Beispiel #1
0
def detect(save_img=False):
    adet_sayisi = 0
    cikissüresi = 0
    p1 = resultss()
    source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source.isnumeric() or source.endswith(
        '.txt') or source.lower().startswith(('rtsp://', 'rtmp://', 'http://'))

    # Directories
    save_dir = Path(
        increment_path(Path(opt.project) / opt.name,
                       exist_ok=opt.exist_ok))  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model']).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz, stride=stride)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

    # Run inference
    if device.type != 'cpu':
        model(
            torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(
                next(model.parameters())))  # run once
    t0 = time.time()
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)
        t2 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(
                ), dataset.count
            else:
                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            if len(det):
                sınıf = []
                kordinat = []
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):

                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if opt.save_conf else (
                            cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or view_img:  # Add bbox to image

                        label = f'{names[int(cls)]} {conf:.2f}'
                        clas = f'{names[int(cls)]}'
                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=colors[int(cls)],
                                     line_thickness=3)

                        maps = torch.tensor(xyxy).view(1, 4)[0]
                        konum = maps.numpy()
                        sınıf.append(clas)
                        kordinat.append(konum)
                    # maps=str(maps).strip("tensor")
                    # p1.deniz(clas, konum)

    ####################### ilk cikisi bulup kordinatlarini icin #########################
                ilkcikis = 0  # ilk cikisin ilk x degerini tutacak
                ilkcikisikincix = 0  # ilk cikisin ikinci x degerini tutacak

                if len(sınıf) == 4:
                    if (sınıf[0] == "CIKIS" and sınıf[2] == "CIKIS"):
                        if (kordinat[0][0] < kordinat[2][0]):
                            ilkcikis = kordinat[0][0]
                            ilkcikisikincix = kordinat[0][2]
                        else:
                            ilkcikis = kordinat[2][0]
                            ilkcikisikincix = kordinat[2][2]

                    elif (sınıf[1] == "CIKIS" and sınıf[2] == "CIKIS"):
                        if (kordinat[1][0] < kordinat[2][0]):
                            ilkcikis = kordinat[1][0]
                            ilkcikisikincix = kordinat[1][2]
                        else:
                            ilkcikis = kordinat[2][0]
                            ilkcikisikincix = kordinat[2][2]

                    elif (sınıf[0] == "CIKIS" and sınıf[1] == "CIKIS"):
                        if (kordinat[0][0] < kordinat[1][0]):
                            ilkcikis = kordinat[0][0]
                            ilkcikisikincix = kordinat[0][2]
                        else:
                            ilkcikis = kordinat[1][0]
                            ilkcikisikincix = kordinat[1][2]

                    elif (sınıf[0] == "CIKIS" and sınıf[3] == "CIKIS"):
                        if (kordinat[0][0] < kordinat[1][0]):
                            ilkcikis = kordinat[0][0]
                            ilkcikisikincix = kordinat[0][2]
                        else:
                            ilkcikis = kordinat[3][0]
                            ilkcikisikincix = kordinat[3][2]

                    elif (sınıf[1] == "CIKIS" and sınıf[3] == "CIKIS"):
                        if (kordinat[1][0] < kordinat[3][0]):
                            ilkcikis = kordinat[1][0]
                            ilkcikisikincix = kordinat[1][2]
                        else:
                            ilkcikis = kordinat[3][0]
                            ilkcikisikincix = kordinat[3][2]
                    elif (sınıf[2] == "CIKIS" and sınıf[3] == "CIKIS"):
                        if (kordinat[2][0] < kordinat[3][0]):
                            ilkcikis = kordinat[2][0]
                            ilkcikisikincix = kordinat[2][2]
                        else:
                            ilkcikis = kordinat[3][0]
                            ilkcikisikincix = kordinat[3][2]

                elif len(sınıf) == 3:
                    if (sınıf[0] == "CIKIS" and sınıf[2] == "CIKIS"):
                        if (kordinat[0][0] < kordinat[2][0]):
                            ilkcikis = kordinat[0][0]
                            ilkcikisikincix = kordinat[0][2]
                        else:
                            ilkcikis = kordinat[2][0]
                            ilkcikisikincix = kordinat[2][2]

                    elif (sınıf[1] == "CIKIS" and sınıf[2] == "CIKIS"):
                        if (kordinat[1][0] < kordinat[2][0]):
                            ilkcikis = kordinat[1][0]
                            ilkcikisikincix = kordinat[1][2]
                        else:
                            ilkcikis = kordinat[2][0]
                            ilkcikisikincix = kordinat[2][2]
                    elif (sınıf[0] == "CIKIS" and sınıf[1] == "CIKIS"):
                        if (kordinat[0][0] < kordinat[1][0]):
                            ilkcikis = kordinat[0][0]
                            ilkcikisikincix = kordinat[0][2]
                        else:
                            ilkcikis = kordinat[1][0]
                            ilkcikisikincix = kordinat[1][2]

                elif len(sınıf) == 2:
                    if (sınıf[0] == "CIKIS"):
                        ilkcikis = kordinat[0][0]
                        ilkcikisikincix = kordinat[0][2]
                    elif (sınıf[1] == "CIKIS"):
                        ilkcikis = kordinat[1][0]
                        ilkcikisikincix = kordinat[1][2]

                elif (len(sınıf) == 1 and sınıf[0] == "CIKIS"):
                    ilkcikis = kordinat[0][0]
                    ilkcikisikincix = kordinat[0][2]

    ###################düsüp düsmedigini kontrol et ###################

                if (
                        ilkcikis <= 668
                ):  #sistem en sola dayandiginda ilk cikisin 1.x degeri 667-668
                    cv2.putText(im0, "son noktaya dayali", (10, 700),
                                cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 3)
                    if (ilkcikisikincix >= 703 and cikissüresi < 22
                        ):  #2.kez cikisindaki ortalama frame sayisi => 22
                        #cv2.putText(im0,"ilk kez cikti", (700,70),cv2.FONT_HERSHEY_SIMPLEX, 2, (0,0,255),3)
                        cikissüresi += 1  # ilk cikista kac frame boyunca dısarda onu hesaplamak icin => 13-20 frame
                        cv2.putText(im0, str(cikissüresi), (10, 400),
                                    cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255),
                                    3)

                if (cikissüresi >= 22 and ilkcikisikincix >= 703
                        and ilkcikis <= 668
                    ):  # 2.cıkısta kalıbın düsüp düsmedigine bakılan yer
                    cikissüresi += 1
                    #cv2.putText(im0,"2. kez cikti", (650,70),cv2.FONT_HERSHEY_SIMPLEX, 2, (0,0,255),3)
                    cv2.putText(im0, str(cikissüresi), (10, 400),
                                cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
                    if ("KALIP" in sınıf):
                        cv2.putText(im0, "kalip dusmemis", (10, 70),
                                    cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255),
                                    3)
                    elif ("BOS" in sınıf):
                        cv2.putText(im0, "kalip dusmus", (10, 70),
                                    cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255),
                                    3)
                if (
                        ilkcikis >= 800 and cikissüresi >= 24
                ):  #sistem geri dönerken=> adet sayısı hesapnıyor, cıkılı kaldıgı süre sifirlaniyor
                    cikissüresi = 0
                    adet_sayisi += 1
                    cv2.putText(im0, str(adet_sayisi), (10, 70),
                                cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)

                cv2.putText(im0, str(ilkcikis), (800, 700),
                            cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255),
                            3)  # ilk cikisin 1. x degerini görmek icin
                cv2.putText(im0, str(ilkcikisikincix), (800, 900),
                            cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255),
                            3)  # ilk cikisin 2. x degerini görmek icin

                print(sınıf)  #sınıf elemanlarını görmek icin

                sınıf.clear(
                )  # diger resme gecince tutulan sınıf ve kordinatlar silinsin diye
                kordinat.clear()

            # Print time (inference + NMS)
            print(f'{s}Done. ({t2 - t1:.3f}s)')

            # Stream results
            if True:
                cv2.imshow("result", im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video'
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fourcc = 'mp4v'  # output video codec
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*fourcc), fps,
                            (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")

    print(f'Done. ({time.time() - t0:.3f}s)')
def test(
        data,
        weights=None,
        batch_size=32,
        imgsz=640,
        conf_thres=0.001,
        iou_thres=0.6,  # for NMS
        save_json=False,
        single_cls=False,
        augment=False,
        verbose=False,
        model=None,
        dataloader=None,
        save_dir=Path(''),  # for saving images
        save_txt=False,  # for auto-labelling
        save_conf=False,
        plots=True,
        log_imgs=0):  # number of logged images

    # Initialize/load model and set device
    training = model is not None
    if training:  # called by train.py
        device = next(model.parameters()).device  # get model device

    else:  # called directly
        set_logging()
        device = select_device(opt.device, batch_size=batch_size)
        save_txt = opt.save_txt  # save *.txt labels

        # Directories
        save_dir = Path(
            increment_path(Path(opt.project) / opt.name,
                           exist_ok=opt.exist_ok))  # increment run
        (save_dir / 'labels' if save_txt else save_dir).mkdir(
            parents=True, exist_ok=True)  # make dir

        # Load model
        model = attempt_load(weights, map_location=device)  # load FP32 model
        imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size

        # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
        # if device.type != 'cpu' and torch.cuda.device_count() > 1:
        #     model = nn.DataParallel(model)

    # Half
    half = device.type != 'cpu'  # half precision only supported on CUDA
    if half:
        model.half()

    # Configure
    model.eval()
    is_coco = data.endswith('coco.yaml')  # is COCO dataset
    with open(data) as f:
        data = yaml.load(f, Loader=yaml.FullLoader)  # model dict
    check_dataset(data)  # check
    nc = 1 if single_cls else int(data['nc'])  # number of classes
    iouv = torch.linspace(0.5, 0.95,
                          10).to(device)  # iou vector for [email protected]:0.95
    niou = iouv.numel()

    # Logging
    log_imgs, wandb = min(log_imgs, 100), None  # ceil
    try:
        import wandb  # Weights & Biases
    except ImportError:
        log_imgs = 0

    # Dataloader
    if not training:
        img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
        _ = model(img.half() if half else img
                  ) if device.type != 'cpu' else None  # run once
        path = data['test'] if opt.task == 'test' else data[
            'val']  # path to val/test images
        dataloader = create_dataloader(path,
                                       imgsz,
                                       batch_size,
                                       model.stride.max(),
                                       opt,
                                       pad=0.5,
                                       rect=True)[0]

    seen = 0
    confusion_matrix = ConfusionMatrix(nc=nc)
    names = {
        k: v
        for k, v in enumerate(
            model.names if hasattr(model, 'names') else model.module.names)
    }
    coco91class = coco80_to_coco91_class()
    s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R',
                                 '[email protected]', '[email protected]:.95')
    p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
    loss = torch.zeros(3, device=device)
    jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
    for batch_i, (img, targets, paths,
                  shapes) in enumerate(tqdm(dataloader, desc=s)):
        img = img.to(device, non_blocking=True)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        targets = targets.to(device)
        nb, _, height, width = img.shape  # batch size, channels, height, width

        with torch.no_grad():
            # Run model
            t = time_synchronized()
            inf_out, train_out = model(
                img, augment=augment)  # inference and training outputs
            t0 += time_synchronized() - t

            # Compute loss
            if training:
                loss += compute_loss([x.float() for x in train_out], targets,
                                     model)[1][:3]  # box, obj, cls

            # Run NMS
            targets[:, 2:] *= torch.Tensor([width, height, width,
                                            height]).to(device)  # to pixels
            lb = [targets[targets[:, 0] == i, 1:]
                  for i in range(nb)] if save_txt else []  # for autolabelling
            t = time_synchronized()
            output = non_max_suppression(inf_out,
                                         conf_thres=conf_thres,
                                         iou_thres=iou_thres,
                                         labels=lb)
            t1 += time_synchronized() - t

        # Statistics per image
        for si, pred in enumerate(output):
            labels = targets[targets[:, 0] == si, 1:]
            nl = len(labels)
            tcls = labels[:, 0].tolist() if nl else []  # target class
            path = Path(paths[si])
            seen += 1

            if len(pred) == 0:
                if nl:
                    stats.append((torch.zeros(0, niou, dtype=torch.bool),
                                  torch.Tensor(), torch.Tensor(), tcls))
                continue

            # Predictions
            predn = pred.clone()
            scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0],
                         shapes[si][1])  # native-space pred

