Beispiel #1
0
def average_attention_strategy(strategy, x, mask, state, layer, params):
    strategy = strategy.lower()

    is_training = ('decoder' not in state)

    if strategy == "aan":
        if is_training:
            if params.aan_mask:
                aan_bias = func.attention_bias(mask, "aan")
                x_fwd = tf.matmul(aan_bias, x)
            else:
                aan_bias = tf.cumsum(mask, axis=1)
                aan_bias = tf.where(tf.less_equal(aan_bias, 0.),
                                    tf.ones_like(aan_bias), aan_bias)
                aan_bias = tf.expand_dims(dtype.tf_to_float(aan_bias), 2)

                x_fwd = tf.cumsum(x, axis=1) / aan_bias
        else:
            cache = state['decoder']['state']['layer_{}'.format(layer)]
            x_fwd = (x + cache['aan']) / dtype.tf_to_float(state['time'] + 1)
            cache['aan'] = x + cache['aan']

        return x_fwd

    else:
        raise NotImplementedError("Not supported: {}".format(strategy))
Beispiel #2
0
def add_timing_signal(x, min_timescale=1.0, max_timescale=1.0e4,
                      time=None, name=None):
    """Transformer Positional Embedding"""

    with tf.name_scope(name, default_name="add_timing_signal", values=[x]):
        length = tf.shape(x)[1]
        channels = tf.shape(x)[2]
        if time is None:
            position = dtype.tf_to_float(tf.range(length))
        else:
            # decoding position embedding
            position = tf.expand_dims(time, 0)
        num_timescales = channels // 2

        log_timescale_increment = (
                math.log(float(max_timescale) / float(min_timescale)) /
                (dtype.tf_to_float(num_timescales) - 1)
        )
        inv_timescales = min_timescale * tf.exp(
            dtype.tf_to_float(tf.range(num_timescales)) * -log_timescale_increment
        )

        scaled_time = (tf.expand_dims(position, 1) *
                       tf.expand_dims(inv_timescales, 0))
        signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
        signal = tf.pad(signal, [[0, 0], [0, tf.mod(channels, 2)]])
        signal = tf.reshape(signal, [1, length, channels])

        return x + signal
Beispiel #3
0
def extract_encodes(source_memory, source_mask, l0_mask):
    x_shp = util.shape_list(source_memory)

    l0_mask = dtype.tf_to_float(tf.cast(l0_mask, tf.bool))
    l0_mask = tf.squeeze(l0_mask, -1) * source_mask

    # count retained encodings
    k_value = tf.cast(tf.reduce_max(tf.reduce_sum(l0_mask, 1)), tf.int32)
    # batch_size x k_value
    _, topk_indices = tf.nn.top_k(l0_mask, k_value)

    # prepare coordinate
    x_pos = util.batch_coordinates(x_shp[0], k_value)
    coord = tf.stack([x_pos, topk_indices], axis=2)

    # gather retained features
    g_x = tf.gather_nd(source_memory, coord)
    g_mask = tf.gather_nd(l0_mask, coord)

    # padding zero
    g_x = tf.pad(g_x, [[0, 0], [1, 0], [0, 0]])

    # generate counts, i.e. how many tokens are dropped
    droped_number = tf.reduce_sum(source_mask, 1) - tf.reduce_sum(l0_mask, 1)
    pad_mask = dtype.tf_to_float(tf.greater(droped_number, 0.))
    droped_number = tf.where(tf.less_equal(droped_number, 0.),
                             tf.ones_like(droped_number), droped_number)

    count_mask = tf.ones_like(g_mask)
    count_mask = tf.concat([tf.expand_dims(droped_number, 1), count_mask], 1)

    g_mask = tf.concat([tf.expand_dims(pad_mask, 1), g_mask], 1)

    return g_x, g_mask, count_mask
Beispiel #4
0
def attention_bias(inputs, mode, inf=None, name=None):
    """ A bias tensor used in attention mechanism"""

    if inf is None:
        inf = dtype.inf()

    with tf.name_scope(name, default_name="attention_bias", values=[inputs]):
        if mode == "causal":
            length = inputs
            lower_triangle = tf.matrix_band_part(
                tf.ones([length, length]), -1, 0
            )
            ret = dtype.tf_to_float(- inf * (1.0 - lower_triangle))
            return tf.reshape(ret, [1, 1, length, length])
        elif mode == "masking":
            mask = inputs
            ret = (1.0 - mask) * - inf
            return tf.expand_dims(tf.expand_dims(ret, 1), 1)
        elif mode == "aan":
            length = tf.shape(inputs)[1]
            diagonal = tf.eye(length)
            cum_factor = tf.expand_dims(tf.cumsum(diagonal, axis=0), 0)
            mask = tf.expand_dims(inputs, 1) * tf.expand_dims(inputs, 2)
            mask *= dtype.tf_to_float(cum_factor)
            weight = tf.nn.softmax(mask + (1.0 - mask) * - inf)
            weight *= mask
            return weight
        else:
            raise ValueError("Unknown mode %s" % mode)
Beispiel #5
0
    def _step_fn(prev, x):
        t, h_, c_, a_ = prev

        if not one2one:
            m, v = x[mask_pos], x[:mask_pos]
        else:
            c, c_c, m, v = x[-1], x[mask_pos + 1:-1], x[mask_pos], x[:mask_pos]

        s = cell_lower(h_, v)
        s = m * s + (1. - m) * h_

        if not one2one:
            vle = additive_attention(cell_lower.get_hidden(s),
                                     memory,
                                     mem_mask,
                                     mem_shape[-1],
                                     ln=ln,
                                     num_heads=num_heads,
                                     proj_memory=proj_memories,
                                     scope="attention")
            a, c = vle['weights'], vle['output']
            c_c = cell_higher.fetch_states(c)
        else:
            a = tf.tile(tf.expand_dims(tf.range(time_steps), 0),
                        [batch_size, 1])
            a = dtype.tf_to_float(tf.equal(a, t))
            a = tf.tile(tf.expand_dims(a, 1), [1, num_heads, 1])
            a = tf.reshape(a, tf.shape(init_weight))

        h = cell_higher(s, c_c)
        h = m * h + (1. - m) * s

        return t + 1, h, c, a
Beispiel #6
0
def rnn(cell_name, x, d, mask=None, ln=False, init_state=None, sm=True):
    """Self implemented RNN procedure, supporting mask trick"""
    # cell_name: gru, lstm or atr
    # x: input sequence embedding matrix, [batch, seq_len, dim]
    # d: hidden dimension for rnn
    # mask: mask matrix, [batch, seq_len]
    # ln: whether use layer normalization
    # init_state: the initial hidden states, for cache purpose
    # sm: whether apply swap memory during rnn scan
    # dp: variational dropout

    in_shape = util.shape_list(x)
    batch_size, time_steps = in_shape[:2]

    cell = get_cell(cell_name, d, ln=ln)

    if init_state is None:
        init_state = cell.get_init_state(shape=[batch_size])
    if mask is None:
        mask = dtype.tf_to_float(tf.ones([batch_size, time_steps]))

