Beispiel #1
0
def loop_and_detect(cam, trt_yolo, conf_th, vis, mjpeg_server):
    """Continuously capture images from camera and do object detection.

    # Arguments
      cam: the camera instance (video source).
      trt_yolo: the TRT YOLO object detector instance.
      conf_th: confidence/score threshold for object detection.
      vis: for visualization.
      mjpeg_server
    """
    fps = 0.0
    tic = time.time()
    while True:
        img = cam.read()
        if img is None:
            break
        boxes, confs, clss = trt_yolo.detect(img, conf_th)
        img = vis.draw_bboxes(img, boxes, confs, clss)
        img = show_fps(img, fps)
        mjpeg_server.send_img(img)
        toc = time.time()
        curr_fps = 1.0 / (toc - tic)
        # calculate an exponentially decaying average of fps number
        fps = curr_fps if fps == 0.0 else (fps * 0.95 + curr_fps * 0.05)
        tic = toc
Beispiel #2
0
def loop_and_detect(cam, trt_yolo, conf_th, vis):

    full_scrn = False
    fps = 0.0
    tic = time.time()
    while True:
        if cv2.getWindowProperty(WINDOW_NAME, 0) < 0:
            break
        img = cam.read()
        if img is None:
            break
        boxes, confs, clss = trt_yolo.detect(img, conf_th)
        img = vis.draw_bboxes(img, boxes, confs, clss)
        img = show_fps(img, fps)
        cv2.imshow(WINDOW_NAME, img)
        toc = time.time()
        curr_fps = 1 / (toc - tic)
        # calculate an exponentially decaying average of fps number
        fps = curr_fps if fps == 0.0 else (fps * 0.95 + curr_fps * 0.05)
        print('Inference Time: %s' % (toc - tic))
        tic = toc
        key = cv2.waitKey(1)
        if key == 27:  # ESC key: quit program
            cv2.imwrite("trt_yolo_result.jpg", img)
            break
        elif key == ord('F') or key == ord('f'):  # Toggle fullscreen
            full_scrn = not full_scrn
            set_display(WINDOW_NAME, full_scrn)
Beispiel #3
0
    def img_callback(self, ros_img):
        """Continuously capture images from camera and do object detection """

        tic = time.time()

        # converts from ros_img to cv_img for processing
        try:
            cv_img = self.bridge.imgmsg_to_cv2(ros_img,
                                               desired_encoding="bgr8")
            rospy.logdebug("ROS Image converted for processing")
        except CvBridgeError as e:
            rospy.loginfo("Failed to convert image %s", str(e))

        if cv_img is not None:
            boxes, confs, clss = self.trt_yolo.detect(cv_img, self.conf_th)

        cv_img = self.vis.draw_bboxes(cv_img, boxes, confs, clss)
        toc = time.time()
        fps = 1.0 / (toc - tic)

        self.publisher(boxes, confs, clss)

        if self.show_img:
            cv_img = show_fps(cv_img, fps)
            cv2.imshow("YOLOv4 DETECTION RESULTS", cv_img)
            cv2.waitKey(1)

        # converts back to ros_img type for publishing
        try:
            overlay_img = self.bridge.cv2_to_imgmsg(cv_img,
                                                    encoding="passthrough")
            rospy.logdebug("CV Image converted for publishing")
            self.overlay_pub.publish(overlay_img)
        except CvBridgeError as e:
            rospy.loginfo("Failed to convert image %s", str(e))
Beispiel #4
0
def loop_and_detect(cap, trt_yolo, result_video, conf_th, vis):
    """Continuously capture images from camera and do object detection.

    # Arguments
      cap: the camera instance (video source).
      trt_yolo: the TRT YOLO object detector instance.
      conf_th: confidence/score threshold for object detection.
      vis: for visualization.
    """
    #full_scrn = False
    fps = 0.0
    tic = time.time()
    frame_width = int(cap.get(3))
    frame_height = int(cap.get(4))
    out = cv2.VideoWriter(result_video, cv2.VideoWriter_fourcc(*'mp4v'), 30,
                          (frame_width, frame_height))
    while True:
        ret, frame = cap.read()

        boxes, confs, clss = trt_yolo.detect(frame, conf_th)
        frame = vis.draw_bboxes(frame, boxes, confs, clss)
        frame = show_fps(frame, fps)

        toc = time.time()
        curr_fps = 1.0 / (toc - tic)
        out.write(frame)
        # calculate an exponentially decaying average of fps number
        fps = curr_fps if fps == 0.0 else (fps * 0.95 + curr_fps * 0.05)
        tic = toc

    cap.release()
    out.release()
Beispiel #5
0
def loop_and_detect(cam, mtcnn, minsize):
    """Continuously capture images from camera and do face detection."""
    full_scrn = False
    fps = 0.0
    tic = time.time()
    while True:
        if cv2.getWindowProperty(WINDOW_NAME, 0) < 0:
            break
        img = cam.read()
        if img is not None:
            dets, landmarks = mtcnn.detect(img, minsize=minsize)
            print('{} face(s) found'.format(len(dets)))
            img = show_faces(img, dets, landmarks)
            img = show_fps(img, fps)
            cv2.imshow(WINDOW_NAME, img)
            toc = time.time()
            curr_fps = 1.0 / (toc - tic)
            # calculate an exponentially decaying average of fps number
            fps = curr_fps if fps == 0.0 else (fps*0.95 + curr_fps*0.05)
            tic = toc
        key = cv2.waitKey(1)
        if key == 27:  # ESC key: quit program
            break
        elif key == ord('F') or key == ord('f'):  # Toggle fullscreen
            full_scrn = not full_scrn
            set_display(WINDOW_NAME, full_scrn)
Beispiel #6
0
def loop_and_detect_console(cam, trt_ssd, conf_th, loop, cls_dict):
    """Continuously capture images from camera and do object detection.

    # Arguments
      cam: the camera instance (video source).
      trt_ssd: the TRT SSD object detector instance.
      conf_th: confidence/score threshold for object detection.
      loop: run continuously
    """
    fps = 0.0
    tic = time.time()
    run_loop = True  # ensure we process the image once
    while run_loop:
        img = cam.read()
        if img is not None:
            boxes, confs, clss = trt_ssd.detect(img, conf_th)
            print(list(zip(list(map(cls_dict.get, clss)), confs, boxes)),
                  end=" ")
            img = show_fps(img, fps)
            toc = time.time()
            curr_fps = 1.0 / (toc - tic)
            print('fps={}'.format(curr_fps))
            # calculate an exponentially decaying average of fps number
            fps = curr_fps if fps == 0.0 else (fps * 0.95 + curr_fps * 0.05)
            tic = toc
            run_loop = loop
Beispiel #7
0
def loop_and_detect(cam, trt_yolov3, conf_th, vis):
    """Continuously capture images from camera and do object detection.

