Beispiel #1
0
def main_supervised(ae):
    with ae.session.graph.as_default():
        sess = ae.session
        input_pl = tf.placeholder(tf.float32,
                                  shape=(FLAGS.batch_size, FLAGS.image_pixels),
                                  name='input_pl')
        logits = ae.supervised_net(input_pl)

        data = read_data_sets(FLAGS.data_dir,
                              sub['tr'],
                              sub['te'],
                              sub['val'],
                              one_hot=False)

        num_train = data.train.num_examples

        labels_placeholder = tf.placeholder(tf.int32,
                                            shape=FLAGS.batch_size,
                                            name='target_pl')

        loss = loss_supervised(logits, labels_placeholder)
        train_op, global_step = training(loss, FLAGS.supervised_learning_rate)
        eval_correct = evaluation(logits, labels_placeholder)

        hist_summaries = [
            ae['biases{0}'.format(i + 1)]
            for i in range(ae.num_hidden_layers + 1)
        ]
        hist_summaries.extend([
            ae['weights{0}'.format(i + 1)]
            for i in range(ae.num_hidden_layers + 1)
        ])

        hist_summaries = [
            tf.summary.histogram(v.op.name + "_fine_tuning", v)
            for v in hist_summaries
        ]
        summary_op = tf.summary.merge(hist_summaries)

        summary_writer = tf.summary.FileWriter(pjoin(FLAGS.summary_dir,
                                                     'fine_tuning'),
                                               graph=sess.graph,
                                               flush_secs=FLAGS.flush_secs)

        vars_to_init = ae.get_variables_to_init(ae.num_hidden_layers + 1)
        vars_to_init.append(global_step)
        sess.run(tf.variables_initializer(vars_to_init))

        steps = FLAGS.finetuning_epochs * num_train

        for step in range(steps):
            start_time = time.time()

            feed_dict = fill_feed_dict(data.train, input_pl,
                                       labels_placeholder)

            _, loss_value = sess.run([train_op, loss], feed_dict=feed_dict)

            duration = time.time() - start_time

            # Write the summaries and print an overview fairly often.
            if step % 5000 == 0:
                # Print status to stdout.
                print('Step %d: loss = %.2f (%.3f sec)' %
                      (step, loss_value, duration))
                # Update the events file.

                summary_str = sess.run(summary_op, feed_dict=feed_dict)
                summary_writer.add_summary(summary_str, step)
                summary_img_str = sess.run(tf.summary.image(
                    "training_images",
                    tf.reshape(input_pl, (FLAGS.batch_size, FLAGS.image_size,
                                          FLAGS.image_size, 1)),
                    max_outputs=FLAGS.batch_size),
                                           feed_dict=feed_dict)
                summary_writer.add_summary(summary_img_str)

            if (step + 1) % 5000 == 0 or (step + 1) == steps:
                train_sum = do_eval_summary("training_error", sess,
                                            eval_correct, input_pl,
                                            labels_placeholder, data.train)

                val_sum = do_eval_summary("validation_error", sess,
                                          eval_correct, input_pl,
                                          labels_placeholder, data.validation)

                test_sum = do_eval_summary("test_error", sess, eval_correct,
                                           input_pl, labels_placeholder,
                                           data.test)

                summary_writer.add_summary(train_sum, step)
                summary_writer.add_summary(val_sum, step)
                summary_writer.add_summary(test_sum, step)

        for i in range(FLAGS.num_hidden_layers):
            filters = sess.run(tf.identity(ae["weights" + str(i + 1)]))
            np.save(pjoin(FLAGS.chkpt_dir, "filters" + str(i + 1) + "ft"),
                    filters)
            filters_biases = sess.run(tf.identity(ae["biases" + str(i + 1)]))
            np.save(pjoin(FLAGS.chkpt_dir, "biases" + str(i + 1) + "ft"),
                    filters_biases)
Beispiel #2
0
def main_supervised(ae):
  with ae.session.graph.as_default():
    sess = ae.session
    input_pl = tf.placeholder(tf.float32, shape=(FLAGS.batch_size,
                                                 FLAGS.image_pixels),
                              name='input_pl')
    logits = ae.supervised_net(input_pl)