            # Append to text file
            if save_txt:
                gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0
                                                  ]]  # normalization gain whwh
                for *xyxy, conf, cls in predn.tolist():
                    xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                            gn).view(-1).tolist()  # normalized xywh
                    line = (cls, *xywh,
                            conf) if save_conf else (cls,
                                                     *xywh)  # label format
                    with open(save_dir / 'labels' / (path.stem + '.txt'),
                              'a') as f:
                        f.write(('%g ' * len(line)).rstrip() % line + '\n')

            # W&B logging
            if plots and len(wandb_images) < log_imgs:
                box_data = [{
                    "position": {
                        "minX": xyxy[0],
                        "minY": xyxy[1],
                        "maxX": xyxy[2],
                        "maxY": xyxy[3]
                    },
                    "class_id": int(cls),
                    "box_caption": "%s %.3f" % (names[cls], conf),
                    "scores": {
                        "class_score": conf
                    },
                    "domain": "pixel"
                } for *xyxy, conf, cls in pred.tolist()]
                boxes = {
                    "predictions": {
                        "box_data": box_data,
                        "class_labels": names
                    }
                }  # inference-space
                wandb_images.append(
                    wandb.Image(img[si], boxes=boxes, caption=path.name))

            # Append to pycocotools JSON dictionary
            if save_json:
                # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
                image_id = int(
                    path.stem) if path.stem.isnumeric() else path.stem
                box = xyxy2xywh(predn[:, :4])  # xywh
                box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
                for p, b in zip(pred.tolist(), box.tolist()):
                    jdict.append({
                        'image_id':
                        image_id,
                        'category_id':
                        coco91class[int(p[5])] if is_coco else int(p[5]),
                        'bbox': [round(x, 3) for x in b],
                        'score':
                        round(p[4], 5)
                    })

            # Assign all predictions as incorrect
            correct = torch.zeros(pred.shape[0],
                                  niou,
                                  dtype=torch.bool,
                                  device=device)
            if nl:
                detected = []  # target indices
                tcls_tensor = labels[:, 0]

                # target boxes
                tbox = xywh2xyxy(labels[:, 1:5])
                scale_coords(img[si].shape[1:], tbox, shapes[si][0],
                             shapes[si][1])  # native-space labels
                if plots:
                    confusion_matrix.process_batch(
                        pred, torch.cat((labels[:, 0:1], tbox), 1))

                # Per target class
                for cls in torch.unique(tcls_tensor):
                    ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(
                        -1)  # prediction indices
                    pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(
                        -1)  # target indices

                    # Search for detections
                    if pi.shape[0]:
                        # Prediction to target ious
                        ious, i = box_iou(predn[pi, :4], tbox[ti]).max(
                            1)  # best ious, indices

                        # Append detections
                        detected_set = set()
                        for j in (ious > iouv[0]).nonzero(as_tuple=False):
                            d = ti[i[j]]  # detected target
                            if d.item() not in detected_set:
                                detected_set.add(d.item())
                                detected.append(d)
                                correct[
                                    pi[j]] = ious[j] > iouv  # iou_thres is 1xn
                                if len(
                                        detected
                                ) == nl:  # all targets already located in image
                                    break

            # Append statistics (correct, conf, pcls, tcls)
            stats.append(
                (correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))

        # Plot images
        if plots and batch_i < 3:
            f = save_dir / f'test_batch{batch_i}_labels.jpg'  # labels
            Thread(target=plot_images,
                   args=(img, targets, paths, f, names),
                   daemon=True).start()
            f = save_dir / f'test_batch{batch_i}_pred.jpg'  # predictions
            Thread(target=plot_images,
                   args=(img, output_to_target(output), paths, f, names),
                   daemon=True).start()

    # Compute statistics
    stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy
    if len(stats) and stats[0].any():
        p, r, ap, f1, ap_class = ap_per_class(*stats,
                                              plot=plots,
                                              save_dir=save_dir,
                                              names=names)
        p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(
            1)  # [P, R, [email protected], [email protected]:0.95]
        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
        nt = np.bincount(stats[3].astype(np.int64),
                         minlength=nc)  # number of targets per class
    else:
        nt = torch.zeros(1)

    # Print results
    pf = '%20s' + '%12.3g' * 6  # print format
    print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))

    # Print results per class
    if verbose and nc > 1 and len(stats):
        for i, c in enumerate(ap_class):
            print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))

    # Print speeds
    t = tuple(x / seen * 1E3
              for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size)  # tuple
    if not training:
        print(
            'Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g'
            % t)

    # Plots
    if plots:
        confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
        if wandb and wandb.run:
            wandb.log({"Images": wandb_images})
            wandb.log({
                "Validation": [
                    wandb.Image(str(f), caption=f.name)
                    for f in sorted(save_dir.glob('test*.jpg'))
                ]
            })

    # Save JSON
    if save_json and len(jdict):
        w = Path(weights[0] if isinstance(weights, list) else weights
                 ).stem if weights is not None else ''  # weights
        anno_json = glob.glob('../coco/annotations/instances_val*.json')[
            0]  # annotations json
        pred_json = str(save_dir / f"{w}_predictions.json")  # predictions json
        print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
        with open(pred_json, 'w') as f:
            json.dump(jdict, f)

        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
            from pycocotools.coco import COCO
            from pycocotools.cocoeval import COCOeval

            anno = COCO(anno_json)  # init annotations api
            pred = anno.loadRes(pred_json)  # init predictions api
            eval = COCOeval(anno, pred, 'bbox')
            if is_coco:
                eval.params.imgIds = [
                    int(Path(x).stem) for x in dataloader.dataset.img_files
                ]  # image IDs to evaluate
            eval.evaluate()
            eval.accumulate()
            eval.summarize()
            map, map50 = eval.stats[:
                                    2]  # update results ([email protected]:0.95, [email protected])
        except Exception as e:
            print('ERROR: pycocotools unable to run: %s' % e)

    # Return results
    if not training:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")
    model.float()  # for training
    maps = np.zeros(nc) + map
    for i, c in enumerate(ap_class):
        maps[c] = ap[i]
    return (mp, mr, map50, map,
            *(loss.cpu() / len(dataloader)).tolist()), maps, t
Beispiel #3
0
def run(
        weights=ROOT / 'yolov5s.pt',  # model.pt path(s)
        source=ROOT / 'data/images',  # file/dir/URL/glob, 0 for webcam
        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
        imgsz=(640, 640),  # inference size (height, width)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        visualize=False,  # visualize features
        update=False,  # update all models
        project=ROOT / 'runs/detect',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
        dnn=False,  # use OpenCV DNN for ONNX inference
):
    source = str(source)
    save_img = not nosave and not source.endswith(
        '.txt')  # save inference images
    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
    is_url = source.lower().startswith(
        ('rtsp://', 'rtmp://', 'http://', 'https://'))
    webcam = source.isnumeric() or source.endswith('.txt') or (is_url
                                                               and not is_file)
    if is_url and is_file:
        source = check_file(source)  # download

    # Directories
    save_dir = increment_path(Path(project) / name,
                              exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Load model
    device = select_device(device)
    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data)
    stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Half
    half &= (
        pt or jit or onnx or engine
    ) and device.type != 'cpu'  # FP16 supported on limited backends with CUDA
    if pt or jit:
        model.model.half() if half else model.model.float()
    elif engine and model.trt_fp16_input != half:
        LOGGER.info('model ' + (
            'requires' if model.trt_fp16_input else 'incompatible with') +
                    ' --half. Adjusting automatically.')
        half = model.trt_fp16_input

    # Dataloader
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
        bs = len(dataset)  # batch_size
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
        bs = 1  # batch_size
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference
    model.warmup(imgsz=(1 if pt else bs, 3, *imgsz), half=half)  # warmup
    dt, seen = [0.0, 0.0, 0.0], 0
    for path, im, im0s, vid_cap, s in dataset:
        t1 = time_sync()
        im = torch.from_numpy(im).to(device)
        im = im.half() if half else im.float()  # uint8 to fp16/32
        im /= 255  # 0 - 255 to 0.0 - 1.0
        if len(im.shape) == 3:
            im = im[None]  # expand for batch dim
        t2 = time_sync()
        dt[0] += t2 - t1

        # Inference
        visualize = increment_path(save_dir / Path(path).stem,
                                   mkdir=True) if visualize else False
        pred = model(im, augment=augment, visualize=visualize)
        t3 = time_sync()
        dt[1] += t3 - t2

        # NMS
        pred = non_max_suppression(pred,
                                   conf_thres,
                                   iou_thres,
                                   classes,
                                   agnostic_nms,
                                   max_det=max_det)
        dt[2] += time_sync() - t3

        # Second-stage classifier (optional)
        # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)

        # Process predictions
        for i, det in enumerate(pred):  # per image
            seen += 1
            if webcam:  # batch_size >= 1
                p, im0, frame = path[i], im0s[i].copy(), dataset.count
                s += f'{i}: '
            else:
                p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # im.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '' if dataset.mode == 'image' else f'_{frame}')  # im.txt
            s += '%gx%g ' % im.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            annotator = Annotator(im0,
                                  line_width=line_thickness,
                                  example=str(names))
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(im.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh,
                                conf) if save_conf else (cls,
                                                         *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else (
                            names[c]
                            if hide_conf else f'{names[c]} {conf:.2f}')
                        annotator.box_label(xyxy, label, color=colors(c, True))
                        if save_crop:
                            save_one_box(xyxy,
                                         imc,
                                         file=save_dir / 'crops' / names[c] /
                                         f'{p.stem}.jpg',
                                         BGR=True)

            # Stream results
            im0 = annotator.result()
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[i].release(
                            )  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                        save_path = str(Path(save_path).with_suffix(
                            '.mp4'))  # force *.mp4 suffix on results videos
                        vid_writer[i] = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps,
                            (w, h))
                    vid_writer[i].write(im0)

        # Print time (inference-only)
        LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')

    # Print results
    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
    LOGGER.info(
        f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}'
        % t)
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    if update:
        strip_optimizer(weights)  # update model (to fix SourceChangeWarning)
Beispiel #4
0
def main(opt):
    set_logging(RANK)
    if RANK in [-1, 0]:
        print(colorstr('train: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
        check_git_status()
        check_requirements(exclude=['thop'])

    # Resume
    wandb_run = check_wandb_resume(opt)
    if opt.resume and not wandb_run:  # resume an interrupted run
        ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run()  # specified or most recent path
        assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
        with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
            opt = argparse.Namespace(**yaml.safe_load(f))  # replace
        opt.cfg, opt.weights, opt.resume = '', ckpt, True  # reinstate
        logger.info('Resuming training from %s' % ckpt)
    else:
        # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
        opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp)  # check files
        assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
        opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size)))  # extend to 2 sizes (train, test)
        opt.name = 'evolve' if opt.evolve else opt.name
        opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve))

    # DDP mode
    device = select_device(opt.device, batch_size=opt.batch_size)
    if LOCAL_RANK != -1:
        from datetime import timedelta
        assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
        torch.cuda.set_device(LOCAL_RANK)
        device = torch.device('cuda', LOCAL_RANK)
        dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo", timeout=timedelta(seconds=60))
        assert opt.batch_size % WORLD_SIZE == 0, '--batch-size must be multiple of CUDA device count'
        assert not opt.image_weights, '--image-weights argument is not compatible with DDP training'

    # Train
    if not opt.evolve:
        train(opt.hyp, opt, device)
        if WORLD_SIZE > 1 and RANK == 0:
            _ = [print('Destroying process group... ', end=''), dist.destroy_process_group(), print('Done.')]

