar = ProgressBar(train_num_batches, lenBar=20)
                epoch_bar.update(show=False)

                # Initialize stats
                train_loss = AverageMeter()
                confm_list = np.zeros((self.cf.num_classes, self.cf.num_classes))

                # Train epoch
                for i, data in enumerate(train_loader):
                    # Read Data
                    inputs, labels = data

                    N,w,h,c = inputs.size()
                    inputs = Variable(inputs).cuda()
                    labels = Variable(labels).cuda()

                    # Predict model
                    optimizer.zero_grad()
                    outputs = self.model.net(inputs)
                    predictions = outputs.data.max(1)[1].cpu().numpy()

                    # Compute gradients
                    loss = criterion(outputs, labels)
                    loss.backward()
                    optimizer.step()

                    # Compute batch stats
                    train_loss.update(loss.data[0], N)
                    confm = compute_confusion_matrix(predictions, labels.cpu().data.numpy(), self.cf.num_classes,
                                                     self.cf.void_class)
                    confm_list = map(operator.add, confm_list, confm)
                    self.stats.train.loss = train_loss.avg / (w*h*c)

                    # Save stats
                    self.save_stats_batch((epoch - 1) * train_num_batches + i)

                    # Update epoch messages
                    self.update_epoch_messages(epoch_bar, global_bar, train_num_batches,epoch, i)

                # Save stats
                self.stats.train.conf_m = confm_list
                self.compute_stats(np.asarray(confm_list),train_loss)
                self.save_stats_epoch(epoch)

                # Validate epoch
                self.validate_epoch(valid_set, valid_loader, criterion, early_Stopping, epoch, global_bar)

                # Update scheduler
                if scheduler is not None:
                    scheduler.step(self.stats.val.loss)

                # Saving model if needed
                self.model.net.save(self.stats)

                # Update display values
                self.update_messages(epoch, epoch_time)

                if self.stop:
                    return

            # Save model without training
            if self.cf.epochs == 0:
                self.model.save_model(self.model.net)
Beispiel #7
0
def Train(cf, sess, sb):
    #Path definitions
    train_image_path = os.path.join(cf.train_dataset_path,
                                    cf.train_folder_names[0])
    train_gt_path = os.path.join(cf.train_dataset_path,
                                 cf.train_folder_names[1])
    valid_image_path = os.path.join(cf.valid_dataset_path,
                                    cf.valid_folder_names[0])
    valid_gt_path = os.path.join(cf.valid_dataset_path,
                                 cf.valid_folder_names[1])
    trainable_var = tf.trainable_variables()
    # Training dataset set up
    train_set = Data_loader(cf, train_image_path, cf.train_samples,
                            cf.size_image_train, train_gt_path)
    train_set.Load_dataset(cf.train_batch_size)
    # Validation dataset set up
    valid_set = Data_loader(cf, valid_image_path, cf.valid_samples_epoch,
                            cf.size_image_valid, valid_gt_path)
    valid_set.Load_dataset(cf.valid_batch_size)
    # Simbol creation for metrics and statistics
    train_stats = Statistics(cf.train_batch_size, sb)
    valid_stats = Statistics(cf.valid_batch_size, sb)
    # More summary information to add
    #tf.summary.scalar("Mean_loss", train_mLoss)
    #img_conf_mat = tf.placeholder(tf.uint8, shape=[None, 480, 640, 3], name="conf_mat")
    tf.summary.scalar("Mean_IoU/train",
                      train_stats.mean_IoU,
                      collections=['train'])
    tf.summary.scalar("Mean_Acc/train",
                      train_stats.accuracy_class,
                      collections=['train'])
    tf.summary.scalar("Mean_IoU/train_valid",
                      valid_stats.mean_IoU,
                      collections=['train_valid'])
    tf.summary.scalar("Mean_Acc/train_valid",
                      valid_stats.accuracy_class,
                      collections=['train_valid'])

    train_writer = sb.tensorBoard.save(cf.exp_folder + cf.log_path + 'train/',
                                       sess)
    val_writer = sb.tensorBoard.save(
        cf.exp_folder + cf.log_path + 'train_valid/', sess)

    # Early stopping
    if cf.early_stopping:
        e_stop = Early_Stopping(cf.patience)
    # Training
    feed_dict = []
    stop = False
    epoch = 1