    # prepare projected input
    cache_inputs = cell.fetch_states(x)
    cache_inputs = [tf.transpose(v, [1, 0, 2]) for v in list(cache_inputs)]
    mask_ta = tf.transpose(tf.expand_dims(mask, -1), [1, 0, 2])

    def _step_fn(prev, x):
        t, h_ = prev
        m = x[-1]
        v = x[:-1]

        h = cell(h_, v)
        h = m * h + (1. - m) * h_

        return t + 1, h

    time = tf.constant(0, dtype=tf.int32, name="time")
    step_states = (time, init_state)
    step_vars = cache_inputs + [mask_ta]

    outputs = tf.scan(_step_fn,
                      step_vars,
                      initializer=step_states,
                      parallel_iterations=32,
                      swap_memory=sm)

    output_ta = outputs[1]
    output_state = outputs[1][-1]

    outputs = tf.transpose(output_ta, [1, 0, 2])

    return (outputs, output_state), \
           (cell.get_hidden(outputs), cell.get_hidden(output_state))
Beispiel #7
0
 def _get_init_state(self, d, shape=None, x=None, scope=None):
     # gen init state vector
     # if no evidence x is provided, use zero initialization
     if x is None:
         assert shape is not None, "you should provide shape"
         if not isinstance(shape, (tuple, list)):
             shape = [shape]
         shape = shape + [d]
         return dtype.tf_to_float(tf.zeros(shape))
     else:
         return linear(x,
                       d,
                       bias=True,
                       ln=self.ln,
                       scope="{}_init".format(scope or self.scope))
Beispiel #8
0
def encoder(source, params):
    mask = dtype.tf_to_float(tf.cast(source, tf.bool))
    hidden_size = params.hidden_size

    source, mask = util.remove_invalid_seq(source, mask)

    embed_name = "embedding" if params.shared_source_target_embedding \
        else "src_embedding"
    src_emb = tf.get_variable(embed_name,
                              [params.src_vocab.size(), params.embed_size])
    src_bias = tf.get_variable("bias", [params.embed_size])

    inputs = tf.gather(src_emb, source)
    inputs = tf.nn.bias_add(inputs, src_bias)

    inputs = util.valid_apply_dropout(inputs, params.dropout)

    with tf.variable_scope("encoder"):
        x = inputs

        for layer in range(params.num_encoder_layer):
            with tf.variable_scope("layer_{}".format(layer)):
                # forward rnn
                with tf.variable_scope('forward'):
                    outputs = rnn.rnn(params.cell,
                                      x,
                                      hidden_size,
                                      mask=mask,
                                      ln=params.layer_norm,
                                      sm=params.swap_memory)
                    output_fw, state_fw = outputs[1]
                if layer == 0:
                    # backward rnn
                    with tf.variable_scope('backward'):
                        if not params.caencoder:
                            outputs = rnn.rnn(params.cell,
                                              tf.reverse(x, [1]),
                                              hidden_size,
                                              mask=tf.reverse(mask, [1]),
                                              ln=params.layer_norm,
                                              sm=params.swap_memory)
                            output_bw, state_bw = outputs[1]
                        else:
                            outputs = rnn.cond_rnn(params.cell,
                                                   tf.reverse(x, [1]),
                                                   tf.reverse(output_fw, [1]),
                                                   hidden_size,
                                                   mask=tf.reverse(mask, [1]),
                                                   ln=params.layer_norm,
                                                   sm=params.swap_memory,
                                                   num_heads=params.num_heads,
                                                   one2one=True)
                            output_bw, state_bw = outputs[1]

                        output_bw = tf.reverse(output_bw, [1])

                    if not params.caencoder:
                        y = tf.concat([output_fw, output_bw], -1)
                        z = tf.concat([state_fw, state_bw], -1)
                    else:
                        y = output_bw
                        z = state_bw
                else:
                    y = output_fw
                    z = state_fw

                y = func.linear(y, params.embed_size, ln=False, scope="ff")

                # short cut via residual connection
                if x.get_shape()[-1].value == y.get_shape()[-1].value:
                    x = func.residual_fn(x, y, dropout=params.dropout)
                else:
                    x = y
                if params.layer_norm:
                    x = func.layer_norm(x, scope="ln")

    if params.embed_size != hidden_size:
        x = func.layer_norm(func.linear(x, hidden_size, scope="x_map"))

    with tf.variable_scope("decoder_initializer"):
        decoder_cell = rnn.get_cell(params.cell,
                                    hidden_size,
                                    ln=params.layer_norm)

    return {
        "encodes": x,
        "decoder_initializer": {
            "layer_{}".format(l):
            decoder_cell.get_init_state(x=z, scope="layer_{}".format(l))
            for l in range(params.num_decoder_layer)
        },
        "mask": mask
    }
Beispiel #9
0
def encoder(source, params):
    mask = dtype.tf_to_float(tf.cast(source, tf.bool))
    hidden_size = params.hidden_size

    source, mask = util.remove_invalid_seq(source, mask)

    embed_name = "embedding" if params.shared_source_target_embedding \
        else "src_embedding"
    src_emb = tf.get_variable(embed_name,
                              [params.src_vocab.size(), params.embed_size])
    src_bias = tf.get_variable("bias", [params.embed_size])

    inputs = tf.gather(src_emb, source)
    inputs = tf.nn.bias_add(inputs, src_bias)

    inputs = util.valid_apply_dropout(inputs, params.dropout)

    with tf.variable_scope("encoder"):
        # forward rnn
        with tf.variable_scope('forward'):
            outputs = rnn.rnn(params.cell,
                              inputs,
                              hidden_size,
                              mask=mask,
                              ln=params.layer_norm,
                              sm=params.swap_memory)
            output_fw, state_fw = outputs[1]
        # backward rnn
        with tf.variable_scope('backward'):
            if not params.caencoder:
                outputs = rnn.rnn(params.cell,
                                  tf.reverse(inputs, [1]),
                                  hidden_size,
                                  mask=tf.reverse(mask, [1]),
                                  ln=params.layer_norm,
                                  sm=params.swap_memory)
                output_bw, state_bw = outputs[1]
            else:
                outputs = rnn.cond_rnn(params.cell,
                                       tf.reverse(inputs, [1]),
                                       tf.reverse(output_fw, [1]),
                                       hidden_size,
                                       mask=tf.reverse(mask, [1]),
                                       ln=params.layer_norm,
                                       sm=params.swap_memory,
                                       num_heads=params.num_heads,
                                       one2one=True)
                output_bw, state_bw = outputs[1]

