Beispiel #1
0
    by_train = by_train.astype('int32')
    bx_test = bx_test.astype('float32')
    by_test = by_test.astype('int32')

    # [DEBUG]
    print(' : Load the backdoor dataset [{}]'.format(args.poisonp))
    print('   Train : {} in [{}, {}]'.format(bx_train.shape, bx_train.min(),
                                             bx_train.max()))
    print('   Test  : {} in [{}, {}]'.format(bx_test.shape, bx_test.min(),
                                             bx_test.max()))

    # blend the backdoor data, and compose into the tensorflow datasets
    bd_x_train = np.concatenate((x_train, bx_train), axis=0)
    bd_y_train = np.concatenate((y_train, by_train), axis=0)
    bd_train_dataset = datasets.convert_to_tf_dataset(bd_x_train,
                                                      bd_y_train,
                                                      batch=batch_size,
                                                      shuffle=True)
    bd_ctest_dataset = datasets.convert_to_tf_dataset(x_test,
                                                      y_test,
                                                      batch=batch_size)
    bd_btest_dataset = datasets.convert_to_tf_dataset(bx_test,
                                                      by_test,
                                                      batch=batch_size)
    print(' : Construct them into the TF datasets')

    # # compute the baseline accuracy
    baseline_acc = _validate(base_model, bd_ctest_dataset)
    baseline_bacc = _validate(base_model, bd_btest_dataset)
    print(
        ' : Baseline accuracies on clean [{:.4f}] / backdoor [{:.4f}]'.format(
            baseline_acc, baseline_bacc))
Beispiel #2
0
    y_poison = y_poison.astype('int32')

    # enforce the poisons to be within [0, 1] range
    x_poison = np.clip(x_poison, 0., 1.)

    # [DEBUG]
    print(' : Load the poison data from [{}]'.format(args.poisonp))
    print('   Train : {} in [{}, {}]'.format(x_train.shape, x_train.min(),
                                             x_train.max()))
    print('   Test  : {} in [{}, {}]'.format(x_test.shape, x_test.min(),
                                             x_test.max()))
    print('   Poison: {} in [{}, {}]'.format(x_poison.shape, x_poison.min(),
                                             x_poison.max()))

    # compose into the tensorflow datasets
    clean_validset = datasets.convert_to_tf_dataset(x_test, y_test)

    # load the baseline acc
    baseline_acc = _validate(baseline_model, clean_validset)
    print(' : Baseline model\'s accuracy is [{}]'.format(baseline_acc))

    # --------------------------------------------------------------------------
    #   Substitute the numpy module used by JAX (when privacy)
    # --------------------------------------------------------------------------
    import jax.numpy as np

    # --------------------------------------------------------------------------
    #   Set the location to store...
    # --------------------------------------------------------------------------
    # extract the setup
    poison_task = args.poisonp.split('/')[3]
        (x_train, y_train), (x_test, y_test), (x_poison, y_poison) = \
            datasets.load_slab_poisons(args.poisonp)
    else:
        assert False, ('Error: unknown format file - {}'.format(args.poisonp))

    # enforce the poisons to be within [0, 1] range
    x_poison = np.clip(x_poison, 0., 1.)

    # [DEBUG]
    print (' : Load the poison data from [{}]'.format(args.poisonp))
    print ('   Train : {} in [{}, {}]'.format(x_train.shape, x_train.min(), x_train.max()))
    print ('   Test  : {} in [{}, {}]'.format(x_test.shape, x_test.min(), x_test.max()))
    print ('   Poison: {} in [{}, {}]'.format(x_poison.shape, x_poison.min(), x_poison.max()))

    # compose into the tensorflow datasets
    clean_validset = datasets.convert_to_tf_dataset(x_test, y_test)

    # to examine the training time accuracy on clean and poison samples
    ctrain_examine = datasets.convert_to_tf_dataset(x_train, y_train)
    ptrain_examine = datasets.convert_to_tf_dataset(x_poison, y_poison)

    # load the baseline acc
    baseline_acc = _validate(baseline_model, clean_validset)
    print (' : Baseline model\'s accuracy is [{}]'.format(baseline_acc))


    # --------------------------------------------------------------------------
    #   Set the location to store...
    # --------------------------------------------------------------------------
    # extract the setup
    poison_task = args.poisonp.split('/')[3]