def build(self):
     temp = 100
     network1 = DistillationWrapper(resnet.ResNet18().to(self.device), temp)
     self.target_instance = DefenseInstance(model=network1)
     network2 = DistillationWrapper(
         ConvMedBig(device=self.device,
                    dataset='cifar10',
                    width1=4,
                    width2=4,
                    width3=4,
                    linear_size=200,
                    input_channel=3,
                    with_normalization=True), temp)
     instance = DefenseInstance(model=network2, detector=None)
     return instance
 def build(self):
     import zoo.saved_instances.Odds.cifar_model as cifar_model
     import zoo.saved_instances.Odds.robustify as robustify
     classifier = cifar_model.cifar10(128, pretrained=True, map_location=None, trained_adv=False).to(self.device)
     detector = robustify.OddsAreOdd(classifier=classifier)
     instance = DefenseInstance(model=classifier, detector=detector)
     return instance
 def build(self):
     Jpegdefense = JpegCompression((0, 1), 30)
     RSdefense = ReverseSigmoid()
     network1 = SimpleNet(in_ch=1, out_ch=10)
     classifier = DAGModule([Jpegdefense, network1, RSdefense], device=self.device)
     instance = DefenseInstance(model=classifier, detector=None)
     return instance
Beispiel #4
0
 def build(self):
     Jpegdefense = JpegCompression((0, 1), COMPRESSION_QUALITY)
     RSdefense = ReverseSigmoid()
     classifier = DAGModule([Jpegdefense, self.network, RSdefense],
                            device=self.device)
     instance = DefenseInstance(model=classifier, detector=None)
     return instance
 def build(self):
     from zoo.saved_instances.TurningWeakness.vgg19 import vgg19, TurningWeaknessDetector
     classifier = vgg19()
     classifier.features = torch.nn.DataParallel(classifier.features)
     classifier.to(self.device)
     detector = TurningWeaknessDetector(classifier=classifier)
     instance = DefenseInstance(model=classifier, detector=detector)
     return instance
 def build(self):
     network1 = SimpleNet1(in_ch=1, out_ch=10)
     network2 = SimpleNet2(in_ch=1, out_ch=10)
     detector1 = SimpleDetector(network1)
     module1 = DAGModule([network1, network2], dependency=[[-1], [0]], output=[1], device=self.device)
     module2 = DAGModule([network1, detector1], dependency=[[-1], [0]], output=[1], device=self.device)
     instance = DefenseInstance(model=module1, detector=module2)
     return instance
 def build(self):
     ITdefense = InputTransformation(degrees=(-30, 30))
     # Varmin = VarianceMinimization(prob=0.3, norm=2)
     # Jpegdefense = JpegCompression((0, 1), 30)
     # RSdefense = ReverseSigmoid()
     network1 = SimpleNet(in_ch=1, out_ch=10)
     classifier = DAGModule([ITdefense, network1], device=self.device)
     instance = DefenseInstance(model=classifier, detector=None)
     return instance
 def build(self):
     from zoo.saved_instances.JEM.CCF_model import CCF
     # nsteps = 10
     classifier = CCF(28, 10, None, dropout_rate=0, n_classes=10).to(self.device)
     # classifier = WrapperModel(f, nsteps).to(self.device)
     # classifier = gradient_attack_wrapper(f)
     # classifier = f.to(self.device)
     # classifier = nn.DataParallel(classifier).to(self.device)
     instance = DefenseInstance(model=classifier, detector=None)
     return instance
 def build(self):
     from zoo.saved_instances.JEM.CCF_model import CCF
     # nsteps = 10
     ITdefense = InputTransformation(degrees=(-ROTATION_DEGREES, ROTATION_DEGREES))
     classifier = DAGModule([ITdefense, self.network], device=self.device)
     # classifier = WrapperModel(f, nsteps).to(self.device)
     # classifier = gradient_attack_wrapper(f)
     # classifier = f.to(self.device)
     # classifier = nn.DataParallel(classifier).to(self.device)
     instance = DefenseInstance(model=classifier, detector=None)
     return instance
 def build(self):
     from zoo.saved_instances.JEM.CCF_model import CCF
     Jpegdefense = JpegCompression((0, 1), COMPRESSION_QUALITY)
     RSdefense = ReverseSigmoid()
     classifier = DAGModule([Jpegdefense, self.network, RSdefense], device=self.device)
     # classifier = WrapperModel(f, nsteps).to(self.device)
     # classifier = gradient_attack_wrapper(f)
     # classifier = f.to(self.device)
     # classifier = nn.DataParallel(classifier).to(self.device)
     instance = DefenseInstance(model=classifier, detector=None)
     return instance
 def build(self):
     network1 = ConvMedBig(device=self.device,
                           dataset='cifar10',
                           width1=4,
                           width2=4,
                           width3=4,
                           linear_size=200,
                           input_channel=3,
                           with_normalization=True)
     classifier = DAGModule([network1], device=self.device)
     instance = DefenseInstance(model=classifier, detector=None)
     return instance
 def build(self):
     TEdefense = ThermometerEncoding((0, 1), num_space=10)
     network1 = ConvMedBig(device=self.device,