    # Epoch loop
    while epoch < cf.epochs + 1 and not stop:
        epoch_time = time.time()
        if cf.shuffle:
            train_set.Shuffle()
            valid_set.Shuffle()
        loss_per_batch = np.zeros(train_set.num_batches, dtype=np.float32)
        conf_mat = np.zeros((cf.num_classes, cf.num_classes), dtype=np.float32)
        # initialize/reset the running variables
        sess.run(train_stats.running_vars_initializer)
        #Progress bar
        prog_bar = ProgressBar(train_set.num_batches)
        #Dataset batch loop
        for i in range(train_set.num_batches):
            batch_x, batch_y = train_set.Next_batch(cf.train_batch_size,
                                                    crop=True)
            feed_dict = {
                sb.model.simb_image: batch_x,
                sb.model.simb_gt: batch_y,
                sb.model.simb_is_training: True
            }
            simbol_list = [
                sb.train_op, sb.loss_fun, sb.model.annotation_pred,
                train_stats.update_IoU, train_stats.update_acc_class,
                train_stats.conf_matrix_batch
            ]
            sess_return = sess.run(simbol_list, feed_dict)
            loss_per_batch[i] = sess_return[1]
            #pred = sess_return[2]
            conf_mat += sess_return[5]
            prog_bar.update()
        # Epoch train summary info
        conf_mat = conf_mat / train_set.num_batches
        img_conf_mat = confm_metrics2image(conf_mat, cf.labels)
        img_conf_mat = tf.expand_dims(img_conf_mat, 0)
        tf.summary.image("conf_mat/train",
                         img_conf_mat,
                         max_outputs=2,
                         collections=['train'])
        train_mLoss = np.mean(np.asarray(loss_per_batch))
        summary_op_train = sb.tensorBoard.set_up('train')
        mIoU_train, mAcc_train, summary_train = sess.run([
            train_stats.mean_IoU, train_stats.accuracy_class, summary_op_train
        ], feed_dict)
        train_set.Reset_Offset()

        # Validation in train
        if cf.valid_samples_epoch > 0:
            conf_mat = np.zeros((cf.num_classes, cf.num_classes),
                                dtype=np.float32)
            valid_loss_batch = np.zeros(valid_set.num_batches,
                                        dtype=np.float32)
            sess.run(valid_stats.running_vars_initializer)
            for i in range(valid_set.num_batches):
                batch_x, batch_y = valid_set.Next_batch(cf.valid_batch_size)
                feed_dict = {
                    sb.model.simb_image: batch_x,
                    sb.model.simb_gt: batch_y,
                    sb.model.simb_is_training: False
                }
                simbol_list = [
                    sb.loss_fun, sb.model.annotation_pred,
                    valid_stats.update_IoU, valid_stats.update_acc_class,
                    valid_stats.conf_matrix_batch
                ]
                sess_return = sess.run(simbol_list, feed_dict)
                valid_loss_batch[i] = sess_return[0]
                pred = sess_return[1]
                conf_mat += sess_return[4]
            conf_mat = conf_mat / train_set.num_batches
            img_conf_mat = confm_metrics2image(conf_mat, cf.labels)
            img_conf_mat = tf.expand_dims(img_conf_mat, 0)
            tf.summary.image("conf_mat/train_valid",
                             img_conf_mat,
                             max_outputs=2,
                             collections=['train_valid'])
            summary_op_val = sb.tensorBoard.set_up('train_valid')
            mIoU_valid, mAcc_valid, sammary_val = sess.run([
                valid_stats.mean_IoU, valid_stats.accuracy_class,
                summary_op_val
            ])
            valid_mLoss = np.mean(np.asarray(valid_loss_batch))
            valid_set.Reset_Offset()

        # Screen display
        train_writer.add_summary(summary_train, epoch)
        val_writer.add_summary(sammary_val, epoch)
        epoch_time = time.time() - epoch_time
        print("Epoch: %d, Time: %ds \n\t Train_loss: %g, mIoU: %g, mAcc: %g" %
              (epoch, epoch_time, train_mLoss, mIoU_train, mAcc_train))
        if cf.valid_samples_epoch > 0:
            print("\t Valid_loss: %g, mIoU: %g, mAcc: %g" %
                  (valid_mLoss, mIoU_valid, mAcc_valid))
            sb.model.modelIO.Save(cf, sess, train_mLoss, mIoU_train,
                                  mAcc_train, valid_mLoss, mIoU_valid,
                                  mAcc_valid)
            if cf.early_stopping:
                stop = e_stop.Check(cf.save_condition, train_mLoss, mIoU_train,
                                    mAcc_train, valid_mLoss, mIoU_valid,
                                    mAcc_valid)
        else:
            sb.model.modelIO.Save(cf, sess, train_mLoss, mIoU_train,
                                  mAcc_train)
            if cf.early_stopping:
                stop = e_stop.Check(cf.save_condition, train_mLoss, mIoU_train,
                                    mAcc_train)
        epoch += 1