    # Evolve hyperparameters (optional)
    else:
        # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
        meta = {'lr0': (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)
                'lrf': (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)
                'momentum': (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1
                'weight_decay': (1, 0.0, 0.001),  # optimizer weight decay
                'warmup_epochs': (1, 0.0, 5.0),  # warmup epochs (fractions ok)
                'warmup_momentum': (1, 0.0, 0.95),  # warmup initial momentum
                'warmup_bias_lr': (1, 0.0, 0.2),  # warmup initial bias lr
                'box': (1, 0.02, 0.2),  # box loss gain
                'cls': (1, 0.2, 4.0),  # cls loss gain
                'cls_pw': (1, 0.5, 2.0),  # cls BCELoss positive_weight
                'obj': (1, 0.2, 4.0),  # obj loss gain (scale with pixels)
                'obj_pw': (1, 0.5, 2.0),  # obj BCELoss positive_weight
                'iou_t': (0, 0.1, 0.7),  # IoU training threshold
                'anchor_t': (1, 2.0, 8.0),  # anchor-multiple threshold
                'anchors': (2, 2.0, 10.0),  # anchors per output grid (0 to ignore)
                'fl_gamma': (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)
                'hsv_h': (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)
                'hsv_s': (1, 0.0, 0.9),  # image HSV-Saturation augmentation (fraction)
                'hsv_v': (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)
                'degrees': (1, 0.0, 45.0),  # image rotation (+/- deg)
                'translate': (1, 0.0, 0.9),  # image translation (+/- fraction)
                'scale': (1, 0.0, 0.9),  # image scale (+/- gain)
                'shear': (1, 0.0, 10.0),  # image shear (+/- deg)
                'perspective': (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001
                'flipud': (1, 0.0, 1.0),  # image flip up-down (probability)
                'fliplr': (0, 0.0, 1.0),  # image flip left-right (probability)
                'mosaic': (1, 0.0, 1.0),  # image mixup (probability)
                'mixup': (1, 0.0, 1.0),  # image mixup (probability)
                'copy_paste': (1, 0.0, 1.0)}  # segment copy-paste (probability)

        with open(opt.hyp) as f:
            hyp = yaml.safe_load(f)  # load hyps dict
            if 'anchors' not in hyp:  # anchors commented in hyp.yaml
                hyp['anchors'] = 3
        assert LOCAL_RANK == -1, 'DDP mode not implemented for --evolve'
        opt.notest, opt.nosave = True, True  # only test/save final epoch
        # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices
        yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml'  # save best result here
        if opt.bucket:
            os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket)  # download evolve.txt if exists

        for _ in range(opt.evolve):  # generations to evolve
            if Path('evolve.txt').exists():  # if evolve.txt exists: select best hyps and mutate
                # Select parent(s)
                parent = 'single'  # parent selection method: 'single' or 'weighted'
                x = np.loadtxt('evolve.txt', ndmin=2)
                n = min(5, len(x))  # number of previous results to consider
                x = x[np.argsort(-fitness(x))][:n]  # top n mutations
                w = fitness(x) - fitness(x).min() + 1E-6  # weights (sum > 0)
                if parent == 'single' or len(x) == 1:
                    # x = x[random.randint(0, n - 1)]  # random selection
                    x = x[random.choices(range(n), weights=w)[0]]  # weighted selection
                elif parent == 'weighted':
                    x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination

                # Mutate
                mp, s = 0.8, 0.2  # mutation probability, sigma
                npr = np.random
                npr.seed(int(time.time()))
                g = np.array([x[0] for x in meta.values()])  # gains 0-1
                ng = len(meta)
                v = np.ones(ng)
                while all(v == 1):  # mutate until a change occurs (prevent duplicates)
                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
                    hyp[k] = float(x[i + 7] * v[i])  # mutate

            # Constrain to limits
            for k, v in meta.items():
                hyp[k] = max(hyp[k], v[1])  # lower limit
                hyp[k] = min(hyp[k], v[2])  # upper limit
                hyp[k] = round(hyp[k], 5)  # significant digits

            # Train mutation
            results = train(hyp.copy(), opt, device)

            # Write mutation results
            print_mutation(hyp.copy(), results, yaml_file, opt.bucket)

        # Plot results
        plot_evolution(yaml_file)
        print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
              f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
Beispiel #5
0
 def save(self, save_dir='runs/detect/exp'):
     save_dir = increment_path(save_dir,
                               exist_ok=save_dir != 'runs/detect/exp',
                               mkdir=True)  # increment save_dir
     self.display(save=True, save_dir=save_dir)  # save results
Beispiel #6
0
def run(
        data,
        weights=None,  # model.pt path(s)
        batch_size=32,  # batch size
        imgsz=640,  # inference size (pixels)
        conf_thres=0.001,  # confidence threshold
        iou_thres=0.6,  # NMS IoU threshold
        task='val',  # train, val, test, speed or study
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        single_cls=False,  # treat as single-class dataset
        augment=False,  # augmented inference
        verbose=False,  # verbose output
        save_txt=False,  # save results to *.txt
        save_hybrid=False,  # save label+prediction hybrid results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_json=False,  # save a COCO-JSON results file
        project=ROOT / 'runs/val',  # save to project/name
        name='exp',  # save to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        half=True,  # use FP16 half-precision inference
        dnn=False,  # use OpenCV DNN for ONNX inference
        model=None,
        dataloader=None,
        save_dir=Path(''),
        plots=True,
        callbacks=Callbacks(),
        compute_loss=None,
):
    # Initialize/load model and set device
    training = model is not None
    if training:  # called by train.py
        device, pt = next(
            model.parameters()).device, True  # get model device, PyTorch model

        half &= device.type != 'cpu'  # half precision only supported on CUDA
        model.half() if half else model.float()
    else:  # called directly
        device = select_device(device, batch_size=batch_size)

        # Directories
        save_dir = increment_path(Path(project) / name,
                                  exist_ok=exist_ok)  # increment run
        (save_dir / 'labels' if save_txt else save_dir).mkdir(
            parents=True, exist_ok=True)  # make dir

        # Load model
        model = DetectMultiBackend(weights, device=device, dnn=dnn)
        stride, pt = model.stride, model.pt
        imgsz = check_img_size(imgsz, s=stride)  # check image size
        half &= pt and device.type != 'cpu'  # half precision only supported by PyTorch on CUDA
        if pt:
            model.model.half() if half else model.model.float()
        else:
            half = False
            batch_size = 1  # export.py models default to batch-size 1
            device = torch.device('cpu')
            LOGGER.info(
                f'Forcing --batch-size 1 square inference shape(1,3,{imgsz},{imgsz}) for non-PyTorch backends'
            )

        # Data
        data = check_dataset(data)  # check

    # Configure
    model.eval()
    is_coco = isinstance(data.get('val'), str) and data['val'].endswith(
        'coco/val2017.txt')  # COCO dataset
    nc = 1 if single_cls else int(data['nc'])  # number of classes
    iouv = torch.linspace(0.5, 0.95,
                          10).to(device)  # iou vector for [email protected]:0.95
    niou = iouv.numel()

    # Dataloader
    if not training:
        if pt and device.type != 'cpu':
            model(
                torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(
                    next(model.model.parameters())))  # warmup
        pad = 0.0 if task == 'speed' else 0.5
        task = task if task in (
            'train', 'val', 'test') else 'val'  # path to train/val/test images
        dataloader = create_dataloader(data[task],
                                       imgsz,
                                       batch_size,
                                       stride,
                                       single_cls,
                                       pad=pad,
                                       rect=pt,
                                       prefix=colorstr(f'{task}: '))[0]

    seen = 0
    confusion_matrix = ConfusionMatrix(nc=nc)
    names = {
        k: v
        for k, v in enumerate(
            model.names if hasattr(model, 'names') else model.module.names)
    }
    class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
    s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R',
                                 '[email protected]', '[email protected]:.95')
    dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0,
                                        0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    loss = torch.zeros(3, device=device)
    jdict, stats, ap, ap_class = [], [], [], []
    pbar = tqdm(dataloader,
                desc=s,
                ncols=NCOLS,
                bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')  # progress bar
    for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
        t1 = time_sync()
        if pt:
            im = im.to(device, non_blocking=True)
            targets = targets.to(device)
        im = im.half() if half else im.float()  # uint8 to fp16/32
        im /= 255  # 0 - 255 to 0.0 - 1.0
        nb, _, height, width = im.shape  # batch size, channels, height, width
        t2 = time_sync()
        dt[0] += t2 - t1

        # Inference
        out, train_out = model(im) if training else model(
            im, augment=augment, val=True)  # inference, loss outputs
        dt[1] += time_sync() - t2

        # Loss
        if compute_loss:
            loss += compute_loss([x.float() for x in train_out],
                                 targets)[1]  # box, obj, cls

        # NMS
        targets[:, 2:] *= torch.Tensor([width, height, width,
                                        height]).to(device)  # to pixels
        lb = [targets[targets[:, 0] == i, 1:]
              for i in range(nb)] if save_hybrid else []  # for autolabelling
        t3 = time_sync()
        out = non_max_suppression(out,
                                  conf_thres,
                                  iou_thres,
                                  labels=lb,
                                  multi_label=True,
                                  agnostic=single_cls)
        dt[2] += time_sync() - t3

        # Metrics
        for si, pred in enumerate(out):
            labels = targets[targets[:, 0] == si, 1:]
            nl = len(labels)
            tcls = labels[:, 0].tolist() if nl else []  # target class
            path, shape = Path(paths[si]), shapes[si][0]
            seen += 1

            if len(pred) == 0:
                if nl:
                    stats.append((torch.zeros(0, niou, dtype=torch.bool),
                                  torch.Tensor(), torch.Tensor(), tcls))
                continue

            # Predictions
            if single_cls:
                pred[:, 5] = 0
            predn = pred.clone()
            scale_coords(im[si].shape[1:], predn[:, :4], shape,
                         shapes[si][1])  # native-space pred

            # Evaluate
            if nl:
                tbox = xywh2xyxy(labels[:, 1:5])  # target boxes
                scale_coords(im[si].shape[1:], tbox, shape,
                             shapes[si][1])  # native-space labels
                labelsn = torch.cat((labels[:, 0:1], tbox),
                                    1)  # native-space labels
                correct = process_batch(predn, labelsn, iouv)
                if plots:
                    confusion_matrix.process_batch(predn, labelsn)
            else:
                correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool)
            stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(),
                          tcls))  # (correct, conf, pcls, tcls)

            # Save/log
            if save_txt:
                save_one_txt(predn,
                             save_conf,
                             shape,
                             file=save_dir / 'labels' / (path.stem + '.txt'))
            if save_json:
                save_one_json(predn, jdict, path,
                              class_map)  # append to COCO-JSON dictionary
            callbacks.run('on_val_image_end', pred, predn, path, names, im[si])

        # Plot images
        if plots and batch_i < 3:
            f = save_dir / f'val_batch{batch_i}_labels.jpg'  # labels
            Thread(target=plot_images,
                   args=(im, targets, paths, f, names),
                   daemon=True).start()
            f = save_dir / f'val_batch{batch_i}_pred.jpg'  # predictions
            Thread(target=plot_images,
                   args=(im, output_to_target(out), paths, f, names),
                   daemon=True).start()

    # Compute metrics
    stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy
    if len(stats) and stats[0].any():
        tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats,
                                                      plot=plots,
                                                      save_dir=save_dir,
                                                      names=names)
        ap50, ap = ap[:, 0], ap.mean(1)  # [email protected], [email protected]:0.95
        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
        nt = np.bincount(stats[3].astype(np.int64),
                         minlength=nc)  # number of targets per class
    else:
        nt = torch.zeros(1)

    # Print results
    pf = '%20s' + '%11i' * 2 + '%11.3g' * 4  # print format
    LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))

    # Print results per class
    if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
        for i, c in enumerate(ap_class):
            LOGGER.info(pf %
                        (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))

    # Print speeds
    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
    if not training:
        shape = (batch_size, 3, imgsz, imgsz)
        LOGGER.info(
            f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}'
            % t)

    # Plots
    if plots:
        confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
        callbacks.run('on_val_end')

    # Save JSON
    if save_json and len(jdict):
        w = Path(weights[0] if isinstance(weights, list) else weights
                 ).stem if weights is not None else ''  # weights
        anno_json = str(
            Path(data.get('path', '../coco')) /
            'annotations/instances_val2017.json')  # annotations json
        pred_json = str(save_dir / f"{w}_predictions.json")  # predictions json
        LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
        with open(pred_json, 'w') as f:
            json.dump(jdict, f)

        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
            check_requirements(['pycocotools'])
            from pycocotools.coco import COCO
            from pycocotools.cocoeval import COCOeval

            anno = COCO(anno_json)  # init annotations api
            pred = anno.loadRes(pred_json)  # init predictions api
            eval = COCOeval(anno, pred, 'bbox')
            if is_coco:
                eval.params.imgIds = [
                    int(Path(x).stem) for x in dataloader.dataset.img_files
                ]  # image IDs to evaluate
            eval.evaluate()
            eval.accumulate()
            eval.summarize()
            map, map50 = eval.stats[:
                                    2]  # update results ([email protected]:0.95, [email protected])
        except Exception as e:
            LOGGER.info(f'pycocotools unable to run: {e}')