    #data = read_data_sets(FLAGS.data_dir)
    #num_train = data.train.num_examples
	new_file_data = ExtractData()
    data = read_data_sets_pretraining(new_file_data.fetch_data_sets)
    num_train = data.train.num_examples
	

    labels_placeholder = tf.placeholder(tf.int32,
                                        shape=FLAGS.batch_size,
                                        name='target_pl')

    loss = loss_supervised(logits, labels_placeholder)
    train_op, global_step = training(loss, FLAGS.supervised_learning_rate)
    eval_correct = evaluation(logits, labels_placeholder)

    hist_summaries = [ae['biases{0}'.format(i + 1)]
                      for i in xrange(ae.num_hidden_layers + 1)]
    hist_summaries.extend([ae['weights{0}'.format(i + 1)]
                           for i in xrange(ae.num_hidden_layers + 1)])

    hist_summaries = [tf.histogram_summary(v.op.name + "_fine_tuning", v)
                      for v in hist_summaries]
    summary_op = tf.merge_summary(hist_summaries)

    summary_writer = tf.train.SummaryWriter(pjoin(FLAGS.summary_dir,
                                                  'fine_tuning'),
                                            graph_def=sess.graph_def,
                                            flush_secs=FLAGS.flush_secs)

    vars_to_init = ae.get_variables_to_init(ae.num_hidden_layers + 1)
    vars_to_init.append(global_step)
    sess.run(tf.initialize_variables(vars_to_init))

    steps = FLAGS.finetuning_epochs * num_train
    for step in xrange(steps):
      start_time = time.time()

      feed_dict = fill_feed_dict(data.train,
                                 input_pl,
                                 labels_placeholder)

      _, loss_value = sess.run([train_op, loss],
                               feed_dict=feed_dict)
     
      duration = time.time() - start_time

      # Write the summaries and print an overview fairly often.
      if step % 50 == 0:
        # Print status to stdout.
        print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration))
        # Update the events file.

        summary_str = sess.run(summary_op, feed_dict=feed_dict)
        summary_writer.add_summary(summary_str, step)

      if (step + 1) % 200 == 0 or (step + 1) == steps:
        train_sum = do_eval_summary("training_error",
                                    sess,
                                    eval_correct,
                                    input_pl,
                                    labels_placeholder,
                                    data.train)

        val_sum = do_eval_summary("validation_error",
                                  sess,
                                  eval_correct,
                                  input_pl,
                                  labels_placeholder,
                                  data.validation)

        test_sum = do_eval_summary("test_error",
                                   sess,
                                   eval_correct,
                                   input_pl,
                                   labels_placeholder,
                                   data.test)

        do_eval(sess,
                eval_correct,
                input_pl,
                labels_placeholder,
                data.test)

        summary_writer.add_summary(train_sum, step)
        summary_writer.add_summary(val_sum, step)
        summary_writer.add_summary(test_sum, step)
def main_supervised(ae):
  with ae.session.graph.as_default():
    sess = ae.session
    input_pl = tf.placeholder(tf.float32, shape=(FLAGS.batch_size,
                                                 FLAGS.image_pixels),
                              name='input_pl')
    logits = ae.supervised_net(input_pl)

    data = read_data_sets(FLAGS.data_dir)
    num_train = data.train.num_examples

    labels_placeholder = tf.placeholder(tf.int32,
                                        shape=FLAGS.batch_size,
                                        name='target_pl')

    loss = loss_supervised(logits, labels_placeholder)
    train_op, global_step = training(loss, FLAGS.supervised_learning_rate)
    eval_correct = evaluation(logits, labels_placeholder)

    hist_summaries = [ae['biases{0}'.format(i + 1)]
                      for i in xrange(ae.num_hidden_layers + 1)]
    hist_summaries.extend([ae['weights{0}'.format(i + 1)]
                           for i in xrange(ae.num_hidden_layers + 1)])

    hist_summaries = [tf.histogram_summary(v.op.name + "_fine_tuning", v)
                      for v in hist_summaries]
    summary_op = tf.merge_summary(hist_summaries)

    summary_writer = tf.train.SummaryWriter(pjoin(FLAGS.summary_dir,
                                                  'fine_tuning'),
                                            graph_def=sess.graph_def,
                                            flush_secs=FLAGS.flush_secs)

    vars_to_init = ae.get_variables_to_init(ae.num_hidden_layers + 1)
    vars_to_init.append(global_step)
    sess.run(tf.initialize_variables(vars_to_init))

    steps = FLAGS.finetuning_epochs * num_train
    for step in xrange(steps):
      start_time = time.time()

      feed_dict = fill_feed_dict(data.train,
                                 input_pl,
                                 labels_placeholder)

      _, loss_value = sess.run([train_op, loss],
                               feed_dict=feed_dict)

      duration = time.time() - start_time

      # Write the summaries and print an overview fairly often.
      if step % 100 == 0:
        # Print status to stdout.
        print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration))
        # Update the events file.