            output_bw = tf.reverse(output_bw, [1])

    if not params.caencoder:
        source_encodes = tf.concat([output_fw, output_bw], -1)
        source_feature = tf.concat([state_fw, state_bw], -1)
    else:
        source_encodes = output_bw
        source_feature = state_bw

    with tf.variable_scope("decoder_initializer"):
        decoder_init = rnn.get_cell(
            params.cell, hidden_size,
            ln=params.layer_norm).get_init_state(x=source_feature)
    decoder_init = tf.tanh(decoder_init)

    return {
        "encodes": source_encodes,
        "decoder_initializer": decoder_init,
        "mask": mask
    }
Beispiel #10
0
def cond_rnn(cell_name,
             x,
             memory,
             d,
             init_state=None,
             mask=None,
             mem_mask=None,
             ln=False,
             sm=True,
             one2one=False,
             num_heads=1):
    """Self implemented conditional-RNN procedure, supporting mask trick"""
    # cell_name: gru, lstm or atr
    # x: input sequence embedding matrix, [batch, seq_len, dim]
    # memory: the conditional part
    # d: hidden dimension for rnn
    # mask: mask matrix, [batch, seq_len]
    # mem_mask: memory mask matrix, [batch, mem_seq_len]
    # ln: whether use layer normalization
    # init_state: the initial hidden states, for cache purpose
    # sm: whether apply swap memory during rnn scan
    # one2one: whether the memory is one-to-one mapping for x
    # num_heads: number of attention heads, multi-head attention
    # dp: variational dropout

    in_shape = util.shape_list(x)
    batch_size, time_steps = in_shape[:2]
    mem_shape = util.shape_list(memory)

    cell_lower = get_cell(cell_name,
                          d,
                          ln=ln,
                          scope="{}_lower".format(cell_name))
    cell_higher = get_cell(cell_name,
                           d,
                           ln=ln,
                           scope="{}_higher".format(cell_name))

    if init_state is None:
        init_state = cell_lower.get_init_state(shape=[batch_size])
    if mask is None:
        mask = dtype.tf_to_float(tf.ones([batch_size, time_steps]))
    if mem_mask is None:
        mem_mask = dtype.tf_to_float(tf.ones([batch_size, mem_shape[1]]))

    # prepare projected encodes and inputs
    cache_inputs = cell_lower.fetch_states(x)
    cache_inputs = [tf.transpose(v, [1, 0, 2]) for v in list(cache_inputs)]
    if not one2one:
        proj_memories = linear(memory,
                               mem_shape[-1],
                               bias=False,
                               ln=ln,
                               scope="context_att")
    else:
        cache_memories = cell_higher.fetch_states(memory)
        cache_memories = [
            tf.transpose(v, [1, 0, 2]) for v in list(cache_memories)
        ]
    mask_ta = tf.transpose(tf.expand_dims(mask, -1), [1, 0, 2])
    init_context = dtype.tf_to_float(tf.zeros([batch_size, mem_shape[-1]]))
    init_weight = dtype.tf_to_float(
        tf.zeros([batch_size, num_heads, mem_shape[1]]))
    mask_pos = len(cache_inputs)

    def _step_fn(prev, x):
        t, h_, c_, a_ = prev

        if not one2one:
            m, v = x[mask_pos], x[:mask_pos]
        else:
            c, c_c, m, v = x[-1], x[mask_pos + 1:-1], x[mask_pos], x[:mask_pos]

        s = cell_lower(h_, v)
        s = m * s + (1. - m) * h_

        if not one2one:
            vle = additive_attention(cell_lower.get_hidden(s),
                                     memory,
                                     mem_mask,
                                     mem_shape[-1],
                                     ln=ln,
                                     num_heads=num_heads,
                                     proj_memory=proj_memories,
                                     scope="attention")
            a, c = vle['weights'], vle['output']
            c_c = cell_higher.fetch_states(c)
        else:
            a = tf.tile(tf.expand_dims(tf.range(time_steps), 0),
                        [batch_size, 1])
            a = dtype.tf_to_float(tf.equal(a, t))
            a = tf.tile(tf.expand_dims(a, 1), [1, num_heads, 1])
            a = tf.reshape(a, tf.shape(init_weight))

        h = cell_higher(s, c_c)
        h = m * h + (1. - m) * s

        return t + 1, h, c, a

    time = tf.constant(0, dtype=tf.int32, name="time")
    step_states = (time, init_state, init_context, init_weight)
    step_vars = cache_inputs + [mask_ta]
    if one2one:
        step_vars += cache_memories + [memory]

    outputs = tf.scan(_step_fn,
                      step_vars,
                      initializer=step_states,
                      parallel_iterations=32,
                      swap_memory=sm)

    output_ta = outputs[1]
    context_ta = outputs[2]
    attention_ta = outputs[3]

    outputs = tf.transpose(output_ta, [1, 0, 2])
    output_states = outputs[:, -1]
    contexts = tf.transpose(context_ta, [1, 0, 2])
    attentions = tf.transpose(attention_ta, [1, 2, 0, 3])

    return (outputs, output_states), \
           (cell_higher.get_hidden(outputs), cell_higher.get_hidden(output_states)), \
        contexts, attentions
Beispiel #11
0
def dot_attention(query, memory, mem_mask, hidden_size,
                  ln=False, num_heads=1, cache=None, dropout=None,
                  use_relative_pos=False, max_relative_position=16,
                  out_map=True, scope=None, fuse_mask=None,
                  decode_step=None):
    """
    dotted attention model
    :param query: [batch_size, qey_len, dim]
    :param memory: [batch_size, seq_len, mem_dim] or None
    :param mem_mask: [batch_size, seq_len]
    :param hidden_size: attention space dimension
    :param ln: whether use layer normalization
    :param num_heads: attention head number
    :param dropout: attention dropout, default disable
    :param out_map: output additional mapping
    :param cache: cache-based decoding
    :param fuse_mask: aan mask during training, and timestep for testing
    :param max_relative_position: maximum position considered for relative embedding
    :param use_relative_pos: whether use relative position information
    :param decode_step: the time step of current decoding, 0-based
    :param scope:
    :return: a value matrix, [batch_size, qey_len, mem_dim]
    """
    with tf.variable_scope(scope or "dot_attention", reuse=tf.AUTO_REUSE,
                           dtype=tf.as_dtype(dtype.floatx())):
        if fuse_mask is not None:
            assert memory is not None, 'Fuse mechanism only applied with cross-attention'
        if cache and use_relative_pos:
            assert decode_step is not None, 'Decode Step must provide when use relative position encoding'