    # Return results
    model.float()  # for training
    if not training:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    maps = np.zeros(nc) + map
    for i, c in enumerate(ap_class):
        maps[c] = ap[i]
    return (mp, mr, map50, map,
            *(loss.cpu() / len(dataloader)).tolist()), maps, t
Beispiel #7
0
    def recognition(self):
        source, weights, view_img, save_txt, imgsz = self.source, self.weights_lpr, self.view_img, self.save_txt, self.imglpr_size
        webcam = source.isnumeric() or source.endswith(
            '.txt') or source.lower().startswith(
                ('rtsp://', 'rtmp://', 'http://'))

        # Directories
        save_dir = Path(
            increment_path(Path(self.project) / self.name,
                           exist_ok=self.exist_ok))  # increment run
        (save_dir / 'labels' if save_txt else save_dir).mkdir(
            parents=True, exist_ok=True)  # make dir

        # Initialize
        set_logging()
        device = select_device(self.device)
        half = device.type != 'cpu'  # half precision only supported on CUDA

        # Load modelim0s
        model = attempt_load(weights, map_location=device)  # load FP32 model
        stride = int(model.stride.max())  # model striderecognition
        imgsz = check_img_size(imgsz, s=stride)  # check img_size
        if half:
            model.half()  # to FP16

        # Second-stage classifier
        classify = False
        if classify:
            modelc = load_classifier(name='resnet101', n=2)  # initialize
            modelc.load_state_dict(
                torch.load('weights/resnet101.pt',
                           map_location=device)['model']).to(device).eval()

        # Set Dataloader
        vid_path, vid_writer = None, None
        if webcam:
            view_img = check_imshow()
            cudnn.benchmark = True  # set True to speed up constant image size inference
            dataset = LoadStreams(source, img_size=imgsz, stride=stride)
        else:
            save_img = True
            dataset = LoadImages(source, img_size=imgsz, stride=stride)

        # Get names and colors
        names = model.module.names if hasattr(model, 'module') else model.names
        colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

        # Run inference
        if device.type != 'cpu':
            model(
                torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(
                    next(model.parameters())))  # run once
        t0 = time.time()
        while 1:
            detect_lp = self.img_plate.get()
            if (detect_lp is None):
                break
            for lp in detect_lp:
                lp = cv2.resize(lp, (190, 140), interpolation=cv2.INTER_CUBIC)

                # for path, img, im0s, vid_cap in dataset:
                img = self.letterbox(lp, 192, stride=32)[0]

                # Convert
                img = img[:, :, ::-1].transpose(2, 0,
                                                1)  # BGR to RGB, to 3x416x416
                img = np.ascontiguousarray(img)

                img = torch.from_numpy(img).to(device)

                img = img.half() if half else img.float()  # uint8 to fp16/32

                img /= 255.0  # 0 - 255 to 0.0 - 1.0

                if img.ndimension() == 3:
                    img = img.unsqueeze(0)
                im0s = lp

                # Inference
                t1 = time_synchronized()
                pred = model(img, augment=self.augment)[0]

                # Apply NMS
                pred = non_max_suppression(pred,
                                           self.conf_thres01,
                                           self.iou_thres,
                                           classes=self.classes,
                                           agnostic=self.agnostic_nms)
                t2 = time_synchronized()

                # Apply Classifier
                if classify:
                    pred = apply_classifier(pred, modelc, img, im0s)

                # Process detections
                for i, det in enumerate(pred):  # detections per image
                    im0 = im0s
                    # det = det[det[:,3].sort()[1]]
                    lst = det.tolist()

                    sortt = sorted(lst, key=lambda x: x[1], reverse=True)
                    index = math.ceil(len(lst) / float(2))

                    sortt1 = sorted(sortt[:index], key=lambda x: x[3])
                    sortt2 = sorted(sortt[index:], key=lambda x: x[3])

                    det = torch.tensor(sortt1 + sortt2)

                    gn = torch.tensor(im0.shape)[[1, 0, 1, 0
                                                  ]]  # normalization gain whwh

                    if len(det):
                        # Rescale boxes from img_size to im0 size
                        det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                                  im0.shape).round()

                        # Write results
                        lst_number = []
                        plate_num = ''
                        for *xyxy, conf, cls in reversed(det):

                            if (float(f' {conf:.2f}') > 0.5):
                                xywh = (
                                    xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                    gn).view(-1).tolist()  # normalized xywh

                                x = xywh[0]
                                y = xywh[1]
                                w = xywh[2]
                                h = xywh[3]
                                try:
                                    img_number = self.crop_lpr(xywh, im0)
                                    img_number = self.BGR_to_thr(img_number)
                                except:
                                    pass

                                lst_number.append(img_number)

                                label = f'. {conf:.2f}'
                                plot_one_box(xyxy,
                                             lp,
                                             label=label,
                                             color=colors[int(cls)],
                                             line_thickness=1)
                            else:
                                pass
                        self.lst_number.put(lst_number)

        self.lst_number.put(None)
Beispiel #8
0
 def crop(self, save_dir='runs/hub/exp'):
     save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp', mkdir=True)  # increment save_dir
     self.display(crop=True, save_dir=save_dir)  # crop results
     print(f'Saved results to {save_dir}\n')
Beispiel #9
0
def apply(opt):
    source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    save_img = not opt.nosave and not source.endswith('.txt')  # save inference images

    # Directories
    save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir
    (save_dir / 'data' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)

    with (save_dir / f"params_{Path(opt.source).name}.json").open("w") as f:
        f.write(json.dumps(opt.__dict__, indent=4))

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size
    names = model.module.names if hasattr(model, 'module') else model.names  # get class names
    if half:
        model.half()  # to FP16

    # Set Dataloader
    vid_path, vid_writer = None, None
    dataset = LoadRiceImages(source, img_size=imgsz, stride=stride, dshape=opt.dshape, ishape=opt.ishape)

    # Run inference
    if device.type != 'cpu':
        model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once
    t0 = time.time()
    my = None
    for path, imgs, imgs0, _, big_img in dataset:
        path = Path(path)
        ori_img = cv2.imread(str(path))
        save_path = str(save_dir / path.name)
        txt_path = str(save_dir / "labels" / f"{path.stem}.csv")
        data_path = str(save_dir / "data" / f"{path.stem}.csv")
        coords = []
        img_type = str(path.name)[0].lower()
        for r in range(imgs.shape[0]):
            for c in range(imgs.shape[1]):
                conf_thres = opt.i_conf_thres if img_type == "i" else opt.d_conf_thres
                img = imgs[r, c]
                im0s = imgs0[r, c]
                img = torch.from_numpy(img).to(device)
                img = img.half() if half else img.float()  # uint8 to fp16/32
                img /= 255.0  # 0 - 255 to 0.0 - 1.0
                if img.ndimension() == 3:
                    img = img.unsqueeze(0)

                # Inference
                t1 = time_synchronized()
                pred = model(img, augment=opt.augment)[0]
                # Apply NMS
                pred = non_max_suppression(pred, conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
                t2 = time_synchronized()
                # Process detections
                for i, det in enumerate(pred):  # detections per image
                    p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)

                    p = Path(p)  # to Path
                    s += '%gx%g ' % img.shape[2:]  # print string
                    gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
                    if len(det):
                        # Rescale boxes from img_size to im0 size
                        # det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                        # Print results
                        for cl in det[:, -1].unique():
                            n = (det[:, -1] == cl).sum()  # detections per class
                            s += f"{n} {names[int(cl)]}{'s' * (n > 1)}, "  # add to string

                        # Write results
                        for *xyxy, conf, cl in reversed(det):
                            print(xyxy)
                            # sys.exit(0)
                            if save_txt:  # Write to file
                                xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                                x, y = xywh[:2]
                                x, y = x * im0.shape[1], y * im0.shape[0]
                                x += c * im0.shape[1]
                                y += r * im0.shape[0]
                                cl = cl.cpu()
                                # Only append if the predicted class matches the img_type
                                if (cl == 0 and img_type == "i") or (cl == 1 and img_type == "d"): 
                                    coords.append(np.array((conf.cpu().item() * 100, x, y, cl)))
                            if save_img or view_img:  # Add bbox to image
                                c = int(cl)  # integer class
                                label = None if opt.hide_labels else (names[c] if opt.hide_conf else f'{names[c]} {conf:.2f}')
                                plot_one_box(xyxy, im0, label=label, color=colors(c, True), line_thickness=opt.line_thickness)

                    # Print time (inference + NMS)
                    print(f'{s}Done. ({t2 - t1:.3f}s)')

                    # Save results (image with detections)
                    if save_img:
                        if dataset.mode == 'image':
                            cv2.imwrite('out_old.jpg', im0)
                    sys.exit(0)
        v_grid_starts, h_grid_starts = [], []
        if opt.grid:
            x = imgs[0, 0].shape[2]
            while x < ori_img.shape[1]:
                v_grid_starts.append(x)
                x += imgs[0, 0].shape[2]
            y = imgs[0, 0].shape[1]
            while y < ori_img.shape[0]:
                h_grid_starts.append(y)
                y += imgs[0, 0].shape[1]
        v_grid_starts, h_grid_starts = np.array(v_grid_starts, dtype=float), np.array(h_grid_starts, dtype=float) 
        # imgs[0, 0].shape is (c, h, w)
        scale_x = ori_img.shape[1] / (imgs.shape[1] * imgs[0, 0].shape[2])
        scale_y = ori_img.shape[0] / (imgs.shape[0] * imgs[0, 0].shape[1])
        coords = np.array(coords)
        coords[:, 1] *= scale_x
        coords[:, 2] *= scale_y
        coords = np.around(coords).astype(int)
        close_tol = opt.i_close if img_type == "i" else opt.d_close
        v_grid_starts *= scale_x
        h_grid_starts *= scale_y
        v_grid_starts, h_grid_starts = np.around(v_grid_starts).astype(int), np.around(h_grid_starts).astype(int)
        axis_expand = opt.i_axis_expand if img_type == "i" else opt.d_axis_expand
        coords = filter_too_close(coords, tolerance=close_tol, h_axis=h_grid_starts, v_axis=v_grid_starts, axis_expand=axis_expand)
        coords = filter_border(coords, ori_img.shape, tolerance=opt.border)
        gt_path = path.parent / f"{path.stem}.csv"
        if save_txt:
            with open(txt_path, "w") as f:
                np.savetxt(f, coords[:, 1:3], fmt="%d", delimiter=",")
            with open(data_path, "w") as f:
                np.savetxt(f, coords[:, 0:3], fmt="%d", delimiter=",")
        if save_img:
            if "border" in vars(opt) and opt.border > 0:
                ori_img = draw_border(ori_img, opt.border)
            if opt.grid:
                ori_img = draw_grid(ori_img, v_grid_starts, h_grid_starts)
            if opt.with_gt:
                gts = np.loadtxt(gt_path, dtype=int, delimiter=",", ndmin=2)
                for x, y in gts:
                    ori_img = cv2.circle(ori_img, (x, y), 9, (255, 255, 255), 2)
            for conf, x, y, cl in coords:
                if cl == 0:
                    circle_color = (255, 0, 0)
                elif cl == 1:
                    circle_color = (0, 0, 255)
                if not opt.hide_conf:
                    # print(conf)
                    ori_img = cv2.putText(ori_img, f"{conf}%", (x, y - 3), 0, 1, (255, 255, 0), 2)
                ori_img = cv2.circle(ori_img, (x, y), 4, circle_color, -1)

            cv2.imwrite(save_path, ori_img)
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")

    print(f'Done. ({time.time() - t0:.3f}s)')
Beispiel #10
0
            opt = argparse.Namespace(**yaml.safe_load(f))  # replace
        opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = \
            '', ckpt, True, opt.total_batch_size, *apriori  # reinstate
        logger.info('Resuming training from %s' % ckpt)
    else:
        # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
        opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(
            opt.cfg), check_file(opt.hyp)  # check files
        assert len(opt.cfg) or len(
            opt.weights), 'either --cfg or --weights must be specified'
        opt.img_size.extend(
            [opt.img_size[-1]] *
            (2 - len(opt.img_size)))  # extend to 2 sizes (train, test)
        opt.name = 'evolve' if opt.evolve else opt.name
        opt.save_dir = str(
            increment_path(Path(opt.project) / opt.name,
                           exist_ok=opt.exist_ok | opt.evolve))