        summary_str = sess.run(summary_op, feed_dict=feed_dict)
        summary_writer.add_summary(summary_str, step)
        summary_img_str = sess.run(
            tf.image_summary("training_images",
                             tf.reshape(input_pl,
                                        (FLAGS.batch_size,
                                         FLAGS.image_size,
                                         FLAGS.image_size, 1)),
                             max_images=FLAGS.batch_size),
            feed_dict=feed_dict
        )
        summary_writer.add_summary(summary_img_str)

      if (step + 1) % 1000 == 0 or (step + 1) == steps:
        train_sum = do_eval_summary("training_error",
                                    sess,
                                    eval_correct,
                                    input_pl,
                                    labels_placeholder,
                                    data.train)

        val_sum = do_eval_summary("validation_error",
                                  sess,
                                  eval_correct,
                                  input_pl,
                                  labels_placeholder,
                                  data.validation)

        test_sum = do_eval_summary("test_error",
                                   sess,
                                   eval_correct,
                                   input_pl,
                                   labels_placeholder,
                                   data.test)

        summary_writer.add_summary(train_sum, step)
        summary_writer.add_summary(val_sum, step)
        summary_writer.add_summary(test_sum, step)
Beispiel #4
0
def main_supervised(ae):

    output = []

    with ae.session.graph.as_default():
        sess = ae.session

        input_pl = tf.placeholder(tf.float32,
                                  shape=(FLAGS.batch_size, FLAGS.image_pixels),
                                  name='input_pl')
        logits = ae.supervised_net(input_pl)

        data = read_data_sets(FLAGS.data_dir)
        num_train = data.train.num_examples

        labels_placeholder = tf.placeholder(tf.int32,
                                            shape=(FLAGS.batch_size,
                                                   FLAGS.num_classes),
                                            name='target_pl')

        # print ("logits.shape ", logits.get_shape())
        # print ("labels.shape ", labels_placeholder.get_shape())

        loss = loss_supervised(logits, labels_placeholder)
        train_op, global_step = training(loss, FLAGS.supervised_learning_rate)

        eval_correct = evaluation(logits, labels_placeholder)

        hist_summaries = [
            ae['biases{0}'.format(i + 1)]
            for i in xrange(ae.num_hidden_layers + 1)
        ]
        hist_summaries.extend([
            ae['weights{0}'.format(i + 1)]
            for i in xrange(ae.num_hidden_layers + 1)
        ])

        hist_summaries = [
            tf.histogram_summary(v.op.name + "_fine_tuning", v)
            for v in hist_summaries
        ]
        summary_op = tf.merge_summary(hist_summaries)

        summary_writer = tf.train.SummaryWriter(pjoin(FLAGS.summary_dir,
                                                      'fine_tuning'),
                                                graph_def=sess.graph_def,
                                                flush_secs=FLAGS.flush_secs)

        vars_to_init = ae.get_variables_to_init(ae.num_hidden_layers + 1)
        vars_to_init.append(global_step)
        sess.run(tf.initialize_variables(vars_to_init))

        steps = FLAGS.finetuning_epochs * num_train
        print("steps at the beginning ", steps)

        for step in xrange(steps):
            start_time = time.time()

            feed_dict = fill_feed_dict(data.train, input_pl,
                                       labels_placeholder)

            _, loss_value = sess.run([train_op, loss], feed_dict=feed_dict)

            duration = time.time() - start_time

            # print (type((sess.run(logits, feed_dict=feed_dict))))
            # pred = sess.run(logits, feed_dict=feed_dict)

            # output.extend(pred)
            # print (len(output))
            # print (output[0].shape)

            # Write the summaries and print an overview fairly often.
            if step % 100 == 0:
                # Print status to stdout.
                print('Step %d: loss = %.2f (%.3f sec)' %
                      (step, loss_value, duration))
                # Update the events file.

                summary_str = sess.run(summary_op, feed_dict=feed_dict)
                summary_writer.add_summary(summary_str, step)
                summary_img_str = sess.run(tf.image_summary(
                    "training_images",
                    tf.reshape(input_pl, (FLAGS.batch_size, FLAGS.image_size,
                                          FLAGS.image_size, 1)),
                    max_images=FLAGS.batch_size),
                                           feed_dict=feed_dict)
                summary_writer.add_summary(summary_img_str)

            if (step + 1) % 1000 == 0 or (step + 1) == steps:
                print("insdie testing area: ", step)
                train_sum = do_eval_summary("training_error", sess,
                                            eval_correct, input_pl,
                                            labels_placeholder, data.train)

                val_sum = do_eval_summary("validation_error", sess,
                                          eval_correct, input_pl,
                                          labels_placeholder, data.validation)

                test_sum = do_eval_summary("test_error", sess, eval_correct,
                                           input_pl, labels_placeholder,
                                           data.test)

                summary_writer.add_summary(train_sum, step)
                summary_writer.add_summary(val_sum, step)
                summary_writer.add_summary(test_sum, step)

        steps_per_epoch = data.test.num_examples // FLAGS.batch_size
        num_examples = steps_per_epoch * FLAGS.batch_size
        print("steps_per_epoch ", steps_per_epoch)

        for step in xrange(steps_per_epoch):
            print("step ", step)

            feed_dict = fill_feed_dict(data.test, input_pl, labels_placeholder)

            pred = sess.run(logits, feed_dict=feed_dict)

            print("pred.shape ", pred.shape)
            output.extend(pred)

        print(len(output))
        print(output[0].shape)

        output = np.asarray(output)
        np.save('data/output1.npy', output)