        if memory is None:
            # suppose self-attention from queries alone
            h = linear(query, hidden_size * 3, ln=ln, scope="qkv_map")
            q, k, v = tf.split(h, 3, -1)

            if cache is not None:
                k = tf.concat([cache['k'], k], axis=1)
                v = tf.concat([cache['v'], v], axis=1)
                cache = {
                    'k': k,
                    'v': v,
                }
        else:
            q = linear(query, hidden_size, ln=ln, scope="q_map")
            if cache is not None and ('mk' in cache and 'mv' in cache):
                k, v = cache['mk'], cache['mv']
            else:
                k = linear(memory, hidden_size, ln=ln, scope="k_map")
                v = linear(memory, hidden_size, ln=ln, scope="v_map")

            if cache is not None:
                cache['mk'] = k
                cache['mv'] = v

        q = split_heads(q, num_heads)
        k = split_heads(k, num_heads)
        v = split_heads(v, num_heads)

        q *= (hidden_size // num_heads) ** (-0.5)

        q_shp = util.shape_list(q)
        k_shp = util.shape_list(k)
        v_shp = util.shape_list(v)

        q_len = q_shp[2] if decode_step is None else decode_step + 1
        r_lst = None if decode_step is None else 1

        # q * k => attention weights
        if use_relative_pos:
            r = rpr.get_relative_positions_embeddings(
                q_len, k_shp[2], k_shp[3],
                max_relative_position, name="rpr_keys", last=r_lst)
            logits = rpr.relative_attention_inner(q, k, r, transpose=True)
        else:
            logits = tf.matmul(q, k, transpose_b=True)

        if mem_mask is not None:
            logits += mem_mask

        weights = tf.nn.softmax(logits)

        dweights = util.valid_apply_dropout(weights, dropout)

        # weights * v => attention vectors
        if use_relative_pos:
            r = rpr.get_relative_positions_embeddings(
                q_len, k_shp[2], v_shp[3],
                max_relative_position, name="rpr_values", last=r_lst)
            o = rpr.relative_attention_inner(dweights, v, r, transpose=False)
        else:
            o = tf.matmul(dweights, v)

        o = combine_heads(o)

        if fuse_mask is not None:
            # This is for AAN, the important part is sharing v_map
            v_q = linear(query, hidden_size, ln=ln, scope="v_map")

            if cache is not None and 'aan' in cache:
                aan_o = (v_q + cache['aan']) / dtype.tf_to_float(fuse_mask + 1)
            else:
                # Simplified Average Attention Network
                aan_o = tf.matmul(fuse_mask, v_q)

            if cache is not None:
                if 'aan' not in cache:
                    cache['aan'] = v_q
                else:
                    cache['aan'] = v_q + cache['aan']

            # Directly sum both self-attention and cross attention
            o = o + aan_o

        if out_map:
            o = linear(o, hidden_size, ln=ln, scope="o_map")

        results = {
            'weights': weights,
            'output': o,
            'cache': cache
        }

        return results
Beispiel #12
0
def decoder(target, state, params):
    mask = dtype.tf_to_float(tf.cast(target, tf.bool))
    hidden_size = params.hidden_size
    initializer = tf.random_normal_initializer(0.0, hidden_size**-0.5)

    is_training = ('decoder' not in state)

    if is_training:
        target, mask = util.remove_invalid_seq(target, mask)

    embed_name = "embedding" if params.shared_source_target_embedding \
        else "tgt_embedding"
    tgt_emb = tf.get_variable(embed_name,
                              [params.tgt_vocab.size(), params.embed_size],
                              initializer=initializer)
    tgt_bias = tf.get_variable("bias", [params.embed_size])

    inputs = tf.gather(tgt_emb, target) * (hidden_size**0.5)
    inputs = tf.nn.bias_add(inputs, tgt_bias)

    # shift
    if is_training:
        inputs = tf.pad(inputs, [[0, 0], [1, 0], [0, 0]])
        inputs = inputs[:, :-1, :]
        inputs = func.add_timing_signal(inputs)
    else:
        inputs = tf.cond(
            tf.reduce_all(tf.equal(target, params.tgt_vocab.pad())),
            lambda: tf.zeros_like(inputs), lambda: inputs)
        mask = tf.ones_like(mask)
        inputs = func.add_timing_signal(inputs,
                                        time=dtype.tf_to_float(state['time']))

    inputs = util.valid_apply_dropout(inputs, params.dropout)

    with tf.variable_scope("decoder"):
        x = inputs
        for layer in range(params.num_decoder_layer):
            if params.deep_transformer_init:
                layer_initializer = tf.variance_scaling_initializer(
                    params.initializer_gain * (layer + 1)**-0.5,
                    mode="fan_avg",
                    distribution="uniform")
            else:
                layer_initializer = None
            with tf.variable_scope("layer_{}".format(layer),
                                   initializer=layer_initializer):
                with tf.variable_scope("average_attention"):
                    x_fwds = []
                    for strategy in params.strategies:
                        with tf.variable_scope(strategy):
                            x_fwd = average_attention_strategy(
                                strategy, x, mask, state, layer, params)
                            x_fwds.append(x_fwd)
                    x_fwd = tf.add_n(x_fwds) / len(x_fwds)

                    # FFN activation
                    if params.use_ffn:
                        y = func.ffn_layer(
                            x_fwd,
                            params.filter_size,
                            hidden_size,
                            dropout=params.relu_dropout,
                        )
                    else:
                        y = x_fwd

