Beispiel #1
0
def get_models(finalDepth, traces, startValue, step, encoder, maxNumModels=1):
    results = []
    i = startValue
    fg = encoder(i, traces)
    fg.encodeFormula()
    while len(results) < maxNumModels and i < finalDepth:
        solverRes = fg.solver.check()
        if not solverRes == sat:
            logging.debug("not sat for i = {}".format(i))
            i += step
            fg = encoder(i, traces)
            fg.encodeFormula()
        else:
            solverModel = fg.solver.model()
            formula = fg.reconstructWholeFormula(solverModel)
            logging.info("found formula {}".format(formula.prettyPrint()))
            #print("found formula {}".format(formula))
            formula = Formula.normalize(formula)
            logging.info("normalized formula {}".format(formula))
            if formula not in results:
                results.append(formula)

            #prevent current result from being found again
            block = []
            # pdb.set_trace()
            # print(m)
            infVariables = fg.getInformativeVariables()

            logging.debug("informative variables of the model:")
            for v in infVariables:
                logging.debug((v, solverModel[v]))
            logging.debug("===========================")
            for d in solverModel:
                # d is a declaration
                if d.arity() > 0:
                    raise Z3Exception(
                        "uninterpreted functions are not supported")
                # create a constant from declaration
                c = d()
                if is_array(c) or c.sort().kind() == Z3_UNINTERPRETED_SORT:
                    raise Z3Exception(
                        "arrays and uninterpreted sorts are not supported")
                block.append(c != solverModel[d])
            fg.solver.add(Or(block))
    return results
Beispiel #2
0
def get_models(
        traces,
        startDepth=1,
        maxDepth=float("inf"),
        step=1,
        optimizeDepth=float("inf"),
        optimize='count',
        minScore=0,
        encoder=DagSATEncoding,
        maxNumModels=1,
        timeout=float("inf"),
):
    if optimizeDepth < maxDepth and optimize is None:
        logging.warning("Optimize objective not set. Ignoring optimization.")
    tictoc_z3, time_z3 = TicToc(), 0
    tictoc_total = TicToc()
    tictoc_total.tic()
    results = []
    i = startDepth
    fg = encoder(i, traces)
    fg.encodeFormula(optimize=(optimize if i >= optimizeDepth else None))

    while len(results) < maxNumModels and i < maxDepth:
        if fg.set_timeout(timeout - tictoc_total.tocvalue()) <= 0: break
        tictoc_z3.tic()
        solverRes = fg.solver.check()
        time_z3 += tictoc_z3.tocvalue()
        acceptFormula = False
        if solverRes == unsat:
            logging.debug(f"not sat for i = {i}")
        elif solverRes != sat:
            logging.debug(f"unknown for i = {i}")
            break
        else:
            acceptFormula = True
            solverModel = fg.solver.model()
            formula = fg.reconstructWholeFormula(solverModel)
            if fg.optimize:
                score = traces.get_score(formula, fg.optimize)
                if score < minScore:
                    acceptFormula = False
                    logging.debug(
                        f"score too low for i = {i} ({fg.optimize}={score})")
        if not acceptFormula:
            i += step
            fg = encoder(i, traces)
            fg.encodeFormula(
                optimize=(optimize if i >= optimizeDepth else None))
        else:
            if fg.optimize:
                logging.info(
                    f"found formula {formula.prettyPrint()} ({fg.optimize}={score})"
                )
            else:
                logging.info(f"found formula {formula.prettyPrint()}")
            #print(f"found formula {formula}")
            formula = Formula.normalize(formula)
            logging.info(f"normalized formula {formula}")
            if formula not in results:
                results.append(formula)

            #prevent current result from being found again
            block = []
            # pdb.set_trace()
            # print(m)
            infVariables = fg.getInformativeVariables()

            logging.debug("informative variables of the model:")
            for v in infVariables:
                logging.debug((v, solverModel[v]))
            logging.debug("===========================")
            for d in solverModel:
                # d is a declaration
                if d.arity() > 0:
                    raise Z3Exception(
                        "uninterpreted functions are not supported")
                # create a constant from declaration
                c = d()
                if is_array(c) or c.sort().kind() == Z3_UNINTERPRETED_SORT:
                    raise Z3Exception(
                        "arrays and uninterpreted sorts are not supported")
                block.append(c != solverModel[d])
            fg.solver.add(Or(block))

    # time_total = tictoc_total.tocvalue()
    # time_z3
    # print(time_z3, time_total)
    return results