    # Arguments
      cam: the camera instance (video source).
      trt_yolov3: the TRT YOLOv3 object detector instance.
      conf_th: confidence/score threshold for object detection.
      vis: for visualization.
    """
    full_scrn = False
    fps = 0.0
    tic = time.time()
    while True:
        if cv2.getWindowProperty(WINDOW_NAME, 0) < 0:
            break
        img = cam.read()
        if img is not None:
            time_start = time.time()
            boxes, confs, clss = trt_yolov3.detect(img, conf_th)
            print("--------------tf1----------\n",
                  time.time() - time_start, "\n-------------------------\n")
            img = vis.draw_bboxes(img, boxes, confs, clss)
            img = show_fps(img, fps)
            cv2.imshow(WINDOW_NAME, img)
            toc = time.time()
            curr_fps = 1.0 / (toc - tic)
            # calculate an exponentially decaying average of fps number
            fps = curr_fps if fps == 0.0 else (fps * 0.95 + curr_fps * 0.05)
            tic = toc
        key = cv2.waitKey(1)
        if key == 27:  # ESC key: quit program
            break
        elif key == ord('F') or key == ord('f'):  # Toggle fullscreen
            full_scrn = not full_scrn
            set_display(WINDOW_NAME, full_scrn)
def loop_and_display(condition):
    """Continuously capture images from camera and do classification."""
    global s_img, s_probs, s_labels

    full_scrn = False
    fps = 0.0
    tic = time.time()
    while True:
        if cv2.getWindowProperty(WINDOW_NAME, 0) < 0:
            break
        with condition:
            condition.wait()
            img, top_probs, top_labels = s_img, s_probs, s_labels
        show_top_preds(img, top_probs, top_labels)
        img = show_fps(img, fps)
        cv2.imshow(WINDOW_NAME, img)
        toc = time.time()
        curr_fps = 1.0 / (toc - tic)
        # calculate an exponentially decaying average of fps number
        fps = curr_fps if fps == 0.0 else (fps * 0.95 + curr_fps * 0.05)
        tic = toc
        key = cv2.waitKey(1)
        if key == 27:  # ESC key: quit program
            break
        elif key == ord('H') or key == ord('h'):  # Toggle help message
            show_help = not show_help
        elif key == ord('F') or key == ord('f'):  # Toggle fullscreen
            full_scrn = not full_scrn
            set_display(WINDOW_NAME, full_scrn)
Beispiel #9
0
def loop_and_detect(cam, trt_yolo, conf_th, vis):
    """Continuously capture images from camera and do object detection.

    # Arguments
      cam: the camera instance (video source).
      trt_yolo: the TRT YOLO object detector instance.
      conf_th: confidence/score threshold for object detection.
      vis: for visualization.
    """
    full_scrn = False
    fps = 0.0
    tic = time.time()
    while True:
        # if cv2.getWindowProperty(WINDOW_NAME, 0) < 0:
        #     break
        img = cam.read()
        if img is None:
            break
        boxes, confs, clss = trt_yolo.detect(img, conf_th)
        img = vis.draw_bboxes(img, boxes, confs, clss)
        img = show_fps(img, fps)
        # cv2.imshow(WINDOW_NAME, img)
        print(f"{datetime.datetime.now().isoformat()} fps={fps}", flush=True)
        cv2.imwrite("output.jpg", img)
        toc = time.time()
        curr_fps = 1.0 / (toc - tic)
        # calculate an exponentially decaying average of fps number
        fps = curr_fps if fps == 0.0 else (fps * 0.95 + curr_fps * 0.05)
        tic = toc
Beispiel #10
0
def loop_and_detect(camera, trt_yolo, args, confidence_thresh, visual):
    """Continuously capture images from camera and do object detection.

    # Arguments
      camera: the camera instance (video source).
      trt_yolo: the TRT YOLO object detector instance.
      confidence_thresh: confidence/score threshold for object detection.
      visual: for visualization.
    """
    fps = 0.0
    cumulative_frame_time = 0.0
    iterations = 0

    # endless loop when user provides single image/webcam
    while len(camera.imageNames) != 0:
        if args.activate_display and (cv2.getWindowProperty(WINDOW_NAME, 0) <
                                      0):
            break
        img = camera.read()
        if img is None:
            break
        tic = time.time()
        boxes, confidences, classes = trt_yolo.detect(img, confidence_thresh)
        toc = time.time()
        if args.activate_display or args.write_images:
            img = visual.draw_bboxes(img, boxes, confidences, classes)
            img = show_fps(img, fps)
        if args.activate_display:
            cv2.imshow(WINDOW_NAME, img)

        frame_time = (toc - tic)
        cumulative_frame_time += frame_time
        curr_fps = 1.0 / frame_time
        # calculate an exponentially decaying average of fps number
        fps = curr_fps if fps == 0.0 else (fps * 0.95 + curr_fps * 0.05)
        if args.activate_display:
            key = cv2.waitKey(1)
            if key == 27:  # ESC key: quit program
                break
        if args.write_images:
            path = os.path.join(args.image_output,
                                os.path.basename(camera.currentImage))
            print("Image path: ", path)
            cv2.imwrite(path, img)
        print("FPS: {:3.2f} and {} Images left.".format(
            fps, len(camera.imageNames)))
        append_coco(boxes, confidences, classes, camera)

        iterations += 1

    # Write coco json file when done
    coco_file = json.dumps(resultJson, cls=NpEncoder)
    f = open(args.result_json, "w+")
    f.write(coco_file)
    f.close()

    print(f"Average FPS: {(1 / (cumulative_frame_time / iterations))}")
Beispiel #11
0
def check(trt_yolov3, conf_th, vis):
    fps = 0.0
    tic = time.time()
    counter = 0
    capt = cv2.VideoCapture(ADDR_IN)

    width = int(capt.get(cv2.CAP_PROP_FRAME_WIDTH ))
    height = int(capt.get(cv2.CAP_PROP_FRAME_HEIGHT ))
    fps =  int(capt.get(cv2.CAP_PROP_FPS))
    dimension = '{}x{}'.format(width, height)

    command = ['ffmpeg',
               '-y',
               '-f', 'rawvideo',
               '-vcodec','rawvideo',
               '-pix_fmt', 'bgr24',
               '-s', dimension,
               '-i', '-',
               '-c:v', 'libx264',
               '-pix_fmt', 'yuv420p',
               # '-preset', 'veryfast',
               '-f', 'flv',
               ADDR_OUT]

    proc = sp.Popen(command, stdin=sp.PIPE, shell=False)

    while True:
        f, img = capt.read()

        if img is not None:
            # img = cv2.resize(img, (416, 416))