                    # Gating layer
                    z = func.linear(tf.concat([x, y], axis=-1),
                                    hidden_size * 2,
                                    scope="z_project")
                    i, f = tf.split(z, 2, axis=-1)
                    y = tf.sigmoid(i) * x + tf.sigmoid(f) * y

                    x = func.residual_fn(x, y, dropout=params.residual_dropout)
                    x = func.layer_norm(x)

                with tf.variable_scope("cross_attention"):
                    y = func.dot_attention(
                        x,
                        state['encodes'],
                        func.attention_bias(state['mask'], "masking"),
                        hidden_size,
                        num_heads=params.num_heads,
                        dropout=params.attention_dropout,
                        cache=None if is_training else
                        state['decoder']['state']['layer_{}'.format(layer)])
                    if not is_training:
                        # mk, mv
                        state['decoder']['state']['layer_{}'.format(layer)]\
                            .update(y['cache'])

                    y = y['output']
                    x = func.residual_fn(x, y, dropout=params.residual_dropout)
                    x = func.layer_norm(x)

                with tf.variable_scope("feed_forward"):
                    y = func.ffn_layer(
                        x,
                        params.filter_size,
                        hidden_size,
                        dropout=params.relu_dropout,
                    )

                    x = func.residual_fn(x, y, dropout=params.residual_dropout)
                    x = func.layer_norm(x)
    feature = x
    if 'dev_decode' in state:
        feature = x[:, -1, :]

    embed_name = "tgt_embedding" if params.shared_target_softmax_embedding \
        else "softmax_embedding"
    embed_name = "embedding" if params.shared_source_target_embedding \
        else embed_name
    softmax_emb = tf.get_variable(embed_name,
                                  [params.tgt_vocab.size(), params.embed_size],
                                  initializer=initializer)
    feature = tf.reshape(feature, [-1, params.embed_size])
    logits = tf.matmul(feature, softmax_emb, False, True)

    logits = tf.cast(logits, tf.float32)

    soft_label, normalizer = util.label_smooth(target,
                                               util.shape_list(logits)[-1],
                                               factor=params.label_smooth)
    centropy = tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits,
                                                          labels=soft_label)
    centropy -= normalizer
    centropy = tf.reshape(centropy, tf.shape(target))

    mask = tf.cast(mask, tf.float32)
    per_sample_loss = tf.reduce_sum(centropy * mask, -1) / tf.reduce_sum(
        mask, -1)
    loss = tf.reduce_mean(per_sample_loss)

    # these mask tricks mainly used to deal with zero shapes, such as [0, 1]
    loss = tf.cond(tf.equal(tf.shape(target)[0], 0),
                   lambda: tf.constant(0, dtype=tf.float32), lambda: loss)

    return loss, logits, state, per_sample_loss
Beispiel #13
0
def encoder(source, params):
    mask = dtype.tf_to_float(tf.cast(source, tf.bool))
    hidden_size = params.hidden_size
    initializer = tf.random_normal_initializer(0.0, hidden_size**-0.5)

    source, mask = util.remove_invalid_seq(source, mask)

    embed_name = "embedding" if params.shared_source_target_embedding \
        else "src_embedding"
    src_emb = tf.get_variable(embed_name,
                              [params.src_vocab.size(), params.embed_size],
                              initializer=initializer)
    src_bias = tf.get_variable("bias", [params.embed_size])

    inputs = tf.gather(src_emb, source) * (hidden_size**0.5)
    inputs = tf.nn.bias_add(inputs, src_bias)
    inputs = func.add_timing_signal(inputs)

    inputs = util.valid_apply_dropout(inputs, params.dropout)

    with tf.variable_scope("encoder"):
        x = inputs
        for layer in range(params.num_encoder_layer):
            if params.deep_transformer_init:
                layer_initializer = tf.variance_scaling_initializer(
                    params.initializer_gain * (layer + 1)**-0.5,
                    mode="fan_avg",
                    distribution="uniform")
            else:
                layer_initializer = None
            with tf.variable_scope("layer_{}".format(layer),
                                   initializer=layer_initializer):
                with tf.variable_scope("self_attention"):
                    y = func.dot_attention(x,
                                           None,
                                           func.attention_bias(
                                               mask, "masking"),
                                           hidden_size,
                                           num_heads=params.num_heads,
                                           dropout=params.attention_dropout)

                    y = y['output']
                    x = func.residual_fn(x, y, dropout=params.residual_dropout)
                    x = func.layer_norm(x)

                with tf.variable_scope("feed_forward"):
                    y = func.ffn_layer(
                        x,
                        params.filter_size,
                        hidden_size,
                        dropout=params.relu_dropout,
                    )

                    x = func.residual_fn(x, y, dropout=params.residual_dropout)
                    x = func.layer_norm(x)

    source_encodes = x
    x_shp = util.shape_list(x)

    return {
        "encodes": source_encodes,
        "decoder_initializer": {
            "layer_{}".format(l): {
                # plan aan
                "aan": dtype.tf_to_float(tf.zeros([x_shp[0], 1, hidden_size])),
            }
            for l in range(params.num_decoder_layer)
        },
        "mask": mask
    }
Beispiel #14
0
def decoder(target, state, params):
    mask = dtype.tf_to_float(tf.cast(target, tf.bool))
    hidden_size = params.hidden_size
    initializer = tf.random_normal_initializer(0.0, hidden_size**-0.5)

    is_training = ('decoder' not in state)

    if is_training:
        target, mask = util.remove_invalid_seq(target, mask)

    embed_name = "embedding" if params.shared_source_target_embedding \
        else "tgt_embedding"
    tgt_emb = tf.get_variable(embed_name,
                              [params.tgt_vocab.size(), params.embed_size],
                              initializer=initializer)
    tgt_bias = tf.get_variable("bias", [params.embed_size])

    inputs = tf.gather(tgt_emb, target) * (hidden_size**0.5)
    inputs = tf.nn.bias_add(inputs, tgt_bias)

    # shift
    if is_training:
        inputs = tf.pad(inputs, [[0, 0], [1, 0], [0, 0]])
        inputs = inputs[:, :-1, :]
        inputs = func.add_timing_signal(inputs)
    else:
        inputs = tf.cond(
            tf.reduce_all(tf.equal(target, params.tgt_vocab.pad())),
            lambda: tf.zeros_like(inputs), lambda: inputs)
        mask = tf.ones_like(mask)
        inputs = func.add_timing_signal(inputs,
                                        time=dtype.tf_to_float(state['time']))

    inputs = util.valid_apply_dropout(inputs, params.dropout)

    # Applying L0Drop
    # --------
    source_memory = state["encodes"]
    source_mask = state["mask"]

    # source_pruning: log alpha_i = x_i w^T
    source_pruning = func.linear(source_memory, 1, scope="source_pruning")

    if is_training:  # training
        source_memory, l0_mask = l0norm.var_train(
            (source_memory, source_pruning))
        l0_norm_loss = tf.squeeze(l0norm.l0_norm(source_pruning), -1)
        l0_norm_loss = tf.reduce_sum(l0_norm_loss * source_mask,
                                     -1) / tf.reduce_sum(source_mask, -1)
        l0_norm_loss = tf.reduce_mean(l0_norm_loss)
        l0_norm_loss = l0norm.l0_regularization_loss(
            l0_norm_loss,
            reg_scalar=params.l0_norm_reg_scalar,
            start_reg_ramp_up=params.l0_norm_start_reg_ramp_up,
            end_reg_ramp_up=params.l0_norm_end_reg_ramp_up,
            warm_up=params.l0_norm_warm_up,
        )

