Beispiel #1
0
 def evaluation(self, loader: Loader, epochs: int, imshow=False):
     # for debugging purposes
     val_accuracy = []
     loss = []
     for i, (image_batch, seg_batch) in enumerate(loader.get_minibatch(train=False, Aug=False)):
         pred = self.call(image_batch.astype(np.float32), training=False)
         loss.append(self.loss(seg=seg_batch.astype(np.float32), predictions=pred))
         val_accuracy.append(Jaccard_Index(output_batch=pred, gt_batch=seg_batch, visual=imshow))
         if i == epochs:
             return np.mean(val_accuracy), np.mean(loss)
Beispiel #2
0
 def evaluation_with_assaf(self, loader: Loader, epochs:int, imshow=True):
     # for debugging purposes
     seg_measure = SegMeasure()
     val_accuracy = []
     loss = []
     for i, (image_batch, seg_batch) in enumerate(loader.get_minibatch(train=False)):
         pred = self.call(image_batch.astype(np.float32), training=False)
         loss.append(self.loss(seg=seg_batch.astype(np.float32), predictions=pred))
         val_accuracy.append(seg_measure(seg_batch, pred).numpy())
         if i == epochs:
             return np.mean(val_accuracy), np.mean(loss)
Beispiel #3
0
 def _train_on_batch(self, image_batch, seg_batch, visual):
     sub_image = crop(image_batch=image_batch) # crop function is used to divide the image to tiles
     sub_seg = crop(image_batch=seg_batch)
     train_acc = []
     train_lost = []
     for i in range(self.divide_by):  # height
             for j in range(self.divide_by):  # width
                 train_acc_val, train_loss_val = super(TilesUnet, self).\
                     _train_on_batch(image_batch=sub_image[:, j + 2 * i, :, :],
                                     seg_batch=sub_seg[:, j + 2 * i, :, :], visual=visual)
                 train_acc.append(train_acc_val)
                 train_lost.append(train_loss_val)
     return np.mean(train_acc), np.mean(train_lost)
Beispiel #4
0
    def validation(self, loader: Loader):
            """
            validation function that computes the Jaccard Index accuracy on the val data set
            :param loader: generator of data
            :return: mean of accuracy and loss
            """
            seg_measure = SegMeasure()
            val_accuracy = []
            loss = []
            for i, (image_batch, seg_batch) in enumerate(loader.get_minibatch(train=False, Aug=config.Augment)):
                pred = self.call(image_batch.astype(np.float32), training=False)
                loss.append(self.loss(seg=seg_batch.astype(np.float32), predictions=pred))
                if config.use_assaf:
                    val_accuracy.append(seg_measure(gt=seg_batch, net_output=pred))
                else:
                    val_accuracy.append(Jaccard_Index(output_batch=pred, gt_batch=seg_batch))

                if i == config.validation_steps:
                    return np.mean(val_accuracy), np.mean(loss)
Beispiel #5
0
 def _train_on_batch(self, image_batch, seg_batch, visual):
     mirror = False
     if random.random() < config.mirror_threshold:
         #  we randomly insert mirrored cropped images to the dataset
         mirrored_and_cropped_images, mirrored_and_cropped_seg = mirror_image(image_batch=image_batch,
                                                                              seg_batch=seg_batch,
                                                                              divide_by=self.divide_by)
         mirror = True
     train_acc = []
     train_lost = []
     for i in range(self.divide_by):  # height
         for j in range(self.divide_by):  # width
             if mirror:
                 train_acc_val, train_loss_val = super(TilesUnetMirrored, self). \
                     _train_on_batch(image_batch=mirrored_and_cropped_images[:, j + 2 * i, :, :],
                                     seg_batch=mirrored_and_cropped_seg[:, j + 2 * i, :, :], visual=visual)
             else:
                 train_acc_val, train_loss_val = super(TilesUnetMirrored, self). \
                     _train_on_batch(image_batch=image_batch.astype(np.float32),
                                     seg_batch=seg_batch.astype(np.float32), visual=visual)
             train_acc.append(train_acc_val)
             train_lost.append(train_loss_val)
     return np.mean(train_acc), np.mean(train_lost)
Beispiel #6
0
    def fit(self, logger, loader: Loader, callbacks, epochs:int, steps_per_epoch: int,
            val_freq=2, val_steps=4):
        """
        training loop that trains the model and controls the augmentation, learning rate and the mirroring capability.
        the training loops stops on two conditions:
            A. the val accuracy converges over N consecutive trials
            B. ran for "epochs" number of epochs

        :param logger: logger to log information
        :param loader: generator of data
        :param callbacks: a dict of tensorboard callbacks and checkpoint callbacks
        :param epochs: number of epochs to run
        :param steps_per_epoch: number of iterations per epoch
        :param val_freq: frequency of epochs to preform validation
        :param val_steps: number of steps to preform in validation
        """
        Tensorcallback = callbacks['tensorboard']
        Checkpoint = callbacks['checkpoint']
        info("----- Start Train -----", logger)
        best_val_acc = 0
        consecutive_trials_val_acc_unchanged = 0
        for epoch in range(epochs):
            if config.Augment:
                if best_val_acc > 0.7:   # a threshold for Curriculum learning
                    config.elastic_threshold = min(0.5, 1 * epoch / epochs)  # for the use of elastic threshold
                if best_val_acc > 0.65:
                    config.mirror_threshold = min(0.5, 1 * epoch / epochs)  # for the use of mirroring
            elif epoch <= 1:  # insert randomly augmented images
                config.mirror_threshold = 0.5  # for the use of mirroring
                config.elastic_threshold = 0.5  # for the use of elastic threshold
            train_accuracy = []
            train_loss = []
            self.optimizer.learning_rate = config.learning_rate_scheduler(epoch)  # learning rate scheduler
            for iteration, (image_batch, seg_batch) in enumerate(loader.get_minibatch(Aug=config.Augment)):
                acc_val, loss_val = self._train_on_batch(image_batch=image_batch, seg_batch=seg_batch,
                                                         visual=epoch % 5 == 0 and config.visual)
                train_accuracy.append(acc_val)
                train_loss.append(loss_val)
                if iteration == steps_per_epoch:
                    break
            train_loss_mean = np.mean(train_loss)
            train_accuracy_mean = np.mean(train_accuracy)
            if epoch % val_freq == 0:  # output validation accuracy
                val_accuracy, val_loss = self.validation(loader=loader)
                info("--- Epoch {}/{}: train accuracy"
                     " {}, val accuracy {} and loss {} with learning rate {}--- "
                     .format(epoch, epochs, train_accuracy_mean, val_accuracy, train_loss_mean,
                             self.optimizer.learning_rate.numpy()), logger)
                logs = {'acc': train_accuracy_mean, 'loss': train_loss_mean, 'val_acc': val_accuracy,
                        'val_loss': val_loss}
                Tensorcallback.on_epoch_end(epoch=epoch, logs=logs)
                Checkpoint.on_epoch_end(epoch=epoch, logs=logs)
                if best_val_acc < val_accuracy:
                    best_val_acc = val_accuracy
                    consecutive_trials_val_acc_unchanged = 0
                    info("-- Epoch {}/{} : best val so far is {} ---".format(epoch, epochs, best_val_acc),
                         logger)
                else:
                    consecutive_trials_val_acc_unchanged += 1
            if consecutive_trials_val_acc_unchanged >= config.converged_threshold:  # check if val converged
                info("--- Epoch {}/{} : val acc converged for {} consecutive trials, terminating training... ---"
                     .format(epoch, epochs, config.converged_threshold), logger)
                break
        Tensorcallback.on_train_end('_')