            boxes, confs, clss = trt_yolov3.detect(img, conf_th)
            img = vis.draw_bboxes(img, boxes, confs, clss)
            img = show_fps(img, fps)
            toc = time.time()
            curr_fps = 1.0 / (toc - tic)
            # calculate an exponentially decaying average of fps number
            fps = curr_fps if fps == 0.0 else (fps*0.95 + curr_fps*0.05)
            tic = toc

            counter += 1
            proc.stdin.write(img.tostring())


    capt.release()
    capt.stop()
    proc.stdin.close()
    proc.stderr.close()
    proc.wait()
Beispiel #12
0
def loop_and_detect(cam, trt_yolo, conf_th, vis):

    full_scrn = False

    tic = time.time()
    #while True:
    if cv2.getWindowProperty(WINDOW_NAME, 0) < 0:
        break
    img = cam.read()
    if img is None:
        break
    boxes, confs, clss = trt_yolo.detect(img, conf_th)
    img = vis.draw_bboxes(img, boxes, confs, clss)
    img = show_fps(img, fps)
    cv2.imshow(WINDOW_NAME, img)
    toc = time.time()
    curr_fps = 1.0 / (toc - tic)
    inferenceTime = toc - tic

    print('Inference Time: %s' % (inferenceTime))
def detect_demo(cam, trt_yolov3, conf_th, vis):
    """Continuously capture images from camera and do object detection.

    # Arguments
      cam: the camera instance (video source).
      trt_yolov3: the TRT YOLOv3 object detector instance.
      conf_th: confidence/score threshold for object detection.
      vis: for visualization.
    """
    full_scrn = False
    fps = 0.0
    tic = time.time()
    img = cam.read()
    if img is not None:
        boxes, confs, clss = trt_yolov3.detect(img, conf_th)
        img = vis.draw_bboxes(img, boxes, confs, clss)
        toc = time.time()
        curr_fps = 1.0 / (toc - tic)
        img = show_fps(img, curr_fps)
        cv2.imwrite("demo.png", img)
Beispiel #14
0
def loop_and_detect(cam, trt_yolo, conf_th, vis):
    """Continuously capture images from camera and do object detection.

    # Arguments
      cam: the camera instance (video source).
      trt_yolo: the TRT YOLO object detector instance.
      conf_th: confidence/score threshold for object detection.
      vis: for visualization.
    """
    full_scrn = False
    fps = 0.0
    tic = time.time()
    while True:
        # if cv2.getWindowProperty(WINDOW_NAME, 0) < 0:
        #     break
        img = cam.read()
        if img is None:
            break
        boxes, confs, clss = trt_yolo.detect(img, conf_th)
        # result=np.stack((clss,confs),axis=1)
        # result=np.column_stack((result,boxes))
        # print("The number of insulator we detected :%d"%len(result))
        # print("The confidence of detection result: ",confs)
        # print("The class of detection result: ",dic_class[clss[0]])
        # print("The bounding box of detection result:\n",boxes)
        #
        # print(result)

        img = vis.draw_bboxes(img, boxes, confs, clss)
        img = show_fps(img, fps)

        cv2.imwrite("./result.jpg", img)
        # cv2.imshow(WINDOW_NAME, img)
        toc = time.time()
        curr_fps = 1.0 / (toc - tic)
        # calculate an exponentially decaying average of fps number
        fps = curr_fps if fps == 0.0 else (fps * 0.95 + curr_fps * 0.05)
        tic = toc
        key = cv2.waitKey(1)
        if fps > 0:  # ESC key: quit program
            break
Beispiel #15
0
def loop_and_detect(cam, trt_yolov3, conf_th, vis):
    """Continuously capture images from camera and do object detection.

    # Arguments
      cam: the camera instance (video source).
      trt_yolov3: the TRT YOLOv3 object detector instance.
      conf_th: confidence/score threshold for object detection.
      vis: for visualization.
    """

    fourcc = cv2.VideoWriter_fourcc(*'XVID')
    fps = cam.get(cv2.CAP_PROP_FPS)
    size = (int(cam.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cam.get(cv2.CAP_PROP_FRAME_HEIGHT)))
    out = cv2.VideoWriter('camera_test.avi', fourcc, fps, size)
    full_scrn = False
    fps = 0.0
    tic = time.time()
    while True:
        if cv2.getWindowProperty(WINDOW_NAME, 0) < 0:
            break
        img = cam.read()
        if img is not None:
            boxes, confs, clss = trt_yolov3.detect(img, conf_th)
            img = vis.draw_bboxes(img, boxes, confs, clss)
            img = show_fps(img, fps)
            cv2.imshow(WINDOW_NAME, img)
            toc = time.time()
            curr_fps = 1.0 / (toc - tic)
            # calculate an exponentially decaying average of fps number
            fps = curr_fps if fps == 0.0 else (fps*0.95 + curr_fps*0.05)
            tic = toc
            
            #img = cv2.putText(img, "fps= %.2f" % (fps), (0, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
            out.write(img)
        key = cv2.waitKey(1)
        if key == 27:  # ESC key: quit program
            break
        elif key == ord('F') or key == ord('f'):  # Toggle fullscreen
            full_scrn = not full_scrn
            set_display(WINDOW_NAME, full_scrn)
def loop_and_display(condition, vis):
    """Take detection results from the child thread and display.

    # Arguments
        condition: the condition variable for synchronization with
                   the child thread.
        vis: for visualization.
    """
    global s_img, s_boxes, s_confs, s_clss

    full_scrn = False
    fps = 0.0
    tic = time.time()
    while True:
        if cv2.getWindowProperty(WINDOW_NAME, 0) < 0:
            break
        with condition:
            # Wait for the next frame and detection result.  When
            # getting the signal from the child thread, save the
            # references to the frame and detection result for
            # display.
            if condition.wait(timeout=MAIN_THREAD_TIMEOUT):
                img, boxes, confs, clss = s_img, s_boxes, s_confs, s_clss
            else:
                raise SystemExit('ERROR: timeout waiting for img from child')
        img = vis.draw_bboxes(img, boxes, confs, clss)
        img = show_fps(img, fps)
        cv2.imshow(WINDOW_NAME, img)
        toc = time.time()
        curr_fps = 1.0 / (toc - tic)
        # calculate an exponentially decaying average of fps number
        fps = curr_fps if fps == 0.0 else (fps * 0.95 + curr_fps * 0.05)
        tic = toc
        key = cv2.waitKey(1)
        if key == 27:  # ESC key: quit program
            break
        elif key == ord('F') or key == ord('f'):  # Toggle fullscreen
            full_scrn = not full_scrn
            set_display(WINDOW_NAME, full_scrn)
Beispiel #17
0
def loop_and_detect(cam, trt_retinaface, priors, cfg):
    """Continuously capture images from camera and do face detection.