        # force the model to only attend to unmasked position
        source_mask = dtype.tf_to_float(
            tf.cast(tf.squeeze(l0_mask, -1), tf.bool)) * source_mask
    else:  # evaluation
        source_memory, l0_mask = l0norm.var_eval(
            (source_memory, source_pruning))
        l0_norm_loss = 0.0

        source_memory, source_mask, count_mask = extract_encodes(
            source_memory, source_mask, l0_mask)
        count_mask = tf.expand_dims(tf.expand_dims(count_mask, 1), 1)
    # --------

    with tf.variable_scope("decoder"):
        x = inputs
        for layer in range(params.num_decoder_layer):
            if params.deep_transformer_init:
                layer_initializer = tf.variance_scaling_initializer(
                    params.initializer_gain * (layer + 1)**-0.5,
                    mode="fan_avg",
                    distribution="uniform")
            else:
                layer_initializer = None
            with tf.variable_scope("layer_{}".format(layer),
                                   initializer=layer_initializer):
                with tf.variable_scope("self_attention"):
                    y = func.dot_attention(
                        x,
                        None,
                        func.attention_bias(tf.shape(mask)[1], "causal"),
                        hidden_size,
                        num_heads=params.num_heads,
                        dropout=params.attention_dropout,
                        cache=None if is_training else
                        state['decoder']['state']['layer_{}'.format(layer)])
                    if not is_training:
                        # k, v
                        state['decoder']['state']['layer_{}'.format(layer)] \
                            .update(y['cache'])

                    y = y['output']
                    x = func.residual_fn(x, y, dropout=params.residual_dropout)
                    x = func.layer_norm(x)

                with tf.variable_scope("cross_attention"):
                    if is_training:
                        y = func.dot_attention(
                            x,
                            source_memory,
                            func.attention_bias(source_mask, "masking"),
                            hidden_size,
                            num_heads=params.num_heads,
                            dropout=params.attention_dropout,
                        )
                    else:
                        y = dot_attention(x,
                                          source_memory,
                                          func.attention_bias(
                                              source_mask, "masking"),
                                          hidden_size,
                                          count_mask=count_mask,
                                          num_heads=params.num_heads,
                                          dropout=params.attention_dropout,
                                          cache=state['decoder']['state'][
                                              'layer_{}'.format(layer)])

                        # mk, mv
                        state['decoder']['state']['layer_{}'.format(layer)] \
                            .update(y['cache'])

                    y = y['output']
                    x = func.residual_fn(x, y, dropout=params.residual_dropout)
                    x = func.layer_norm(x)

                with tf.variable_scope("feed_forward"):
                    y = func.ffn_layer(
                        x,
                        params.filter_size,
                        hidden_size,
                        dropout=params.relu_dropout,
                    )

                    x = func.residual_fn(x, y, dropout=params.residual_dropout)
                    x = func.layer_norm(x)
    feature = x
    if 'dev_decode' in state:
        feature = x[:, -1, :]

    embed_name = "tgt_embedding" if params.shared_target_softmax_embedding \
        else "softmax_embedding"
    embed_name = "embedding" if params.shared_source_target_embedding \
        else embed_name
    softmax_emb = tf.get_variable(embed_name,
                                  [params.tgt_vocab.size(), params.embed_size],
                                  initializer=initializer)
    feature = tf.reshape(feature, [-1, params.embed_size])
    logits = tf.matmul(feature, softmax_emb, False, True)

    logits = tf.cast(logits, tf.float32)

    soft_label, normalizer = util.label_smooth(target,
                                               util.shape_list(logits)[-1],
                                               factor=params.label_smooth)
    centropy = tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits,
                                                          labels=soft_label)
    centropy -= normalizer
    centropy = tf.reshape(centropy, tf.shape(target))

    mask = tf.cast(mask, tf.float32)
    per_sample_loss = tf.reduce_sum(centropy * mask, -1) / tf.reduce_sum(
        mask, -1)
    loss = tf.reduce_mean(per_sample_loss)

    loss = loss + l0_norm_loss

    # these mask tricks mainly used to deal with zero shapes, such as [0, 1]
    loss = tf.cond(tf.equal(tf.shape(target)[0], 0),
                   lambda: tf.constant(0, tf.float32), lambda: loss)

    return loss, logits, state, per_sample_loss
Beispiel #15
0
def deep_att_dec_rnn(cell_name,
                     x,
                     memory,
                     d,
                     init_state=None,
                     mask=None,
                     mem_mask=None,
                     ln=False,
                     sm=True,
                     depth=1,
                     num_heads=1):
    """Self implemented conditional-RNN procedure, supporting mask trick"""
    # cell_name: gru, lstm or atr
    # x: input sequence embedding matrix, [batch, seq_len, dim]
    # memory: the conditional part
    # d: hidden dimension for rnn
    # mask: mask matrix, [batch, seq_len]
    # mem_mask: memory mask matrix, [batch, mem_seq_len]
    # ln: whether use layer normalization
    # init_state: the initial hidden states, for cache purpose
    # sm: whether apply swap memory during rnn scan
    # depth: depth for the decoder in deep attention
    # num_heads: number of attention heads, multi-head attention
    # dp: variational dropout

    in_shape = util.shape_list(x)
    batch_size, time_steps = in_shape[:2]
    mem_shape = util.shape_list(memory)

    cell_lower = rnn.get_cell(cell_name,
                              d,
                              ln=ln,
                              scope="{}_lower".format(cell_name))
    cells_higher = []
    for layer in range(depth):
        cell_higher = rnn.get_cell(cell_name,
                                   d,
                                   ln=ln,
                                   scope="{}_higher_{}".format(
                                       cell_name, layer))
        cells_higher.append(cell_higher)

    if init_state is None:
        init_state = cell_lower.get_init_state(shape=[batch_size])
    if mask is None:
        mask = dtype.tf_to_float(tf.ones([batch_size, time_steps]))
    if mem_mask is None:
        mem_mask = dtype.tf_to_float(tf.ones([batch_size, mem_shape[1]]))

    # prepare projected encodes and inputs
    cache_inputs = cell_lower.fetch_states(x)
    cache_inputs = [tf.transpose(v, [1, 0, 2]) for v in list(cache_inputs)]
    proj_memories = func.linear(memory,
                                mem_shape[-1],
                                bias=False,
                                ln=ln,
                                scope="context_att")

    mask_ta = tf.transpose(tf.expand_dims(mask, -1), [1, 0, 2])
    init_context = dtype.tf_to_float(
        tf.zeros([batch_size, depth, mem_shape[-1]]))
    init_weight = dtype.tf_to_float(
        tf.zeros([batch_size, depth, num_heads, mem_shape[1]]))
    mask_pos = len(cache_inputs)

    def _step_fn(prev, x):
        t, h_, c_, a_ = prev

        m, v = x[mask_pos], x[:mask_pos]