                           dataset='cifar10',
                           width1=4,
                           width2=4,
                           width3=2,
                           linear_size=200,
                           input_channel=30,
                           with_normalization=False)
     classifier = DAGModule([TEdefense, network1], device=self.device)
     instance = DefenseInstance(model=classifier, detector=None)
     return instance
 def build(self):
     import zoo.saved_instances.CCAT.common.state as state
     from zoo.saved_instances.CCAT.detector import CCATDetector
     import sys
     import os
     dir_path = os.path.dirname(os.path.realpath(__file__))
     sys.path.insert(1, dir_path + '/saved_instances/CCAT')
     import zoo.saved_instances.CCAT.models as models
     model_file = osp.join(self.path, self.name, "classifier.model")
     state = state.State.load(model_file)
     classifier = state.model.to(self.device)
     detector = CCATDetector(classifier, 0.4)
     instance = DefenseInstance(model=classifier, detector=detector)  # , detector=detector)
     return instance
 def build(self):
     Jpegdefense = JpegCompression((0, 1), 60)
     RSdefense = ReverseSigmoid()
     network1 = ConvMedBig(device=self.device,
                           dataset='cifar10',
                           width1=4,
                           width2=4,
                           width3=4,
                           linear_size=200,
                           input_channel=3,
                           with_normalization=True)
     classifier = DAGModule([Jpegdefense, network1, RSdefense],
                            device=self.device)
     instance = DefenseInstance(model=classifier, detector=None)
     return instance
 def build(self):
     from zoo.wideresnet import WideResNetNormalize
     from zoo.saved_instances.FeatureScatter.attack_methods import Attack_FeaScatter
     config_feature_scatter = {
         'train': True,
         'epsilon': 8.0 / 255 * 2,
         'num_steps': 1,
         'step_size': 8.0 / 255 * 2,
         'random_start': True,
         'ls_factor': 0.5,
     }
     basic_net = WideResNetNormalize(28, 10, widen_factor=10, dropRate=0.0)
     net = Attack_FeaScatter(basic_net, config_feature_scatter)
     net = torch.nn.DataParallel(net)
     instance = DefenseInstance(model=net, detector=None)
     return instance
 def build(self):
     ITdefense = InputTransformation(degrees=(-30, 30))
     TEdefense = ThermometerEncoding((0, 1), num_space=10)
     Jpegdefense = JpegCompression((0, 1), 30)
     RSdefense = ReverseSigmoid()
     network1 = SimpleNet(in_ch=1, out_ch=10)
     network2 = SimpleNet(in_ch=10, out_ch=10)
     network3 = SimpleNet(in_ch=1, out_ch=10)
     module1 = DAGModule([TEdefense, network2], device=self.device)
     module2 = DAGModule([Jpegdefense, network1, RSdefense], device=self.device)
     module3 = DAGModule([ITdefense, network3], device=self.device)
     losscomb = LossCombine()
     classifier = DAGModule([module1, module2, module3, losscomb], dependency=[[-1], [-1], [-1], [0, 1, 2]],
                          output=[3], device=self.device)
     instance = DefenseInstance(model=classifier)
     return instance
class Model8(CIFARInstance):
    def __init__(self, load=False, device='cuda'):
        name = 'model8'
        self.target_instance = None
        super(Model8, self).__init__(name, load, device)

    def build(self):
        temp = 100
        network1 = DistillationWrapper(resnet.ResNet18().to(self.device), temp)
        self.target_instance = DefenseInstance(model=network1)
        network2 = DistillationWrapper(
            ConvMedBig(device=self.device,
                       dataset='cifar10',
                       width1=4,
                       width2=4,
                       width3=4,
                       linear_size=200,
                       input_channel=3,
                       with_normalization=True), temp)
        instance = DefenseInstance(model=network2, detector=None)
        return instance

    def train(self, train_loader, eps, save=True):
        train_loss = nn.CrossEntropyLoss()
        optimizer = optim.Adam(
            self.target_instance.model.train_model.parameters(), lr=0.001)
        nb_epoches = 25
        attack = None
        kwargs = {}
        self.target_instance.train()
        self.target_instance.advfit(train_loader,
                                    loss_fcn=train_loss,
                                    optimizer=optimizer,
                                    epsilon=eps,
                                    attack=attack,
                                    nb_epochs=nb_epoches,
                                    ratio=0.6,
                                    **kwargs)
        self.target_instance.eval()

        nb_epoches = 25
        optimizer = optim.Adam(self.instance.model.train_model.parameters(),
                               lr=0.001)
        defensive_distillation = DefensiveDistillation(self.target_instance)
        defensive_distillation.fit(self.instance,