    # Arguments
      cam: the camera instance (video source).
      trt_retinaface: the TRT_RetinaFace face detector instance.
      priors: priors boxes with retinaface model
      cfg: retinaface model parameter configure
    """
    full_scrn = False
    fps = 0.0
    tic = time.time()
    while True:
        if cv2.getWindowProperty(WINDOW_NAME, 0) < 0:
            break
        img = cam.read()
        if img is None:
            break
        facePositions, landmarks = trt_retinaface.detect(priors, cfg, img)
        for (x1, y1, x2, y2), landmark in zip(facePositions, landmarks):
            cv2.rectangle(img, (x1, y1), (x2, y2), (0, 0, 255), 2)
            cv2.circle(img, (landmark[0], landmark[1]), 1, (0, 0, 255), 2)
            cv2.circle(img, (landmark[2], landmark[3]), 1, (0, 255, 255), 2)
            cv2.circle(img, (landmark[4], landmark[5]), 1, (255, 0, 255), 2)
            cv2.circle(img, (landmark[6], landmark[7]), 1, (0, 255, 0), 2)
            cv2.circle(img, (landmark[8], landmark[9]), 1, (255, 0, 0), 2)
        img = show_fps(img, fps)
        cv2.imshow(WINDOW_NAME, img)
        toc = time.time()
        curr_fps = 1.0 / (toc - tic)
        # calculate an exponentially decaying average of fps number
        fps = curr_fps if fps == 0.0 else (fps*0.95 + curr_fps*0.05)
        tic = toc
        key = cv2.waitKey(1)
        if key == 27:  # ESC key: quit program
            break
        elif key == ord('F') or key == ord('f'):  # Toggle fullscreen
            full_scrn = not full_scrn
            set_display(WINDOW_NAME, full_scrn)
Beispiel #18
0
def loop_and_detect(cam, mtcnn, minsize):
    """Continuously capture images from camera and do face detection."""
    full_scrn = False
    fps = 0.0
    tic = time.time()
    start = tic
    count = 0
    while True:
        if cv2.getWindowProperty(WINDOW_NAME, 0) < 0:
            break
        img = cam.read()
        if img is not None:
            dets, landmarks = mtcnn.detect(img, minsize=minsize)
            print('{} face(s) found'.format(len(dets)))
            count += 1
            #img = show_faces(img, dets, landmarks)
            img = show_fps(img, fps)
            for bb, ll in zip(dets, landmarks):
                x1, y1, x2, y2 = int(bb[0]), int(bb[1]), int(bb[2]), int(bb[3])

            crop_img = img[y1:y2, x1:x2]
            cv2.imshow(WINDOW_NAME, crop_img)
            toc = time.time()
            if count == 300:
                print(f'Found 300 faces in {toc-start} seconds')
                print(f'Average FPS: {300/(toc-start)}')
                break
            curr_fps = 1.0 / (toc - tic)
            # calculate an exponentially decaying average of fps number
            fps = curr_fps if fps == 0.0 else (fps * 0.95 + curr_fps * 0.05)
            tic = toc
        key = cv2.waitKey(1)
        if key == 27:  # ESC key: quit program
            break
        elif key == ord('F') or key == ord('f'):  # Toggle fullscreen
            full_scrn = not full_scrn
            set_display(WINDOW_NAME, full_scrn)
Beispiel #19
0
def loop_and_detect(cam, trt_yolov3, conf_th, vis):
    """Continuously capture images from camera and do object detection.

    # Arguments
      cam: the camera instance (video source).
      trt_yolov3: the TRT YOLOv3 object detector instance.
      conf_th: confidence/score threshold for object detection.
      vis: for visualization.
    """
    full_scrn = False
    fps = 0.0
    tic = time.time()
    counter = 0
    capt = cv2.VideoCapture(ADDR)

    while True:
        # if cv2.getWindowProperty(WINDOW_NAME, 0) < 0:
        #     break
        img = capt.read()
        img = cv2.resize(img, (416, 416))
        print(img.shape)

        if img is not None:
            boxes, confs, clss = trt_yolov3.detect(img, conf_th)
            print('detect')
            img = vis.draw_bboxes(img, boxes, confs, clss)
            img = show_fps(img, fps)
            # cv2.imshow(WINDOW_NAME, img)
            toc = time.time()
            curr_fps = 1.0 / (toc - tic)
            # calculate an exponentially decaying average of fps number
            fps = curr_fps if fps == 0.0 else (fps*0.95 + curr_fps*0.05)
            tic = toc

            counter += 1
            cv2.imwrite('/home/shared_folder/' + str(counter) + '.png', img)
Beispiel #20
0
def loop_and_detect(cam, trt_ssd, conf_th, vis):
    """Continuously capture images from camera and do object detection.

    # Arguments
      cam: the camera instance (video source).
      trt_ssd: the TRT SSD object detector instance.
      conf_th: confidence/score threshold for object detection.
      vis: for visualization.
    """
    full_scrn = False
    fps = 0.0
    tic = time.time()
    second = 1
    count = 0
    ave_p = 0
    ave_bi = 0
    p_count = 0
    bi_count = 0

    id_num, date_str, time_str, m = get_time()
    prev_time = int(m / 10)

    while True:
        if cv2.getWindowProperty(WINDOW_NAME, 0) < 0:
            break
        img = cam.read()
        if img is None:
            break
        boxes, confs, clss = trt_ssd.detect(img, conf_th)

        img = vis.draw_bboxes(img, boxes, confs, clss)
        img = show_fps(img, fps)

        count = count + 1
        if count >= int(fps):
            count = 0
            second = second + 1
            p, bi = counting(clss)
            ave_p = ave_p + p
            ave_bi = ave_bi + bi
            print(p, bi, ave_p, ave_bi, p_count, bi_count)

        if second % 11 == 0:
            second = 1
            p_count = p_count + ave_p / 10
            bi_count = bi_count + ave_bi / 3
            ave_p = ave_bi = 0

            id_num, date_str, time_str, m = get_time()

            print(id_num, date_str, time_str, m, prev_time)

        if prev_time != int(m / 10):
            insert('seongbuk',
                   [id_num, date_str, time_str,
                    int(p_count),
                    int(bi_count)])
            prev_time = int(m / 10)
            p_count = bi_count = ave_p = ave_bi = second = 0

        cv2.imshow(WINDOW_NAME, img)
        toc = time.time()
        curr_fps = 1.0 / (toc - tic)
        # calculate an exponentially decaying average of fps number
        fps = curr_fps if fps == 0.0 else (fps * 0.95 + curr_fps * 0.05)
        tic = toc

        key = cv2.waitKey(1)
        if key == 27:  # ESC key: quit program
            break
        elif key == ord('F') or key == ord('f'):  # Toggle fullscreen
            full_scrn = not full_scrn
            set_display(WINDOW_NAME, full_scrn)
Beispiel #21
0
            #print('result:',result)
            height = frame.shape[0]
            width = frame.shape[1]