        # the first decoder rnn subcell, composing previous hidden state with the current word embedding
        s_ = cell_lower(h_, v)
        s_ = m * s_ + (1. - m) * h_

        atts, att_ctxs = [], []

        for layer in range(depth):
            # perform attention
            prev_cell = cell_lower if layer == 0 else cells_higher[layer - 1]
            vle = func.additive_attention(
                prev_cell.get_hidden(s_),
                memory,
                mem_mask,
                mem_shape[-1],
                ln=ln,
                num_heads=num_heads,
                proj_memory=proj_memories,
                scope="deep_attention_{}".format(layer))
            a, c = vle['weights'], vle['output']
            atts.append(tf.expand_dims(a, 1))
            att_ctxs.append(tf.expand_dims(c, 1))

            # perform next-level recurrence
            c_c = cells_higher[layer].fetch_states(c)
            ss_ = cells_higher[layer](s_, c_c)
            s_ = m * ss_ + (1. - m) * s_

        h = s_
        a = tf.concat(atts, axis=1)
        c = tf.concat(att_ctxs, axis=1)

        return t + 1, h, c, a

    time = tf.constant(0, dtype=tf.int32, name="time")
    step_states = (time, init_state, init_context, init_weight)
    step_vars = cache_inputs + [mask_ta]

    outputs = tf.scan(_step_fn,
                      step_vars,
                      initializer=step_states,
                      parallel_iterations=32,
                      swap_memory=sm)

    output_ta = outputs[1]
    context_ta = outputs[2]
    attention_ta = outputs[3]

    outputs = tf.transpose(output_ta, [1, 0, 2])
    output_states = outputs[:, -1]
    # batch x target length x depth x mem-dimension
    contexts = tf.transpose(context_ta, [1, 0, 2, 3])
    # batch x num_heads x depth x target length x source length
    attentions = tf.transpose(attention_ta, [1, 3, 2, 0, 4])

    return (outputs, output_states), \
           (cells_higher[-1].get_hidden(outputs), cells_higher[-1].get_hidden(output_states)), \
        contexts, attentions
Beispiel #16
0
def decoder(target, state, params):
    mask = dtype.tf_to_float(tf.cast(target, tf.bool))
    hidden_size = params.hidden_size

    is_training = ('decoder' not in state)

    if is_training:
        target, mask = util.remove_invalid_seq(target, mask)

    embed_name = "embedding" if params.shared_source_target_embedding \
        else "tgt_embedding"
    tgt_emb = tf.get_variable(embed_name,
                              [params.tgt_vocab.size(), params.embed_size])
    tgt_bias = tf.get_variable("bias", [params.embed_size])

    inputs = tf.gather(tgt_emb, target)
    inputs = tf.nn.bias_add(inputs, tgt_bias)

    # shift
    if is_training:
        inputs = tf.pad(inputs, [[0, 0], [1, 0], [0, 0]])
        inputs = inputs[:, :-1, :]
    else:
        inputs = tf.cond(
            tf.reduce_all(tf.equal(target, params.tgt_vocab.pad())),
            lambda: tf.zeros_like(inputs), lambda: inputs)
        mask = tf.ones_like(mask)

    inputs = util.valid_apply_dropout(inputs, params.dropout)

    with tf.variable_scope("decoder"):
        x = inputs
        for layer in range(params.num_decoder_layer):
            with tf.variable_scope("layer_{}".format(layer)):
                init_state = state["decoder_initializer"]["layer_{}".format(
                    layer)]
                if not is_training:
                    init_state = state["decoder"]["state"]["layer_{}".format(
                        layer)]
                if layer == 0 or params.use_deep_att:
                    returns = rnn.cond_rnn(params.cell,
                                           x,
                                           state["encodes"],
                                           hidden_size,
                                           init_state=init_state,
                                           mask=mask,
                                           num_heads=params.num_heads,
                                           mem_mask=state["mask"],
                                           ln=params.layer_norm,
                                           sm=params.swap_memory,
                                           one2one=False)
                    (_, hidden_state), (outputs,
                                        _), contexts, attentions = returns
                    c = contexts
                else:
                    if params.caencoder:
                        returns = rnn.cond_rnn(params.cell,
                                               x,
                                               c,
                                               hidden_size,
                                               init_state=init_state,
                                               mask=mask,
                                               mem_mask=mask,
                                               ln=params.layer_norm,
                                               sm=params.swap_memory,
                                               num_heads=params.num_heads,
                                               one2one=True)
                        (_, hidden_state), (outputs,
                                            _), contexts, attentions = returns
                    else:
                        outputs = rnn.rnn(params.cell,
                                          tf.concat([x, c], -1),
                                          hidden_size,
                                          mask=mask,
                                          init_state=init_state,
                                          ln=params.layer_norm,
                                          sm=params.swap_memory)
                        outputs, hidden_state = outputs[1]
                if not is_training:
                    state['decoder']['state']['layer_{}'.format(
                        layer)] = hidden_state

                y = func.linear(outputs,
                                params.embed_size,
                                ln=False,
                                scope="ff")

                # short cut via residual connection
                if x.get_shape()[-1].value == y.get_shape()[-1].value:
                    x = func.residual_fn(x, y, dropout=params.dropout)
                else:
                    x = y
                if params.layer_norm:
                    x = func.layer_norm(x, scope="ln")

    if params.dl4mt_redict:
        feature = func.linear(tf.concat([x, c], -1),
                              params.embed_size,
                              ln=params.layer_norm,
                              scope="ff")
        feature = tf.nn.tanh(feature)

        feature = util.valid_apply_dropout(feature, params.dropout)
    else:
        feature = x

    if 'dev_decode' in state:
        feature = x[:, -1, :]

    embed_name = "tgt_embedding" if params.shared_target_softmax_embedding \
        else "softmax_embedding"
    embed_name = "embedding" if params.shared_source_target_embedding \
        else embed_name
    softmax_emb = tf.get_variable(embed_name,
                                  [params.tgt_vocab.size(), params.embed_size])
    feature = tf.reshape(feature, [-1, params.embed_size])
    logits = tf.matmul(feature, softmax_emb, False, True)

    logits = tf.cast(logits, tf.float32)

    soft_label, normalizer = util.label_smooth(target,
                                               util.shape_list(logits)[-1],
                                               factor=params.label_smooth)
    centropy = tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits,
                                                          labels=soft_label)
    centropy -= normalizer
    centropy = tf.reshape(centropy, tf.shape(target))

    mask = tf.cast(mask, tf.float32)
    per_sample_loss = tf.reduce_sum(centropy * mask, -1) / tf.reduce_sum(
        mask, -1)
    loss = tf.reduce_mean(per_sample_loss)