                                   loader=train_loader,
                                   optimizer=optimizer,
                                   nb_epochs=nb_epoches,
                                   temp=5)

        if save:
            self._save()
        return
 def build(self):
     ITdefense = InputTransformation(degrees=(-30, 30))
     TEdefense = ThermometerEncoding((0, 1), num_space=10)
     Jpegdefense = JpegCompression((0, 1), 30)
     RSdefense = ReverseSigmoid()
     network1 = ConvMedBig(device=self.device,
                           dataset='cifar10',
                           width1=4,
                           width2=4,
                           width3=4,
                           linear_size=200,
                           input_channel=3,
                           with_normalization=True)
     network2 = ConvMedBig(device=self.device,
                           dataset='cifar10',
                           width1=4,
                           width2=4,
                           width3=2,
                           linear_size=200,
                           input_channel=30,
                           with_normalization=False)
     network3 = ConvMedBig(device=self.device,
                           dataset='cifar10',
                           width1=4,
                           width2=4,
                           width3=4,
                           linear_size=200,
                           input_channel=3,
                           with_normalization=True)
     module1 = DAGModule([TEdefense, network2], device=self.device)
     module2 = DAGModule([Jpegdefense, network1, RSdefense],
                         device=self.device)
     module3 = DAGModule([ITdefense, network3], device=self.device)
     losscomb = LossCombine()
     classifier = DAGModule([module1, module2, module3, losscomb],
                            dependency=[[-1], [-1], [-1], [0, 1, 2]],
                            output=[3],
                            device=self.device)
     instance = DefenseInstance(model=classifier)
     return instance
 def build(self):
     network = ConvMedBig(device=self.device,
                          dataset='cifar10',
                          width1=4,
                          width2=4,
                          width3=4,
                          linear_size=200,
                          input_channel=3,
                          with_normalization=True)
     network1 = ConvMedBig1(network)
     network2 = ConvMedBig2(network)
     detector1 = SimpleDetector(network1, 200)
     module1 = DAGModule([network1, network2],
                         dependency=[[-1], [0]],
                         output=[1],
                         device=self.device)
     module2 = DAGModule([network1, detector1],
                         dependency=[[-1], [0]],
                         output=[1],
                         device=self.device)
     classifier = module1
     instance = DefenseInstance(model=classifier, detector=module2)
     # return instance
     return instance
 def build(self):
     TEdefense = ThermometerEncoding((0, 1), num_space=10)
     network1 = SimpleNet(in_ch=10, out_ch=10)
     classifier = DAGModule([TEdefense, network1], device=self.device)
     instance = DefenseInstance(model=classifier, detector=None)
     return instance
 def build(self):
     network1 = SimpleNet(in_ch=1, out_ch=10)
     classifier = DAGModule([network1], device=self.device)
     instance = DefenseInstance(model=classifier, detector=None)
     return instance
 def build(self):
     from zoo.saved_instances.kWTA_0p1_adv import resnet
     classifier = resnet.SparseResNet18(sparsities=[0.1,0.1,0.1,0.1], sparse_func='vol').to(self.device)
     instance = DefenseInstance(model=classifier, detector=None)
     return instance
 def build(self):
     import zoo.saved_instances.EnResNet.enresnet_wideresnet as EWRes
     classifier = EWRes.WideResNet(noise_coef=0.0).cuda()
     instance = DefenseInstance(model=classifier, detector=None)
     return instance
 def build(self):
     network = resnet.SparseResNet18(sparsities=[0.1, 0.1, 0.1, 0.1],
                                     sparse_func='reg').to(self.device)
     classifier = DAGModule([network], device=self.device)
     instance = DefenseInstance(model=classifier, detector=None)
     return instance
 def build(self):
     model = load_model(model_name=self.name, norm='Linf')
     instance = DefenseInstance(model=model.to(self.device), detector=None)
     return instance
 def build(self):
     ITdefense = InputTransformation(degrees=(-ROTATION_DEGREES, ROTATION_DEGREES))
     classifier = DAGModule([ITdefense, self.network], device=self.device)
     instance = DefenseInstance(model=classifier, detector=None)
     return instance
 def build(self):
     from zoo.wideresnet import WideResNet
     classifier = WideResNet(28, 10, widen_factor=10, dropRate=0.0)
     classifier = nn.DataParallel(classifier).cuda()
     instance = DefenseInstance(model=classifier, detector=None)
     return instance