            if len(clss) == 0:
                continue
            else:
                det = result[:, 0:5]
                print('det:', det)
                #det[:, 0] = det[:, 0] * width
                #det[:, 1] = det[:, 1] * height
                #det[:, 2] = det[:, 2] * width
                #det[:, 3] = det[:, 3] * height
                #print('det1',det)
                trackers = mot_tracker.update(det)
                frame = show_fps(frame, fps)
                toc = time.time()
                curr_fps = 1.0 / (toc - tic)
                # calculate an exponentially decaying average of fps number
                fps = curr_fps if fps == 0.0 else (fps * 0.95 +
                                                   curr_fps * 0.05)
                tic = toc

                for d in trackers:
                    xmin = int(d[0])
                    ymin = int(d[1])
                    xmax = int(d[2])
                    ymax = int(d[3])
                    label = int(d[4])
                    cv2.rectangle(frame, (xmin, ymin), (xmax, ymax),
                                  (0, 0, 255), 2)
Beispiel #22
0
def loop_and_detect(cam, trt_yolo, conf_th, vis):

    full_scrn = False
    
    tic = time.time()
    #while True:
    if cv2.getWindowProperty(WINDOW_NAME, 0) < 0:
       
    img = cam.read()
    if img is None:
        
    boxes, confs, clss = trt_yolo.detect(img, conf_th)
    img = vis.draw_bboxes(img, boxes, confs, clss)
    img = show_fps(img, fps)
    cv2.imshow(WINDOW_NAME, img)
    toc = time.time()
    curr_fps = 1.0 / (toc - tic)
    inferenceTime = toc - tic

    print ('Inference Time: %s' % (inferenceTime))


def main():
    args = parse_args()
    if args.category_num <= 0:
        raise SystemExit('ERROR: bad category_num (%d)!' % args.category_num)
    if not os.path.isfile('yolo/%s.trt' % args.model):
        raise SystemExit('ERROR: file (yolo/%s.trt) not found!' % args.model)

    cam = Camera(args)
    if not cam.isOpened():
        raise SystemExit('ERROR: failed to open camera!')

    cls_dict = get_cls_dict(args.category_num)
    yolo_dim = args.model.split('-')[-1]
    if 'x' in yolo_dim:
        dim_split = yolo_dim.split('x')
        if len(dim_split) != 2:
            raise SystemExit('ERROR: bad yolo_dim (%s)!' % yolo_dim)
        w, h = int(dim_split[0]), int(dim_split[1])
    else:
        h = w = int(yolo_dim)
    if h % 32 != 0 or w % 32 != 0:
        raise SystemExit('ERROR: bad yolo_dim (%s)!' % yolo_dim)

    start_load_time = time.time()
    trt_yolo = TrtYOLO(args.model, (h, w), args.category_num)
    stop_load_time = time.time()
    load_time = stop_load_time - start_load_time
    print ('Load Time: %s' % (load_time))

    open_window(
        WINDOW_NAME, 'Camera TensorRT YOLO Demo',
        cam.img_width, cam.img_height)
    vis = BBoxVisualization(cls_dict)


    loop_and_detect(cam, trt_yolo, conf_th=0.3, vis=vis)

    cam.release()
    cv2.destroyAllWindows()


if __name__ == '__main__':
    main()
Beispiel #23
0
cap = cv2.VideoCapture(0)  #("rtsp://*****:*****@192.168.10.67:554/1/1")

cls_dict = get_cls_dict('coco')
yolo_dim = int(args.model.split('-')[-1])  # 416 or 608
trt_yolov3 = TrtYOLOv3(args.model, (yolo_dim, yolo_dim))
vis = BBoxVisualization(cls_dict)

full_scrn = False
fps = 0.0
tic = time.time()
conf_th = 0.3

while True:
    _, frame = cap.read()

    time_start = time.time()
    boxes, confs, clss = trt_yolov3.detect(frame, conf_th)
    print("--------------tf1----------\n",
          time.time() - time_start, "\n-------------------------\n")
    img = vis.draw_bboxes(frame, boxes, confs, clss)
    img = show_fps(img, fps)
    cv2.imshow(WINDOW_NAME, img)
    toc = time.time()
    curr_fps = 1.0 / (toc - tic)
    # calculate an exponentially decaying average of fps number
    fps = curr_fps if fps == 0.0 else (fps * 0.95 + curr_fps * 0.05)
    tic = toc
    key = cv2.waitKey(1)
    if key == 27:  # ESC key: quit program
        break
def loop_and_detect(cam, trt_yolo, conf_th, vis, \
        cls_dict, client, topic):
    """Continuously capture images from camera and do object detection.

    # Arguments
      cam: the camera instance (video source).
      trt_yolo: the TRT YOLO object detector instance.
      conf_th: confidence/score threshold for object detection.
      vis: for visualization.
    """
    full_scrn = False
    fps = 0.0
    tic = time.time()
    frame_id = 0
    frame_id_holder = []
    while True:
        if cv2.getWindowProperty(WINDOW_NAME, 0) < 0:
            break
        img = cam.read()
        if img is None:
            break
        boxes, confs, clss = trt_yolo.detect(img, conf_th)
        print("boxes:", boxes)
        print("confs:", confs)
        print("clss:", clss)
        #print(len(confs))
        #for cl in clss:
        #print("clss:",cl)
        #print("clss:",clss)
        #publish_bboxes(boxes, confs, clss, cls_dict, client, topic)
        img = vis.draw_bboxes(img, boxes, confs, clss)
        img = show_fps(img, fps)

        ## wasuremono logic
        # no detected person and object or one or more persons is only detected
        # do not perform abandoned object detection
        if len(clss) == 0 or ((len(clss) > 0) and (sum(clss) == 0)):
            #print("length_confs:",len(confs))
            print("no detected person and object or person is only detected")
            pass

        # only objects are detected
        # perform abandoned object detection
        elif 0 not in clss:
            print("only objects are detected")
            if (24 in clss) or (25 in clss) or (26 in clss) or (
                    28 in clss) or (67 in clss):
                ## Here needs to be added the function of the abandonment ##
                add_centroid_classes_metrics2 = compute_pixel_distance(
                    boxes, clss, cls_dict)
                #print("add_centroid_classes_metrics:", add_centroid_classes_metrics2)
                for row in add_centroid_classes_metrics2:
                    if (row[6]=='backpack') or (row[6]=='umbrella') or (row[6]=='handbag') or \
                        (row[6]=='suitcase') or (row[6]=='cell phone'):
                        x_min2 = int(float(row[0]))
                        y_min2 = int(float(row[1]))
                        x_max2 = int(float(row[2]))
                        y_max2 = int(float(row[3]))