    # these mask tricks mainly used to deal with zero shapes, such as [0, 1]
    loss = tf.cond(tf.equal(tf.shape(target)[0], 0),
                   lambda: tf.constant(0, dtype=tf.float32), lambda: loss)

    return loss, logits, state, per_sample_loss
Beispiel #17
0
def encoder(source, params):
    mask = dtype.tf_to_float(tf.cast(source, tf.bool))
    hidden_size = params.hidden_size

    source, mask = util.remove_invalid_seq(source, mask)

    # extract source word embedding and apply dropout
    embed_name = "embedding" if params.shared_source_target_embedding \
        else "src_embedding"
    src_emb = tf.get_variable(embed_name,
                              [params.src_vocab.size(), params.embed_size])
    src_bias = tf.get_variable("bias", [params.embed_size])

    inputs = tf.gather(src_emb, source)
    inputs = tf.nn.bias_add(inputs, src_bias)

    inputs = util.valid_apply_dropout(inputs, params.dropout)

    # the encoder module used in the deep attention paper
    with tf.variable_scope("encoder"):
        # x: embedding input, h: the hidden state
        x = inputs
        h = 0
        z = 0

        for layer in range(params.num_encoder_layer + 1):
            with tf.variable_scope("layer_{}".format(layer)):
                if layer == 0:
                    # for the first layer, we perform a normal rnn layer to collect context information
                    outputs = rnn.rnn(params.cell,
                                      x,
                                      hidden_size,
                                      mask=mask,
                                      ln=params.layer_norm,
                                      sm=params.swap_memory)
                    h = outputs[1][0]

                else:
                    # for deeper encoder layers, we incorporate both embedding input and previous inversed hidden
                    # state sequence as input.
                    # the embedding informs current input while hidden state tells future context
                    is_reverse = (layer % 2 == 1)
                    outputs = rnn.cond_rnn(
                        params.cell,
                        tf.reverse(x, [1]) if is_reverse else x,
                        tf.reverse(h, [1]) if is_reverse else h,
                        hidden_size,
                        mask=tf.reverse(mask, [1]) if is_reverse else mask,
                        ln=params.layer_norm,
                        sm=params.swap_memory,
                        num_heads=params.num_heads,
                        one2one=True)
                    h = outputs[1][0]
                    h = tf.reverse(h, [1]) if is_reverse else h

                # the final hidden state used for decoder state initialization
                z = outputs[1][1]

    with tf.variable_scope("decoder_initializer"):
        decoder_cell = rnn.get_cell(params.cell,
                                    hidden_size,
                                    ln=params.layer_norm)

    return {
        "encodes": h,
        "decoder_initializer": {
            'layer': decoder_cell.get_init_state(x=z, scope="dec_init_state")
        },
        "mask": mask
    }
Beispiel #18
0
def decoder(target, state, params):
    mask = dtype.tf_to_float(tf.cast(target, tf.bool))
    hidden_size = params.hidden_size

    is_training = ('decoder' not in state)

    # handling target-side word embedding, including shift-padding for training
    embed_name = "embedding" if params.shared_source_target_embedding \
        else "tgt_embedding"
    tgt_emb = tf.get_variable(embed_name,
                              [params.tgt_vocab.size(), params.embed_size])
    tgt_bias = tf.get_variable("bias", [params.embed_size])

    inputs = tf.gather(tgt_emb, target)
    inputs = tf.nn.bias_add(inputs, tgt_bias)

    # shift
    if is_training:
        inputs = tf.pad(inputs, [[0, 0], [1, 0], [0, 0]])
        inputs = inputs[:, :-1, :]
    else:
        inputs = tf.cond(
            tf.reduce_all(tf.equal(target, params.tgt_vocab.pad())),
            lambda: tf.zeros_like(inputs), lambda: inputs)
        mask = tf.ones_like(mask)

    inputs = util.valid_apply_dropout(inputs, params.dropout)

    with tf.variable_scope("decoder"):
        x = inputs

        init_state = state["decoder_initializer"]["layer"]
        if not is_training:
            init_state = state["decoder"]["state"]["layer"]
        returns = deep_att_dec_rnn(params.cell,
                                   x,
                                   state["encodes"],
                                   hidden_size,
                                   init_state=init_state,
                                   mask=mask,
                                   num_heads=params.num_heads,
                                   mem_mask=state["mask"],
                                   ln=params.layer_norm,
                                   sm=params.swap_memory,
                                   depth=params.num_decoder_layer)
        (_, hidden_state), (outputs, _), contexts, attentions = returns

        if not is_training:
            state['decoder']['state']['layer'] = hidden_state

        x = outputs
        cshp = util.shape_list(contexts)
        c = tf.reshape(contexts, [cshp[0], cshp[1], cshp[2] * cshp[3]])

    feature = func.linear(tf.concat([x, c, inputs], -1),
                          params.embed_size,
                          ln=params.layer_norm,
                          scope="ff")
    feature = tf.nn.tanh(feature)

    feature = util.valid_apply_dropout(feature, params.dropout)

    if 'dev_decode' in state:
        feature = feature[:, -1, :]

    embed_name = "tgt_embedding" if params.shared_target_softmax_embedding \
        else "softmax_embedding"
    embed_name = "embedding" if params.shared_source_target_embedding \
        else embed_name
    softmax_emb = tf.get_variable(embed_name,
                                  [params.tgt_vocab.size(), params.embed_size])
    feature = tf.reshape(feature, [-1, params.embed_size])
    logits = tf.matmul(feature, softmax_emb, False, True)

    logits = tf.cast(logits, tf.float32)

    soft_label, normalizer = util.label_smooth(target,
                                               util.shape_list(logits)[-1],
                                               factor=params.label_smooth)
    centropy = tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits,
                                                          labels=soft_label)
    centropy -= normalizer
    centropy = tf.reshape(centropy, tf.shape(target))

    mask = tf.cast(mask, tf.float32)
    per_sample_loss = tf.reduce_sum(centropy * mask, -1) / tf.reduce_sum(
        mask, -1)
    loss = tf.reduce_mean(per_sample_loss)

    # these mask tricks mainly used to deal with zero shapes, such as [0, 1]
    loss = tf.cond(tf.equal(tf.shape(target)[0], 0),
                   lambda: tf.constant(0, dtype=tf.float32), lambda: loss)

    return loss, logits, state, per_sample_loss