    # DDP mode
    opt.total_batch_size = opt.batch_size
    device = select_device(opt.device, batch_size=opt.batch_size)
    if opt.local_rank != -1:
        assert torch.cuda.device_count() > opt.local_rank
        torch.cuda.set_device(opt.local_rank)
        device = torch.device('cuda', opt.local_rank)
        dist.init_process_group(backend='nccl',
                                init_method='env://')  # distributed backend
        assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
        opt.batch_size = opt.total_batch_size // opt.world_size

    # Hyperparameters
    with open(opt.hyp) as f:
def detect(save_img=False):
    source, start_frame, end_frame, weights, view_img, save_txt, imgsz, yaml_file = opt.source, \
                                                                                                    opt.start_frame, \
                                                                                                    opt.end_frame, \
                                                                                          opt.weights, opt.view_img, \
                                                                                          opt.save_txt, opt.img_size, \
                                                                                                           opt.yaml_file

    # initialize Tracker and sim
    tracker = Tracker(yaml_file)  # yaml file to read classes
    sim = Sim(yaml_file=yaml_file)  # qui

    # Directories
    save_dir = Path(
        increment_path(Path(opt.project) / opt.name,
                       exist_ok=opt.exist_ok))  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    # classify = False
    # if classify:
    #     modelc = load_classifier(name='resnet101', n=2)  # initialize
    #     modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()

    # initialize classifier for feature vector
    detect_degradation = False
    if detect_degradation:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model']).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    save_img = True
    dataset = LoadImages(source, img_size=imgsz, stride=stride)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

    # Run inference
    if device.type != 'cpu':
        model(
            torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(
                next(model.parameters())))  # run once
    t0 = time.time()
    i = 0
    f = 0

    with Bar('detection...', max=dataset.nframes) as bar:
        for path, img, im0s, vid_cap in dataset:

            # pass info to tracker
            if i == 0:
                fps = vid_cap.get(cv2.CAP_PROP_FPS)

                width = vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)  # float `width`
                height = vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)

                duration = vid_cap.get(cv2.CAP_PROP_FRAME_COUNT) / vid_cap.get(
                    cv2.CAP_PROP_FPS)
                tracker.info(fps=fps,
                             save_dir=save_dir,
                             video_duration=duration)
                sim.info(fps=fps,
                         save_dir=save_dir,
                         width=width,
                         height=height)  # qui
                i = 1

            img_for_sim = img.copy()

            img = torch.from_numpy(img).to(device)
            img = img.half() if half else img.float()  # uint8 to fp16/32
            img /= 255.0  # 0 - 255 to 0.0 - 1.0

            if img.ndimension() == 3:
                img = img.unsqueeze(0)

            # Inference
            # print(img.shape) # [1,3, W,H]
            # t1 = time_synchronized()

            if dataset.frame >= start_frame and dataset.frame < end_frame:  # first frame is

                pred = model(img, augment=opt.augment)[0]  # this is a tuple
                # Apply NMS
                pred = non_max_suppression(pred,
                                           opt.conf_thres,
                                           opt.iou_thres,
                                           classes=opt.classes,
                                           agnostic=opt.agnostic_nms)

                # Apply second stage classifier Classifier
                if detect_degradation:
                    pred = apply_classifier(pred, modelc, img, im0s)

                # Apply second stage classifier Classifier
                # if classify:
                #     pred = apply_classifier(pred, modelc, img, im0s)

            else:
                f += 1
                pred = [torch.Tensor([])]

            for i, det in enumerate(pred):  # detections per image
                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)

                p = Path(p)  # to Path
                save_path = str(save_dir / p.name)  # img.jpg
                # txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
                s += '%gx%g ' % img.shape[2:]  # print string
                gn = torch.tensor(im0.shape)[[1, 0, 1,
                                              0]]  # normalization gain whwh
                clean_im = im0.copy()  # decomment

                if len(det):
                    # Rescale boxes from img_size to im0 size
                    det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                              im0.shape).round()

                    # Print results
                    for c in det[:, -1].unique():
                        n = (det[:, -1] == c).sum()  # detections per class
                        s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                    # Write results
                    l = []
                    lines = [
                    ]  # to write results in txt if images are not similar
                    for *xyxy, conf, cls in reversed(det):
                        #xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh

                        # take proprieties from the detection
                        nbox = (
                            xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                            gn).view(-1).tolist()  # xywh in normalized form
                        cl = int(cls.item())
                        bbox = torch.tensor(xyxy).view(1, 4)[0].tolist()

                        # apply classifier
                        rust = False
                        if nbox[2] * nbox[3] >= 0.2:
                            rust = rust_classifier(clean_im, nbox)
                            print(rust)

                        # pass proprieties to Tracker
                        id = tracker.update(
                            nbox, bbox, cl,
                            frame)  # object put into the tracker
                        if rust:
                            id = id + '_rust'

                        l = [int(cls.item())] + nbox
                        lines.append(l)

                        if save_img or view_img:  # Add bbox to image
                            label = f'{names[int(cls)]} {conf:.2f}'
                            plot_one_box_ours(xyxy,
                                              im0,
                                              objectID=id,
                                              label=label,
                                              color=colors[int(cls)],
                                              line_thickness=3)  # label=label

                    # save detection in case the inspector wants to label the suggested images
                    # pass image to check similatiry
                    # can return 'sim' or 'not_sim'. If not_sim, we want to retrieve the detection too
                    s_ = sim.new_im(clean_im, frame)  # decomment
                    # s_ = sim.new_im(img_for_sim, frame)  # qui
                    if s_ == 'not_sim':
                        sim.save_detection(lines)

                # save video
                if vid_path != save_path:  # new video
                    vid_path = save_path
                    if isinstance(vid_writer, cv2.VideoWriter):
                        vid_writer.release()  # release previous video writer

                    fourcc = 'mp4v'  # output video codec
                    w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                    h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                    vid_writer = cv2.VideoWriter(
                        save_path, cv2.VideoWriter_fourcc(*fourcc), fps,
                        (w, h))

                vid_writer.write(im0)
                # res = cv2.resize(im0, (416,416))
                # cv2.imshow('frame', res)

                # cv2.imshow('frame', im0)
                # cv2.waitKey(1)

        bar.next()

    tracker.print_results()
    sim.end()  # qui

    if save_txt or save_img:
        print(f"Results saved to {save_dir}")

    # print('Mean time to assign id: ', np.mean(id_time))
    # print('With variance: ', np.var(id_time))

    print(f'Done. ({time.time() - t0:.3f}s)')
    print(f)
def detect_recog():
    source, weights_detect, weights_recog, view_img, save_txt, imgsz_detect, imgsz_recog, save_img = opt.source, opt.weights_detect, opt.weights_recog, opt.view_img, opt.save_txt, opt.img_size_detect, opt.img_size_recog, opt.save_img

    # Set Dataloader
    webcam = source.isnumeric() or source.endswith(
        '.txt') or source.lower().startswith(('rtsp://', 'rtmp://', 'http://'))
    vid_path, vid_writer = None, None
    shmstream = source.startswith('/tmp/')
    if shmstream:
        source = f"shmsrc socket-path={source} \
                ! video/x-raw, format=BGR, width={int(imgsz_detect*4/3)}, height={imgsz_detect}, pixel-aspect-ratio=1/1, framerate=30/1 \
                ! decodebin \
                ! videoconvert \
                ! appsink"

        dataset = LoadStreamsBuffered(source, img_size=imgsz_detect)
    elif webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz_detect)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz_detect)

    # Directories
    if opt.save_dir == 'runs/exp':
        save_dir = Path(
            increment_path(Path(opt.project) / opt.name,
                           exist_ok=opt.exist_ok))  # increment run
    else:
        save_dir = Path(opt.save_dir)
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model_detect = attempt_load(weights_detect,
                                map_location=device)  # load FP32 model
    model_recog = attempt_load(weights_recog,
                               map_location=device)  # load FP32 model
    imgsz_detect = check_img_size(
        imgsz_detect, s=model_detect.stride.max())  # check img_size
    imgsz_recog = check_img_size(imgsz_recog,
                                 s=model_recog.stride.max())  # check img_size
    if half:
        model_detect.half()  # to FP16
        model_recog.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model']).to(device).eval()
    else:
        modelc = None

    # Get names and colors
    names_detect = model_detect.module.names if hasattr(
        model_detect, 'module') else model_detect.names
    names_recog = model_recog.module.names if hasattr(
        model_recog, 'module') else model_recog.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names_detect]

    t0 = time.time()
    img = torch.zeros((1, 3, imgsz_detect, imgsz_detect),
                      device=device)  # init img
    img_lp = torch.zeros((1, 3, imgsz_recog, imgsz_recog),
                         device=device)  # init img
    if device.type != 'cpu':  # run once
        _ = model_detect(img.half() if half else img)
        _ = model_recog(img.half() if half else img)

    # Run inference
    shmcounter = 0
    for path, img, im0s, vid_cap in dataset:
        if img is None:
            continue

        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        t1 = time_synchronized()

        # Inference
        pred = model_detect(img, augment=opt.augment)[0]
        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres_detect,
                                   opt.iou_thres_detect,
                                   classes=opt.classes_detect,
                                   agnostic=opt.agnostic_nms)

        t2 = time_synchronized()
        all_t2_t1 = t2 - t1

        # Print time (inference + NMS)
        print('Done Detection. (%.3fs)' % (all_t2_t1))

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if shmstream:
                p, s, im0 = Path(
                    f"{shmcounter}.jpg"), '%g: ' % i, im0s[i].copy()
                shmcounter += 1
            elif webcam:  # batch_size >= 1
                p, s, im0 = Path(path[i]), '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = Path(path), '', im0s

            save_path = str(save_dir / p.name)
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '_%g' % dataset.frame if dataset.mode == 'video' else '')

            s += '%gx%g ' % img.shape[2:]  # print string
            # normalization gain whwh
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    # add to string
                    s += '%g %ss, ' % (n, names_detect[int(c)])

                # Write results
                # But first, Recognition
                all_t2_t1 = recog(det, im0, device, img_lp, imgsz_recog, half,
                                  model_recog, all_t2_t1, classify, modelc,
                                  names_recog, save_txt, gn, txt_path,
                                  save_img, view_img, colors)

            # Stream results
            if view_img:
                cv2.imshow(str(p), im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fourcc = 'mp4v'  # output video codec
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*fourcc), fps,
                            (w, h))
                    vid_writer.write(im0)

        # Print time (inference + NMS)
        print('%sDone Recognition. (%.3fs)' % (s, all_t2_t1))

    if save_txt or save_img:
        print('Results saved to %s' % save_dir)

    print('Done. (%.3fs)' % (time.time() - t0))
Beispiel #13
0
    def train(self, ep = 0):
        parser = argparse.ArgumentParser()
        parser.add_argument('--weights', type=str, default=config.weight, help='initial weights path')
        parser.add_argument('--cfg', type=str, default=config.config_model, help='models/yolov5s.yaml path')
        parser.add_argument('--data', type=str, default=config.config_data, help='data.yaml path')
        parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
        parser.add_argument('--epochs', type=int, default=config.epochs)
        parser.add_argument('--batch-size', type=int, default=config.batch_size, help='total batch size for all GPUs')
        parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
        parser.add_argument('--rect', action='store_true', help='rectangular training')
        parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
        parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
        parser.add_argument('--notest', action='store_true', help='only test final epoch')
        parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
        # parser.add_argument('--noautoanchor', type=bool, default=True, help='disable autoanchor check')
        parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
        # parser.add_argument('--evolve', type = bool, default = False, help='evolve hyperparameters')
        parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
        parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
        parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
        parser.add_argument('--device', default=config.device, help='cuda device, i.e. 0 or 0,1,2,3 or cpu') # using GPU 0
        parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
        parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
        # parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
        parser.add_argument('--adam', type=int, default=config.adam, help='use torch.optim.Adam() optimizer') # using Adam optimizer
        parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
        parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
        parser.add_argument('--log-imgs', type=int, default=16, help='number of images for W&B logging, max 100')
        parser.add_argument('--log-artifacts', action='store_true', help='log artifacts, i.e. final trained model')
        parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
        parser.add_argument('--project', default=config.project_train, help='save to project/name')
        parser.add_argument('--name', default=config.name, help='save to project/name')
        # parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
        parser.add_argument('--exist-ok', type=int, default=config.exist_ok, help='existing project/name ok, do not increment')
        opt = parser.parse_args()