                        print("add_centroid_classes_metrics2:", row)
                        color = (0, 0, 255)
                        cv2.rectangle(img, (x_min2, y_min2), (x_max2, y_max2),
                                      color, 2)
                        cv2.putText(img, 'abandoned', (x_min2 + 1, y_min2 - 2),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0),
                                    2)
                        publish_bboxes_New(row, 'abandoned', client, topic)

        # one or more persons and objects are detected
        # perform abandoned object detection
        # except the center of object is inside a detected person's bounding box
        else:
            print("one or more persons and objects are detected")
            ## Here needs to be added the function of the abandonment ##
            #compute_pixel_per_metric_ratio(boxes, clss, cls_dict)
            #extract_pixel_per_metric_ratio = compute_pixel_per_metric_ratio(boxes, clss, cls_dict)
            #print("extract_pixel_per_metric_ratio:",extract_pixel_per_metric_ratio[-2][-2:])
            add_centroid_classes_metrics = compute_pixel_distance(
                boxes, clss, cls_dict)
            print()
            for row in add_centroid_classes_metrics:
                if 'person' == row[6]:
                    coord_person_min_x = int(float(row[0]))
                    coord_person_min_y = int(float(row[1]))
                    coord_person_max_x = int(float(row[2]))
                    coord_person_max_y = int(float(row[3]))
                    for objectX in add_centroid_classes_metrics:
                        if 'person' != objectX[6]:
                            centroid_object_x = int(float(objectX[4]))
                            centroid_object_y = int(float(objectX[5]))

                            if (coord_person_min_x < centroid_object_x < coord_person_max_x) and \
                                    (coord_person_min_y < centroid_object_y < coord_person_max_y):
                                pass
                            else:
                                dis_min = 100000
                                for temp_min in objectX[
                                        7:len(add_centroid_classes_metrics) +
                                        6]:
                                    if float(temp_min) < float(dis_min):
                                        dis_min = float(temp_min)

                                print()
                                print("dis_min:", dis_min)

                                if dis_min > 300:
                                    print("")
                                    print("objectX:", objectX)
                                    print("wasuremono no kanouseiari")
                                    if (frame_id >
                                        (fps *
                                         AOD_config.INITIAL_INSPECTION_DURATION
                                         )):

                                        frame_id_holder.append(frame_id)

                                        if (objectX[6]=='backpack') or (objectX[6]=='umbrella') or (objectX[6]=='handbag') or \
                                            (objectX[6]=='suitcase') or (objectX[6]=='cell phone'):
                                            # (B, G, R)
                                            color = (0, 255, 255)

                                            x_min2 = int(float(objectX[0]))
                                            y_min2 = int(float(objectX[1]))
                                            x_max2 = int(float(objectX[2]))
                                            y_max2 = int(float(objectX[3]))

                                            #cv2.rectangle(img, (100,100), (200,200), color, 2)

                                            cv2.rectangle(
                                                img, (x_min2, y_min2),
                                                (x_max2, y_max2), color, 2)
                                            cv2.putText(
                                                img, 'warning',
                                                (x_min2 + 1, y_min2 - 2),
                                                cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                                                (0, 0, 0), 2)
                                            print("frame_id_holder:",
                                                  frame_id_holder)
                                            if frame_id >= (fps * (
                                                (min(frame_id_holder) / fps) +
                                                    AOD_config.
                                                    ABANDONMENT_DURATION)):

                                                color = (0, 0, 255)
                                                cv2.rectangle(
                                                    img, (x_min2, y_min2),
                                                    (x_max2, y_max2), color, 2)
                                                cv2.putText(
                                                    img, 'abandoned',
                                                    (x_min2 + 1, y_min2 - 2),
                                                    cv2.FONT_HERSHEY_SIMPLEX,
                                                    0.5, (0, 0, 0), 2)
                                                publish_bboxes_New(
                                                    objectX, 'abandoned',
                                                    client, topic)

        cv2.imshow(WINDOW_NAME, img)
        toc = time.time()
        curr_fps = 1.0 / (toc - tic)
        # calculate an exponentially decaying average of fps number
        fps = curr_fps if fps == 0.0 else (fps * 0.95 + curr_fps * 0.05)
        print("fps:", fps)
        tic = toc
        frame_id += 1
        key = cv2.waitKey(1)
        if key == 27:  # ESC key: quit program
            break
        elif key == ord('F') or key == ord('f'):  # Toggle fullscreen
            full_scrn = not full_scrn
            set_display(WINDOW_NAME, full_scrn)
def loop_and_detect(cam, trt_yolo, msg_queue, conf_th, vis):

    fps = 0.0
    resList = []
    frame_cnt = 0
    tic = time.time()
    pv_detection = []
    full_scrn = False

    capture = cv2.VideoCapture(VIDEOPATH)

    while True:
        if cv2.getWindowProperty(WINDOW_NAME, 0) < 0:
            break

        ret, frame = capture.read()
        if frame is None:
            break

        frame_h, frame_w = frame.shape[:-1]

        if frame_cnt > START_FRAME:
            if frame_cnt == START_FRAME + 1:
                matching_area = frame

            boxes, confs, clss = trt_yolo.detect(matching_area, conf_th)

            boxes, confs, clss = person_filter(
                boxes, confs,
                clss)  # boxes --np.array() [[p, p, p, p, index], ...]

            if frame_cnt > START_FRAME + 1:
                if len(boxes) == 0:
                    # print("boxes after_filter is empty!")
                    boxes, confs, clss = pv_detection[:]
                else:
                    for i in range(len(boxes)):
                        boxes[i][0:2] = np.add(
                            boxes[i][0:2], np.array(matching_area_top_left))
                        boxes[i][2:4] = np.add(
                            boxes[i][2:4], np.array(matching_area_top_left))

            # 绘图
            if frame_cnt == START_FRAME + 1:
                img = vis.draw_bboxes(frame, boxes, confs, clss, 0, 0)
            else:
                img = vis.draw_bboxes(frame, boxes, confs, clss,
                                      matching_area_top_left,
                                      matching_area_bottom_right)
            img = show_fps(img, fps)
            cv2.imshow(WINDOW_NAME, img)

            # nominate desirable object
            if frame_cnt == START_FRAME + 1:
                print("Select the target you want.")
                nmn = int(cv2.waitKey(0)) - 176
                box = boxes[int(np.argwhere(boxes[:, -1] == int(nmn))), :
                            -1]  # box --np.array() [p, p, p, p]
            else:
                box = find_best_box(boxes, frame, template)

