Beispiel #1
0
from model.lstm_model import LSTMModel
from model.persistence.model_persistence import ModelEvaluation
from utils.nn_utils import NNUtils
from utils.config_loader import readConfig


def showProgress(currentStep, totalSteps, epoch):
    perc = (float(currentStep) / float(totalSteps)) * 100.0
    temp = perc / 10
    sys.stdout.write('\r[{0}] {1}% - {2}/{3} - Epoch {4}'.format(
        '#' * int(temp), (perc), currentStep, totalSteps, epoch))
    sys.stdout.flush()


print 'loading configuration'
config, modelConfig = readConfig()
print 'configuration loaded'

print 'loading word embeddings : {} - embedding size : {}'.format(
    modelConfig.embeddingType, modelConfig.embeddingSize)
sentenceLoader, predicateLoader = getEmbeddings()

print 'sentenceLoader shape {}'.format(sentenceLoader.weights.shape)

nnUtils = NNUtils.Instance()
nnUtils.setWordUtils(sentenceLoader.word2idx, sentenceLoader.idx2word)
print 'loaded'

print 'loading corpus'
csvFiles = [
    config.convertedCorpusDir + '/propbank_training.csv',
Beispiel #2
0
                sentences, predicates, aux, roles)
            # the order is important
            structure.append((sentences, predicates, aux, roles))
        return structure

    def convertAndSave(self, featureFile):
        temp = self.convert()
        self.save(temp, featureFile)


if __name__ == '__main__':

    from embeddings.emb_loader import W2VModel
    from utils.config_loader import readConfig

    readConfig()

    options = {
        "npzFile": "../../resources/embeddings/wordEmbeddings.npy",
        "npzModel": "../../resources/embeddings/wordEmbeddings",
        "vecFile": "../../resources/embeddings/model.vec",
        "w2idxFile": "../../resources/embeddings/vocabulary.json"
    }
    model = W2VModel()
    model.setResources(options)
    loader = EmbeddingLoader(model)
    loader.process()
    csvFiles = [
        '../../resources/corpus/converted/propbank_training.csv',
        '../../resources/corpus/converted/propbank_test.csv'
    ]