        # Set DDP variables
        opt.total_batch_size = opt.batch_size
        opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
        opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
        set_logging(opt.global_rank)
        if opt.global_rank in [-1, 0]:
            check_git_status()

        # Resume
        if opt.resume:  # resume an interrupted run
            ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run()  # specified or most recent path
            assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
            with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
                opt = argparse.Namespace(**yaml.load(f, Loader=yaml.FullLoader))  # replace
            opt.cfg, opt.weights, opt.resume = '', ckpt, True
            logger.info('Resuming training from %s' % ckpt)
        else:
            # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
            opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp)  # check files
            assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
            opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size)))  # extend to 2 sizes (train, test)
            opt.name = 'evolve' if opt.evolve else opt.name
            opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve)  # increment run

        # DDP mode
        device = select_device(opt.device, batch_size=opt.batch_size)
        if opt.local_rank != -1:
            assert torch.cuda.device_count() > opt.local_rank
            torch.cuda.set_device(opt.local_rank)
            device = torch.device('cuda', opt.local_rank)
            dist.init_process_group(backend='nccl', init_method='env://')  # distributed backend
            assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
            opt.batch_size = opt.total_batch_size // opt.world_size

        # Hyperparameters
        with open(opt.hyp) as f:
            hyp = yaml.load(f, Loader=yaml.FullLoader)  # load hyps
            if 'box' not in hyp:
                warn('Compatibility: %s missing "box" which was renamed from "giou" in %s' %
                    (opt.hyp, 'https://github.com/ultralytics/yolov5/pull/1120'))
                hyp['box'] = hyp.pop('giou')

        # Train
        logger.info(opt)
        if not opt.evolve:
            tb_writer = None  # init loggers
            if opt.global_rank in [-1, 0]:
                logger.info(f'Start Tensorboard with "tensorboard --logdir {opt.project}", view at http://localhost:6006/')
                tb_writer = SummaryWriter(opt.save_dir)  # Tensorboard
            train(hyp, opt, device, tb_writer, wandb, ep)
Beispiel #14
0
def main(opt, callbacks=Callbacks()):
    # Checks
    if RANK in [-1, 0]:
        print_args(FILE.stem, opt)
        check_git_status()
        check_requirements(exclude=['thop'])

    # Resume
    # TODO resume mode
    # if opt.resume and not check_wandb_resume(opt):  # resume an interrupted run
    #     ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run()  # specified or most recent path
    #     assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
    #     with open(Path(ckpt).parent.parent / 'opt.yaml', errors='ignore') as f:
    #         opt = argparse.Namespace(**yaml.safe_load(f))  # replace
    #     opt.cfg, opt.weights, opt.resume = '', ckpt, True  # reinstate
    #     LOGGER.info(f'Resuming training from {ckpt}')
    if 1:
        opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
            check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project)  # checks
        assert len(opt.cfg) or len(
            opt.weights), 'either --cfg or --weights must be specified'
        opt.save_dir = str(
            increment_path(Path(opt.project) / opt.name,
                           exist_ok=opt.exist_ok))

    # DDP mode
    device = select_device(opt.device, batch_size=opt.batch_size)
    # if LOCAL_RANK != -1:
    #     assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
    #     assert opt.batch_size % WORLD_SIZE == 0, '--batch-size must be multiple of CUDA device count'
    #     assert not opt.image_weights, '--image-weights argument is not compatible with DDP training'
    #     assert not opt.evolve, '--evolve argument is not compatible with DDP training'
    #     torch.cuda.set_device(LOCAL_RANK)
    #     device = torch.device('cuda', LOCAL_RANK)
    #     dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")

    # Freeze train
    parent_save_dir = opt.save_dir
    with open(opt.freeze_plan, errors='freeze_plan cannot find!') as f:
        freeze_plan = yaml.safe_load(f)

    for arg in ['evolve', 'resume']:
        if opt.__getattribute__('resume'):
            opt.__setattr__(arg, None)
        LOGGER.info(
            f'Currently option --{arg} is not support in freeze training mode')
    LOGGER.info('Starting freeze training!')

    for i, plan in enumerate(freeze_plan['train']):
        print(plan, '\n')
        assert len(
            plan
        ) == 2, "ERROR: Please check your freeze plan format! It should be [strategy, epoch]"
        strategy = plan[0]
        strategy_epochs = plan[1]
        for strategy_epoch in range(strategy_epochs):
            for step in freeze_plan[strategy]:
                if len(step) == 2:
                    opt.freeze_type = step[0]
                    opt.freeze = ''
                    opt.epochs = step[1]
                    LOGGER.info(
                        f'Currently training strategy epoch {strategy_epoch}, step {i} of strategy {strategy}; training without freeze, \
                        Epoch is {opt.epochs}.')
                elif len(step) == 3:
                    opt.freeze_type = step[0]
                    opt.freeze = step[1]
                    opt.epochs = step[2]
                    LOGGER.info(
                        f'Currently training strategy epoch {strategy_epoch}, step {i} of strategy {strategy}; Freeze type is {opt.freeze}, \
                        Epoch is {opt.epochs}, Freeze layers {opt.freeze}')
                else:
                    raise Exception(
                        f'ERROR: format of each step in strategy should be [layer select type, epoch] or [layer select type, freeze layer, epoch]'
                    )
                opt.save_dir = str(
                    increment_path(Path(parent_save_dir) / opt.name,
                                   exist_ok=opt.exist_ok))
                train.train(opt.hyp, opt, device, callbacks)
    if WORLD_SIZE > 1 and RANK == 0:
        LOGGER.info('Destroying process group... ')
        dist.destroy_process_group()
def detectBox(save_img=False):
    source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source.isnumeric() or source.endswith(
        '.txt') or source.lower().startswith(('rtsp://', 'rtmp://', 'http://'))

    # Directories
    save_dir = Path(
        increment_path(Path(opt.project) / opt.name,
                       exist_ok=opt.exist_ok))  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size
    if half:
        model.half()  # to FP16

    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

    # Run inference
    t0 = time.time()

    # img is the imagine that is to be detected
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)
        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)
        t2 = time_synchronized()

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(
                ), dataset.count
            else:
                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh

            boxNumber = len(det)
            if boxNumber:
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()
                classes = []
                possibilities = []
                box_x = []
                box_y = []
                for index in range(boxNumber):
                    classes.append(int(det[index, -1]))
                    box_x.append([int(det[index, 0]), int(det[index, 2])])
                    box_y.append([int(det[index, 1]), int(det[index, 3])])
                    possibilities.append(round(float(det[index, 4]), 2))
                # print('\nclasses:', classes)
                # print('possibilities', possibilities)
                # print('box_x', box_x)
                # print('box_y', box_y)
                # for index in range(boxNumber):
                upperImgIndex = 0
                upperY = sys.maxsize
                for index in range(boxNumber):
                    if box_y[index][0] < upperY:
                        upperY = box_y[index][0]
                        upperImgIndex = index

                pt1 = (box_x[upperImgIndex][0], box_y[upperImgIndex][0])
                pt2 = (box_x[upperImgIndex][1], box_y[upperImgIndex][1])
                cv2.rectangle(im0, pt1, pt2, [0, 0, 255], 1)
                # resized = cv2.resize(im0, (800, 800))
                cv2.imshow('img', im0)
                cv2.waitKey(50)

                print('\nDetect Results:')
                print('ClassIndex:', classes[upperImgIndex])
                print('ClassName:', names[classes[upperImgIndex]])
                print('Possibility:', possibilities[upperImgIndex])
Beispiel #16
0
def detect(opt, file_path, save_img=False):
    source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source.isnumeric() or source.endswith('.txt') or \
             source.lower().startswith(('rtsp://', 'rtmp://', 'http://'))

    # Directories
    save_dir = Path(
        increment_path(Path(opt.project) / opt.name,
                       exist_ok=opt.exist_ok))  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model'])  # load weights
        modelc.to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)]
              for _ in range(len(names))]

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img
              ) if device.type != 'cpu' else None  # run once
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)
        t2 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = Path(path[i]), '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = Path(path), '', im0s

            save_path = file_path + "cnn.jpg"
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '_%g' % dataset.frame if dataset.mode == 'video' else '')
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                    if (str(names[int(c)]) == 'person'):  #人のみカウント
                        person_num = '%g' % n

                    #print(names[int(c)])

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if opt["save-conf"] else (
                            cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or view_img:  # Add bbox to image
                        label = '%s %.2f' % (names[int(cls)], conf)
                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=colors[int(cls)],
                                     line_thickness=3)

            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1))  #sに人の数のデータが入ってる
            print("person is {}".format(person_num))
            #print(type(person_num)) str

            # Stream results
            if view_img:
                cv2.imshow(p, im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fourcc = 'mp4v'  # output video codec
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*fourcc), fps,
                            (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        print('Results saved to %s' % save_dir)

    print('Done. (%.3fs)' % (time.time() - t0))
    person_num = (int(person_num))
    return person_num
def run(opt: DictConfig) -> None:
    print(opt)
    # Set DDP variables
    opt.world_size = int(
        os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
    opt.global_rank = int(os.environ["RANK"]) if "RANK" in os.environ else -1
    set_logging(opt.global_rank)
    if opt.global_rank in [-1, 0]:
        os.chdir(
            "/content/drive/My Drive/Colab Notebooks/AITraining/yolo/yolov5/")
        check_git_status()
        check_requirements()

    # Resume
    if opt.resume:  # resume an interrupted run
        ckpt = (
            opt.resume if isinstance(opt.resume, str) else get_latest_run()
        )  # specified or most recent path
        assert os.path.isfile(
            ckpt), "ERROR: --resume checkpoint does not exist"
        apriori = opt.global_rank, opt.local_rank
        with open(Path(ckpt).parent.parent / "opt.yaml") as f:
            opt = argparse.Namespace(**yaml.load(
                f, Loader=yaml.SafeLoader))  # replace
        (
            opt.cfg,
            opt.weights,
            opt.resume,
            opt.batch_size,
            opt.global_rank,
            opt.local_rank,
        ) = (
            "",
            ckpt,
            True,
            opt.total_batch_size,
            *apriori,
        )  # reinstate
        logger.info("Resuming training from %s" % ckpt)
    else:
        # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
        opt.data, opt.cfg, opt.hyp = (
            check_file(opt.data),
            check_file(opt.cfg),
            check_file(opt.hyp),
        )  # check files
        assert len(opt.cfg) or len(
            opt.weights), "either --cfg or --weights must be specified"
        opt.img_size.extend(
            [opt.img_size[-1]] *
            (2 - len(opt.img_size)))  # extend to 2 sizes (train, test)
        opt.name = "evolve" if opt.evolve else opt.name
        opt.save_dir = increment_path(Path(opt.project) / opt.name,
                                      exist_ok=opt.exist_ok
                                      | opt.evolve)  # increment run

    # DDP mode
    opt.total_batch_size = opt.batch_size
    device = select_device(opt.device, batch_size=opt.batch_size)
    if opt.local_rank != -1:
        assert torch.cuda.device_count() > opt.local_rank
        torch.cuda.set_device(opt.local_rank)
        device = torch.device("cuda", opt.local_rank)
        dist.init_process_group(backend="nccl",
                                init_method="env://")  # distributed backend
        assert (opt.batch_size % opt.world_size == 0
                ), "--batch-size must be multiple of CUDA device count"
        opt.batch_size = opt.total_batch_size // opt.world_size

    # Hyperparameters
    with open(opt.hyp) as f:
        hyp = yaml.load(f, Loader=yaml.SafeLoader)  # load hyps

    # Train
    logger.info(opt)
    try:
        import wandb
    except ImportError:
        wandb = None
        prefix = colorstr("wandb: ")
        logger.info(
            f"{prefix}Install Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)"
        )
    if not opt.evolve:
        tb_writer = None  # init loggers
        if opt.global_rank in [-1, 0]:
            logger.info(
                f'Start Tensorboard with "tensorboard --logdir {opt.project}", view at http://localhost:6006/'
            )
            tb_writer = SummaryWriter(opt.save_dir)  # Tensorboard
        train(hyp, opt, device, tb_writer, wandb)