            #串口数据  定点数转换
            ltx, lty, rbx, rby = box[:4]  # ltx --left top point x

            shift_x = int(
                round(((ltx + rbx) - frame_w) / (2 * frame_w), 4) * 10000)
            shift_y = int(
                round(((lty + rby) - frame_h) / (2 * frame_h), 4) * 10000)
            area_ratio = int(
                round((rbx - ltx) * (rby - lty) / (frame_w * frame_h), 4) *
                10000)
            ges = -1

            msg = str(shift_x) + ', ' + str(shift_y) + ', ' + str(
                area_ratio) + ', ' + str(ges) + ';'
            print("msg in python:", msg)
            if msg_queue.empty():
                msg_queue.put(msg.encode())  # 将字符转换为字节发送

            roi = frame[box[1]:box[3], box[0]:box[2]]
            if frame_cnt == START_FRAME + 1:
                template = roi.copy()

            roi_h, roi_w = roi.shape[:-1]
            if roi_h < int(0.5 * frame_h):
                roi_h = int(0.5 * frame_h)
            if roi_w < int(0.2 * frame_w):
                roi_w = int(0.2 * frame_w)

            matching_area_top_left = [0, 0]
            matching_area_bottom_right = [0, 0]
            matching_area_top_left[0] = box[0] - int(0.5 * roi_w)
            matching_area_top_left[1] = box[1] - int(0.25 * roi_h)

            # apply kalman filter
            if frame_cnt > START_FRAME + 20:
                matching_area_top_left_measurement = matching_area_top_left
                matching_area_top_left = kalman_prediction(
                    [[matching_area_top_left[0]], [matching_area_top_left[1]]])
                # print(np.subtract(np.array(matching_area_top_left), np.array(matching_area_top_left_measurement)))
            else:
                dump = kalman_prediction([[matching_area_top_left[0]],
                                          [matching_area_top_left[1]]])

            matching_area_bottom_right[0] = box[2] + int(0.5 * roi_w)
            matching_area_bottom_right[1] = box[3] + int(0.25 * roi_h)

            # 越界处理
            for i in range(len(matching_area_top_left)):
                if matching_area_top_left[i] < 0:
                    matching_area_top_left[i] = 0
            if matching_area_bottom_right[0] > frame.shape[1]:
                matching_area_bottom_right[0] = frame.shape[1]
            if matching_area_bottom_right[1] > frame.shape[0]:
                matching_area_bottom_right[1] = frame.shape[0]
            # 切片 [高, 宽]
            matching_area = frame[
                matching_area_top_left[1]:matching_area_bottom_right[1],
                matching_area_top_left[0]:matching_area_bottom_right[0]]
            # cv2.imshow("matching_area", matching_area)

            # 人脸检测部分  速度超慢
            # gray = cv2.cvtColor(matching_area, code=cv2.COLOR_BGR2GRAY)
            # face_zone = face_detector.detectMultiScale(gray, scaleFactor = 1.1, minNeighbors = 5)
            # resList.append(len(face_zone))
            # if frame_cnt > START_FRAME + 5:
            #     preRes=ges
            #     ges = judge(resList, preRes)
            #     if 1 == ges:
            #         cv2.putText(matching_area, "front", (10,10), cv2.FONT_HERSHEY_COMPLEX, 0.5, (132, 255, 255), 1)
            #     else:
            #         cv2.putText(matching_area, "back", (10,10), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 152), 1)
            # else:
            #         preRes = 0
            #         ges = 0
            #
            # f_num = 0
            # for x, y, w, h in face_zone:
            #     f_num = f_num + 1
            #     cv2.rectangle(matching_area, pt1 = (x, y), pt2 = (x+w, y+h), color = [255,255,255], thickness=1)
            #     cv2.putText(matching_area, str(f_num), (x,y), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0), 1)
            # cv2.putText(matching_area, "{}people".format(f_num), (10,50), cv2.FONT_HERSHEY_COMPLEX, 1, (142, 125, 52), 1)
            # cv2.imshow('result', matching_area) # 这里由于显示在frame上有点麻烦  所以直接show出来了

            # calculate an exponentially decaying average of fps number
            toc = time.time()
            curr_fps = 1.0 / (toc - tic)
            fps = curr_fps if fps == 0.0 else (fps * 0.95 + curr_fps * 0.05)
            tic = toc

            pv_detection = [boxes, confs, clss]

        # cv2.waitKey(0)
        key = cv2.waitKey(1)
        if key == 27 or key == ord(' '):
            break
        elif key == ord('F') or key == ord('f'):
            full_scrn = not full_scrn
            set_display(WINDOW_NAME, full_scrn)

        frame_cnt += 1
def loop_and_detect(cam, trt_yolo, conf_th, vis):
    """Continuously capture images from camera and do object detection.

    # Arguments
      cam: the camera instance (video source).
      trt_yolo: the TRT YOLO object detector instance.
      conf_th: confidence/score threshold for object detection.
      vis: for visualization.
    """
    time_tmp = 0
    count_t = [0, 0]
    flag = [0, 0]
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    out_video = cv2.VideoWriter('/home/ee201511400/test5.mp4', fourcc, 30.0,
                                (cam.img_width, cam.img_height))

    full_scrn = False
    fps = 0.0
    tic = time.time()
    people_num = 0
    id_position = []
    while True:
        if cv2.getWindowProperty(WINDOW_NAME, 0) < 0:
            break
        img = cam.read()
        if img is None:
            break
        resize = cv2.resize(img, (640, 480))
        img_temp = img
        boxes, confs, clss, no_mask_count, mask_count = trt_yolo.detect(
            img, conf_th)
        std_box_class, _clss = get_sorted_box(boxes, clss)

        img_e = cv2.resize(img,
                           dsize=(WIDTH, HEIGHT),
                           interpolation=cv2.INTER_AREA)
        people_num, id_position, time_for_disinfection = execute(
            img_e, img, people_num, id_position, std_box_class, cam)

        # handling all the return values
        if no_mask_count == 0:
            if (len(time_for_disinfection) == 2):
                for index, el in enumerate(time_for_disinfection):
                    if (el == 1):
                        count_t[index] += 1
                    elif (el == 0):
                        count_t[index] = 0
                    else:
                        count_t[index] = count_t[index]
            for index, el in enumerate(count_t):
                if (el >= 20):
                    flag[index] = 1
            print("time_count", count_t)
            for index, el in enumerate(flag):
                if (len(id_position) is not 0 and id_position[index] is not 0
                        and people_num == 1):
                    if (el == 1):
                        if (index == 1):
                            cv2.putText(img, "You are allowed to enter",
                                        (400, 50), font, 1.0, (32, 32, 32), 1,
                                        line)
                        else:
                            cv2.putText(img, "You are allowed to enter",
                                        (200, 50), font, 1.0, (32, 32, 32), 1,
                                        line)

                    else:
                        if (index == 1):
                            cv2.putText(img, "You are not allowed to enter",
                                        (400, 50), font, 1.0, (32, 32, 32), 1,
                                        line)
                        else:
                            cv2.putText(img, "You are not allowed to enter",
                                        (200, 50), font, 1.0, (32, 32, 32), 1,
                                        line)