    # Evolve hyperparameters (optional)
    else:
        # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
        meta = {
            "lr0":
            (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)
            "lrf":
            (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)
            "momentum": (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1
            "weight_decay": (1, 0.0, 0.001),  # optimizer weight decay
            "warmup_epochs": (1, 0.0, 5.0),  # warmup epochs (fractions ok)
            "warmup_momentum": (1, 0.0, 0.95),  # warmup initial momentum
            "warmup_bias_lr": (1, 0.0, 0.2),  # warmup initial bias lr
            "box": (1, 0.02, 0.2),  # box loss gain
            "cls": (1, 0.2, 4.0),  # cls loss gain
            "cls_pw": (1, 0.5, 2.0),  # cls BCELoss positive_weight
            "obj": (1, 0.2, 4.0),  # obj loss gain (scale with pixels)
            "obj_pw": (1, 0.5, 2.0),  # obj BCELoss positive_weight
            "iou_t": (0, 0.1, 0.7),  # IoU training threshold
            "anchor_t": (1, 2.0, 8.0),  # anchor-multiple threshold
            "anchors": (2, 2.0, 10.0),  # anchors per output grid (0 to ignore)
            "fl_gamma": (
                0,
                0.0,
                2.0,
            ),  # focal loss gamma (efficientDet default gamma=1.5)
            "hsv_h": (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)
            "hsv_s":
            (1, 0.0, 0.9),  # image HSV-Saturation augmentation (fraction)
            "hsv_v": (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)
            "degrees": (1, 0.0, 45.0),  # image rotation (+/- deg)
            "translate": (1, 0.0, 0.9),  # image translation (+/- fraction)
            "scale": (1, 0.0, 0.9),  # image scale (+/- gain)
            "shear": (1, 0.0, 10.0),  # image shear (+/- deg)
            "perspective": (
                0,
                0.0,
                0.001,
            ),  # image perspective (+/- fraction), range 0-0.001
            "flipud": (1, 0.0, 1.0),  # image flip up-down (probability)
            "fliplr": (0, 0.0, 1.0),  # image flip left-right (probability)
            "mosaic": (1, 0.0, 1.0),  # image mixup (probability)
            "mixup": (1, 0.0, 1.0),
        }  # image mixup (probability)

        assert opt.local_rank == -1, "DDP mode not implemented for --evolve"
        opt.notest, opt.nosave = True, True  # only test/save final epoch
        # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices
        yaml_file = Path(
            opt.save_dir) / "hyp_evolved.yaml"  # save best result here
        if opt.bucket:
            os.system("gsutil cp gs://%s/evolve.txt ." %
                      opt.bucket)  # download evolve.txt if exists

        for _ in range(300):  # generations to evolve
            if Path("evolve.txt").exists(
            ):  # if evolve.txt exists: select best hyps and mutate
                # Select parent(s)
                parent = "single"  # parent selection method: 'single' or 'weighted'
                x = np.loadtxt("evolve.txt", ndmin=2)
                n = min(5, len(x))  # number of previous results to consider
                x = x[np.argsort(-fitness(x))][:n]  # top n mutations
                w = fitness(x) - fitness(x).min()  # weights
                if parent == "single" or len(x) == 1:
                    # x = x[random.randint(0, n - 1)]  # random selection
                    x = x[random.choices(range(n),
                                         weights=w)[0]]  # weighted selection
                elif parent == "weighted":
                    x = (x * w.reshape(
                        n, 1)).sum(0) / w.sum()  # weighted combination

                # Mutate
                mp, s = 0.8, 0.2  # mutation probability, sigma
                npr = np.random
                npr.seed(int(time.time()))
                g = np.array([x[0] for x in meta.values()])  # gains 0-1
                ng = len(meta)
                v = np.ones(ng)
                while all(
                        v == 1
                ):  # mutate until a change occurs (prevent duplicates)
                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) *
                         npr.random() * s + 1).clip(0.3, 3.0)
                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
                    hyp[k] = float(x[i + 7] * v[i])  # mutate

            # Constrain to limits
            for k, v in meta.items():
                hyp[k] = max(hyp[k], v[1])  # lower limit
                hyp[k] = min(hyp[k], v[2])  # upper limit
                hyp[k] = round(hyp[k], 5)  # significant digits

            # Train mutation
            results = train(hyp.copy(), opt, device, wandb=wandb)

            # Write mutation results
            print_mutation(hyp.copy(), results, yaml_file, opt.bucket)

        # Plot results
        plot_evolution(yaml_file)
        print(
            f"Hyperparameter evolution complete. Best results saved as: {yaml_file}\n"
            f"Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}"
        )
Beispiel #18
0
 def save(self, save_dir='runs/hub/exp'):
     save_dir = increment_path(
         save_dir,
         exist_ok=save_dir != 'runs/hub/exp')  # increment save_dir
     Path(save_dir).mkdir(parents=True, exist_ok=True)
     self.display(save=True, save_dir=save_dir)  # save results
Beispiel #19
0
 def crop(self, save_dir='runs/detect/exp'):
     save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True)  # increment save_dir
     self.display(crop=True, save_dir=save_dir)  # crop results
     LOGGER.info(f'Saved results to {save_dir}\n')
Beispiel #20
0
def detect(save_img=False):
    source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source.isnumeric() or source.endswith(
        '.txt') or source.lower().startswith(('rtsp://', 'rtmp://', 'http://'))

    # Directories
    save_dir = Path(
        increment_path(Path(opt.project) / opt.name,
                       exist_ok=opt.exist_ok))  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model']).to(device).eval()

    if opt.rknn_mode == True:
        print('model convert to rknn_mode')
        from models.common_rk_plug_in import surrogate_silu, surrogate_hardswish
        from models import common
        for k, m in model.named_modules():
            m._non_persistent_buffers_set = set(
            )  # pytorch 1.6.0 compatibility
            if isinstance(m,
                          common.Conv):  # assign export-friendly activations
                if isinstance(m.act, torch.nn.Hardswish):
                    m.act = torch.nn.Hardswish()
                elif isinstance(m.act, torch.nn.SiLU):
                    # m.act = torch.nn.SiLU()
                    m.act = surrogate_silu()
            # elif isinstance(m, models.yolo.Detect):
            #     m.forward = m.forward_export  # assign forward (optional)

            if isinstance(m, common.SPP):  # assign export-friendly activations
                ### best
                # tmp = nn.Sequential(*[nn.MaxPool2d(kernel_size=3, stride=1, padding=1) for i in range(2)])
                # m.m[0] = tmp
                # m.m[1] = tmp
                # m.m[2] = tmp
                ### friendly to origin config
                tmp = nn.Sequential(*[
                    nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
                    for i in range(2)
                ])
                m.m[0] = tmp
                tmp = nn.Sequential(*[
                    nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
                    for i in range(4)
                ])
                m.m[1] = tmp
                tmp = nn.Sequential(*[
                    nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
                    for i in range(6)
                ])
                m.m[2] = tmp

        ### use deconv2d to surrogate upsample layer.
        # replace_one = torch.nn.ConvTranspose2d(model.model[10].conv.weight.shape[0],
        #                                        model.model[10].conv.weight.shape[0],
        #                                        (2, 2),
        #                                        groups=model.model[10].conv.weight.shape[0],
        #                                        bias=False,
        #                                        stride=(2, 2))
        # replace_one.weight.data.fill_(1)
        # replace_one.eval().to(device)
        # temp_i = model.model[11].i
        # temp_f = model.model[11].f
        # model.model[11] = replace_one
        # model.model[11].i = temp_i
        # model.model[11].f = temp_f

        # replace_one = torch.nn.ConvTranspose2d(model.model[14].conv.weight.shape[0],
        #                                        model.model[14].conv.weight.shape[0],
        #                                        (2, 2),
        #                                        groups=model.model[14].conv.weight.shape[0],
        #                                        bias=False,
        #                                        stride=(2, 2))
        # replace_one.weight.data.fill_(1)
        # replace_one.eval().to(device)
        # temp_i = model.model[11].i
        # temp_f = model.model[11].f
        # model.model[15] = replace_one
        # model.model[15].i = temp_i
        # model.model[15].f = temp_f

        ### use conv to surrogate slice operator
        from models.common_rk_plug_in import surrogate_focus
        surrogate_focous = surrogate_focus(
            int(model.model[0].conv.conv.weight.shape[1] / 4),
            model.model[0].conv.conv.weight.shape[0],
            k=tuple(model.model[0].conv.conv.weight.shape[2:4]),
            s=model.model[0].conv.conv.stride,
            p=model.model[0].conv.conv.padding,
            g=model.model[0].conv.conv.groups,
            act=True)
        surrogate_focous.conv.conv.weight = model.model[0].conv.conv.weight
        surrogate_focous.conv.conv.bias = model.model[0].conv.conv.bias
        surrogate_focous.conv.act = model.model[0].conv.act
        temp_i = model.model[0].i
        temp_f = model.model[0].f

        model.model[0] = surrogate_focous
        model.model[0].i = temp_i
        model.model[0].f = temp_f
        model.model[0].eval().to(device)

    if half:
        model.half()  # to FP16

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz, stride=stride)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    print('names', names)
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

    # Run inference
    if device.type != 'cpu':
        model(
            torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(
                next(model.parameters())))  # run once
    t0 = time.time()
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)
        t2 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(
                ), dataset.count
            else:
                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if opt.save_conf else (
                            cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or view_img:  # Add bbox to image
                        label = f'{names[int(cls)]} {conf:.2f}'
                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=colors[int(cls)],
                                     line_thickness=2)

            # Print time (inference + NMS)
            print(f'{s}Done. ({t2 - t1:.3f}s)')

            # Stream results
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video'
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fourcc = 'mp4v'  # output video codec
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*fourcc), fps,
                            (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")

    print(f'Done. ({time.time() - t0:.3f}s)')
def detect(save_img=False):
    source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source.isnumeric() or source.endswith(
        '.txt') or source.lower().startswith(('rtsp://', 'rtmp://', 'http://'))

    # Directories
    save_dir = Path(
        increment_path(Path(opt.project) / opt.name,
                       exist_ok=opt.exist_ok))  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    if len(imgsz) == 1:
        imgsz = imgsz[0]

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    if weights[0].split('.')[-1] == 'pt':
        backend = 'pytorch'
    elif weights[0].split('.')[-1] == 'pb':
        backend = 'graph_def'
    elif weights[0].split('.')[-1] == 'tflite':
        backend = 'tflite'
    else:
        backend = 'saved_model'

    if backend == 'tflite':
        pkg = importlib.util.find_spec('tflite_runtime')
        if pkg:
            from tflite_runtime.interpreter import Interpreter
            if use_TPU:
                from tflite_runtime.interpreter import load_delegate
        else:
            from tensorflow.lite.python.interpreter import Interpreter
            if use_TPU:
                from tensorflow.lite.python.interpreter import load_delegate

    if backend == 'tflite':
        # Load TFLite model and allocate tensors.
        if use_TPU:
            interpreter = Interpreter(
                model_path=opt.weights[0],
                experimental_delegates=[load_delegate('libedgetpu.so.1.0')])
            print(opt.weights[0])
        else:
            interpreter = Interpreter(model_path=opt.weights[0])
        interpreter.allocate_tensors()

        # Get input and output tensors.
        input_details = interpreter.get_input_details()
        output_details = interpreter.get_output_details()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, auto=False)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz, auto=False)

    # Get names and colors
    names = ['Face mask', 'No face mask']
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

    # Run inference
    t0 = time.time()
    if isinstance(imgsz, int):
        imgsz = (imgsz, imgsz)
    img = torch.zeros((1, 3, *imgsz), device=device)  # init img

    if backend == 'tflite':
        input_data = img.permute(0, 2, 3, 1).cpu().numpy()
        if opt.tfl_int8:
            input_data = input_data.astype(np.uint8)
        interpreter.set_tensor(input_details[0]['index'], input_data)
        interpreter.invoke()
        output_data = interpreter.get_tensor(output_details[0]['index'])