                elif (len(std_box_class) == 2):
                    if (el == 1):
                        cv2.putText(img, "You are allowed to enter",
                                    (std_box_class[index][0], 50), font, 1.0,
                                    (32, 32, 32), 1, line)

                    else:
                        cv2.putText(img, "You are not allowed to enter",
                                    (std_box_class[index][0], 50), font, 1.0,
                                    (32, 32, 32), 1, line)
        else:
            cv2.putText(img, "Put on your mask!", (50, 300), font, 2.0,
                        (0, 0, 255), 2, line)
        if people_num == 0:
            count_t = [0, 0]
            flag = [0, 0]
            cv2.putText(img, "Now you can come in", (50, 300), font, 2.0,
                        (255, 0, 0), 2, line)
        img = vis.draw_bboxes(img, boxes, confs, _clss)
        img = show_fps(img, fps)
        cv2.putText(img, 'mask = ' + str(mask_count), (11, 300), font, 3.0,
                    (32, 32, 32), 4, line)
        cv2.putText(img, 'mask = ' + str(mask_count), (10, 300), font, 3.0,
                    (240, 240, 240), 1, line)
        cv2.putText(img, 'peaple = ' + str(people_num), (11, 400), font, 3.0,
                    (32, 32, 32), 4, line)
        cv2.putText(img, 'peaple = ' + str(people_num), (10, 400), font, 3.0,
                    (240, 240, 240), 1, line)
        people_num = 0
        cv2.imshow(WINDOW_NAME, img)
        out_video.write(img)

        toc = time.time()
        curr_fps = 1.0 / (toc - tic)

        # calculate an exponentially decaying average of fps number
        fps = curr_fps if fps == 0.0 else (fps * 0.95 + curr_fps * 0.05)
        print('FPS = %d\n' % (fps))
        tic = toc
        key = cv2.waitKey(1)
        if key == 27:  # ESC key: quit program
            break
        elif key == ord('F') or key == ord('f'):  # Toggle fullscreen
            full_scrn = not full_scrn
            set_display(WINDOW_NAME, full_scrn)
    f.close()
    out_video.release()
Beispiel #27
0
def loop_and_detect(cam, trt_yolov3, conf_th, vis):
    """Continuously capture images from camera and do object detection.

    # Arguments
      cam: the camera instance (video source).
      trt_yolov3: the TRT YOLOv3 object detector instance.
      conf_th: confidence/score threshold for object detection.
      vis: for visualization.
    """
    full_scrn = False
    fps = 0.0
    detectandspeech = np.zeros((6, 2), dtype=float)
    tic = time.time()
    while True:
        if cv2.getWindowProperty(WINDOW_NAME, 0) < 0:
            break

        img = cam.read()
        if img is not None:
            boxes, confs, clss = trt_yolov3.detect(img, conf_th)
            ###########################
            ## DETECTED CASE - SSMIN ##
            ###########################
            if len(clss) > 0:
                print("Detected : ", clss, ", ", confs)
                detectandspeech[clss, 0] = tic
                if detectandspeech[clss, 0] - detectandspeech[clss, 1] > 60:
                    detectandspeech[clss, 1] = tic
                    print("Played : ", clss)
                    MusicPlayCheck(clss)

                    if clss == 1:
                        os.system('mpg321 voice/jason.mp3 & > /dev/null')
                    elif clss == 2:
                        os.system('mpg321 voice/jessica.mp3 & > /dev/null')
                    elif clss == 3:
                        os.system('mpg321 voice/erica.mp3 & > /dev/null')
                    elif clss == 4:
                        os.system('mpg321 voice/woo.mp3 & > /dev/null')
                    elif clss == 5:
                        os.system('mpg321 voice/woong.mp3 & > /dev/null')

            ###########################
            draw = 1
            if draw is not 0:
                img = vis.draw_bboxes(img, boxes, confs, clss)
                img = show_fps(img, fps)
                cv2.imshow(WINDOW_NAME, img)

            toc = time.time()
            curr_fps = 1.0 / (toc - tic)
            # calculate an exponentially decaying average of fps number
            fps = curr_fps if fps == 0.0 else (fps * 0.95 + curr_fps * 0.05)
            tic = toc
        key = cv2.waitKey(1)
        if key == 27:  # ESC key: quit program
            break
        elif key == ord('F') or key == ord('f'):  # Toggle fullscreen
            full_scrn = not full_scrn
            set_display(WINDOW_NAME, full_scrn)
        time.sleep(0.05)
Beispiel #28
0
def main():
    # initialize camera class
    cam = Camera()
    if not cam.is_opened():
        raise SystemExit('EROR: failed to open camera!')
    cls_dict = alprClassNames()
    
    # Yolo dimensions (416x416)
    yolo_dim = 416
    h = w = int(yolo_dim)

    # Initialized model and tools
    cwd = os.getcwd()
    model_yolo = str(cwd) + '/weights/yolov4-tiny-416.trt'
    model_crnn = str(cwd) + '/weights/crnn.pth'
    trt_yolo = TrtYOLO(model_yolo, (h,w), category_num=1) # category number is number of classes
    crnn = alpr.AutoLPR(decoder='bestPath', normalise=True)
    crnn.load(crnn_path=model_crnn)
    open_window(WINDOW_NAME, TITLE, cam.img_width, cam.img_height)
    vis = BBoxVisualization(cls_dict)

    # Loop and detect
    full_scrn = False
    fps = 0.0 
    tic = time.time()
    while True:
        if cv2.getWindowProperty(WINDOW_NAME, 0) < 0:
            break
        img = cam.read()
        if img is None:
            break
        # Detect car plate
        boxes confs, clss = trt_yolo.detect(img, conf_th=0.5)
        # Crop and preprocess car plate 
        cropped = vis.crop_plate(img, boxes, confs, clss)
        # Recognize car plate
        lp_plate = ''
        fileLocate = str(cwd) + '/detections/detection1.jpg'
        if os.path.exists(fileLocate):
           lp_plate = lpr.predict(fileLocate)

        # Draw boxes and fps
        img = vis.draw_bboxes(img, boxes, confs, clss, lp=lp_plate)
        img = show_fps(img, fps)

        # Show image
        cv2.imshow(WINDOW_NAME, img)

        # Calculate fps
        toc = time.time()
        curr_fps = 1.0 / (toc - tic)
        fps = curr_fps if fps == 0.0 else (fps*0.95 + curr_fps*0.05)
        tic = toc

        # Exit key
        key = cv2.waitKey(1)
        if key == 27:  # ESC key: quit program
            break

    # Release capture and destroy all windows
    cam.release()
    cv2.destroyAllWindows()