    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()

        if backend == 'tflite':
            input_data = img.permute(0, 2, 3, 1).cpu().numpy()
            if opt.tfl_int8:
                scale, zero_point = input_details[0]['quantization']
                input_data = input_data / scale + zero_point
                input_data = input_data.astype(np.uint8)
            interpreter.set_tensor(input_details[0]['index'], input_data)
            interpreter.invoke()
            if not opt.tfl_detect:
                output_data = interpreter.get_tensor(
                    output_details[0]['index'])
                pred = torch.tensor(output_data)
            else:
                import yaml
                yaml_file = Path(opt.cfg).name
                with open(opt.cfg) as f:
                    yaml = yaml.load(f, Loader=yaml.FullLoader)

                anchors = yaml['anchors']
                nc = yaml['nc']
                nl = len(anchors)
                x = [
                    torch.tensor(interpreter.get_tensor(
                        output_details[i]['index']),
                                 device=device) for i in range(nl)
                ]
                if opt.tfl_int8:
                    for i in range(nl):
                        scale, zero_point = output_details[i]['quantization']
                        x[i] = x[i].float()
                        x[i] = (x[i] - zero_point) * scale

                def _make_grid(nx=20, ny=20):
                    yv, xv = torch.meshgrid(
                        [torch.arange(ny), torch.arange(nx)])
                    return torch.stack((xv, yv), 2).view(
                        (1, 1, ny * nx, 2)).float()

                no = nc + 5
                grid = [torch.zeros(1)] * nl  # init grid
                a = torch.tensor(anchors).float().view(nl, -1, 2).to(device)
                anchor_grid = a.clone().view(nl, 1, -1, 1,
                                             2)  # shape(nl,1,na,1,2)
                z = []  # inference output
                for i in range(nl):
                    _, _, ny_nx, _ = x[i].shape
                    r = imgsz[0] / imgsz[1]
                    nx = int(np.sqrt(ny_nx / r))
                    ny = int(r * nx)
                    grid[i] = _make_grid(nx, ny).to(x[i].device)
                    stride = imgsz[0] // ny
                    y = x[i].sigmoid()
                    y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 +
                                   grid[i].to(x[i].device)) * stride  # xy
                    y[..., 2:4] = (y[..., 2:4] * 2)**2 * anchor_grid[i]  # wh
                    z.append(y.view(-1, no))

                pred = torch.unsqueeze(torch.cat(z, 0), 0)

        # Apply NMS
        if not opt.no_tf_nms:
            pred = non_max_suppression(pred,
                                       opt.conf_thres,
                                       opt.iou_thres,
                                       classes=opt.classes,
                                       agnostic=opt.agnostic_nms)
        else:
            nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections = pred
            if not tf.__version__.startswith('1'):
                nmsed_boxes = torch.tensor(nmsed_boxes.numpy())
                nmsed_scores = torch.tensor(nmsed_scores.numpy())
                nmsed_classes = torch.tensor(nmsed_classes.numpy())
                valid_detections = torch.tensor(valid_detections.numpy())
            else:
                nmsed_boxes = torch.tensor(nmsed_boxes)
                nmsed_scores = torch.tensor(nmsed_scores)
                nmsed_classes = torch.tensor(nmsed_classes)
                valid_detections = torch.tensor(valid_detections)
            bs = nmsed_boxes.shape[0]
            pred = [None] * bs
            for i in range(bs):
                pred[i] = torch.cat([
                    nmsed_boxes[i, :valid_detections[i], :],
                    torch.unsqueeze(nmsed_scores[i, :valid_detections[i]], -1),
                    torch.unsqueeze(nmsed_classes[i, :valid_detections[i]], -1)
                ], -1)

        t2 = time_synchronized()

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = Path(path[i]), '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = Path(path), '', im0s

            save_path = str(save_dir / p.name)
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '_%g' % dataset.frame if dataset.mode == 'video' else '')
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if opt.save_conf else (
                            cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or view_img:  # Add bbox to image
                        label = '%s %.2f' % (names[int(cls)], conf)
                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=colors[int(cls)],
                                     line_thickness=3)

            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1))

            # Stream results
            if view_img:
                cv2.imshow(str(p), im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fourcc = 'mp4v'  # output video codec
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*fourcc), fps,
                            (w, h))
                    vid_writer.write(im0)

    print('Done. (%.3fs)' % (time.time() - t0))
Beispiel #22
0
def run(
        weights='yolov5s.pt',  # model.pt path(s)
        source='data/images',  # file/dir/URL/glob, 0 for webcam
        imgsz=640,  # inference size (pixels)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        visualize=False,  # visualize features
        update=False,  # update all models
        project='runs/detect',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
):
    save_img = not nosave and not source.endswith(
        '.txt')  # save inference images
    webcam = source.isnumeric() or source.endswith(
        '.txt') or source.lower().startswith(
            ('rtsp://', 'rtmp://', 'http://', 'https://'))

    # Directories
    save_dir = increment_path(Path(project) / name,
                              exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(device)
    half &= device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    w = weights[0] if isinstance(weights, list) else weights
    classify, suffix = False, Path(w).suffix.lower()
    pt, onnx, tflite, pb, saved_model = (
        suffix == x for x in ['.pt', '.onnx', '.tflite', '.pb', ''])  # backend
    stride, names = 64, [f'class{i}' for i in range(1000)]  # assign defaults
    if pt:
        model = attempt_load(weights, map_location=device)  # load FP32 model
        stride = int(model.stride.max())  # model stride
        names = model.module.names if hasattr(
            model, 'module') else model.names  # get class names
        if half:
            model.half()  # to FP16
        if classify:  # second-stage classifier
            modelc = load_classifier(name='resnet50', n=2)  # initialize
            modelc.load_state_dict(
                torch.load('resnet50.pt',
                           map_location=device)['model']).to(device).eval()
    elif onnx:
        check_requirements(('onnx', 'onnxruntime'))
        import onnxruntime
        session = onnxruntime.InferenceSession(w, None)
    else:  # TensorFlow models
        check_requirements(('tensorflow>=2.4.1', ))
        import tensorflow as tf
        if pb:  # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt

            def wrap_frozen_graph(gd, inputs, outputs):
                x = tf.compat.v1.wrap_function(
                    lambda: tf.compat.v1.import_graph_def(gd, name=""),
                    [])  # wrapped import
                return x.prune(
                    tf.nest.map_structure(x.graph.as_graph_element, inputs),
                    tf.nest.map_structure(x.graph.as_graph_element, outputs))

            graph_def = tf.Graph().as_graph_def()
            graph_def.ParseFromString(open(w, 'rb').read())
            frozen_func = wrap_frozen_graph(gd=graph_def,
                                            inputs="x:0",
                                            outputs="Identity:0")
        elif saved_model:
            model = tf.keras.models.load_model(w)
        elif tflite:
            interpreter = tf.lite.Interpreter(
                model_path=w)  # load TFLite model
            interpreter.allocate_tensors()  # allocate
            input_details = interpreter.get_input_details()  # inputs
            output_details = interpreter.get_output_details()  # outputs
            int8 = input_details[0][
                'dtype'] == np.uint8  # is TFLite quantized uint8 model
    imgsz = check_img_size(imgsz, s=stride)  # check image size
    ascii = is_ascii(names)  # names are ascii (use PIL for UTF-8)

    # Dataloader
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
        bs = len(dataset)  # batch_size
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
        bs = 1  # batch_size
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference
    if pt and device.type != 'cpu':
        model(
            torch.zeros(1, 3, *imgsz).to(device).type_as(
                next(model.parameters())))  # run once
    t0 = time.time()
    for path, img, im0s, vid_cap in dataset:
        if onnx:
            img = img.astype('float32')
        else:
            img = torch.from_numpy(img).to(device)
            img = img.half() if half else img.float()  # uint8 to fp16/32
        img = img / 255.0  # 0 - 255 to 0.0 - 1.0
        if len(img.shape) == 3:
            img = img[None]  # expand for batch dim

        # Inference
        t1 = time_sync()
        if pt:
            visualize = increment_path(save_dir / Path(path).stem,
                                       mkdir=True) if visualize else False
            pred = model(img, augment=augment, visualize=visualize)[0]
        elif onnx:
            pred = torch.tensor(
                session.run([session.get_outputs()[0].name],
                            {session.get_inputs()[0].name: img}))
        else:  # tensorflow model (tflite, pb, saved_model)
            imn = img.permute(0, 2, 3, 1).cpu().numpy()  # image in numpy
            if pb:
                pred = frozen_func(x=tf.constant(imn)).numpy()
            elif saved_model:
                pred = model(imn, training=False).numpy()
            elif tflite:
                if int8:
                    scale, zero_point = input_details[0]['quantization']
                    imn = (imn / scale + zero_point).astype(
                        np.uint8)  # de-scale
                interpreter.set_tensor(input_details[0]['index'], imn)
                interpreter.invoke()
                pred = interpreter.get_tensor(output_details[0]['index'])
                if int8:
                    scale, zero_point = output_details[0]['quantization']
                    pred = (pred.astype(np.float32) -
                            zero_point) * scale  # re-scale
            pred[..., 0] *= imgsz[1]  # x
            pred[..., 1] *= imgsz[0]  # y
            pred[..., 2] *= imgsz[1]  # w
            pred[..., 3] *= imgsz[0]  # h
            pred = torch.tensor(pred)

        # NMS
        pred = non_max_suppression(pred,
                                   conf_thres,
                                   iou_thres,
                                   classes,
                                   agnostic_nms,
                                   max_det=max_det)
        t2 = time_sync()

        # Second-stage classifier (optional)
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process predictions
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(
                ), dataset.count
            else:
                p, s, im0, frame = path, '', im0s.copy(), getattr(
                    dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            annotator = Annotator(im0,
                                  line_width=line_thickness,
                                  pil=not ascii)
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh,
                                conf) if save_conf else (cls,
                                                         *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else (
                            names[c]
                            if hide_conf else f'{names[c]} {conf:.2f}')
                        annotator.box_label(xyxy, label, color=colors(c, True))
                        if save_crop:
                            save_one_box(xyxy,
                                         imc,
                                         file=save_dir / 'crops' / names[c] /
                                         f'{p.stem}.jpg',
                                         BGR=True)

            # Print time (inference + NMS)
            print(f'{s}Done. ({t2 - t1:.3f}s)')

            # Stream results
            im0 = annotator.result()
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[i].release(
                            )  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                            save_path += '.mp4'
                        vid_writer[i] = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps,
                            (w, h))
                    vid_writer[i].write(im0)

    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {colorstr('bold', save_dir)}{s}")

    if update:
        strip_optimizer(weights)  # update model (to fix SourceChangeWarning)

    print(f'Done. ({time.time() - t0:.3f}s)')
Beispiel #23
0
def main(opt, callbacks=Callbacks()):
    # Checks
    if RANK in [-1, 0]:
        print_args(FILE.stem, opt)
        check_git_status()
        check_requirements(exclude=['thop'])

    # Resume
    if opt.resume and not check_wandb_resume(
            opt) and not opt.evolve:  # resume an interrupted run
        ckpt = opt.resume if isinstance(
            opt.resume,
            str) else get_latest_run()  # specified or most recent path
        assert os.path.isfile(
            ckpt), 'ERROR: --resume checkpoint does not exist'
        with open(Path(ckpt).parent.parent / 'opt.yaml', errors='ignore') as f:
            opt = argparse.Namespace(**yaml.safe_load(f))  # replace
        opt.cfg, opt.weights, opt.resume = '', ckpt, True  # reinstate
        LOGGER.info(f'Resuming training from {ckpt}')
    else:
        opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
            check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project)  # checks
        assert len(opt.cfg) or len(
            opt.weights), 'either --cfg or --weights must be specified'
        if opt.evolve:
            opt.project = str(ROOT / 'runs/evolve')
            opt.exist_ok, opt.resume = opt.resume, False  # pass resume to exist_ok and disable resume
        opt.save_dir = str(
            increment_path(Path(opt.project) / opt.name,
                           exist_ok=opt.exist_ok))

    # DDP mode
    device = select_device(opt.device, batch_size=opt.batch_size)
    if LOCAL_RANK != -1:
        assert torch.cuda.device_count(
        ) > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
        assert opt.batch_size % WORLD_SIZE == 0, '--batch-size must be multiple of CUDA device count'
        assert not opt.image_weights, '--image-weights argument is not compatible with DDP training'
        assert not opt.evolve, '--evolve argument is not compatible with DDP training'
        torch.cuda.set_device(LOCAL_RANK)
        device = torch.device('cuda', LOCAL_RANK)
        dist.init_process_group(
            backend="nccl" if dist.is_nccl_available() else "gloo")

    # Train
    if not opt.evolve:
        train(opt.hyp, opt, device, callbacks)
        if WORLD_SIZE > 1 and RANK == 0:
            LOGGER.info('Destroying process group... ')
            dist.destroy_process_group()

    # Evolve hyperparameters (optional)
    else:
        # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
        meta = {
            'lr0':
            (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)
            'lrf':
            (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)
            'momentum': (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1
            'weight_decay': (1, 0.0, 0.001),  # optimizer weight decay
            'warmup_epochs': (1, 0.0, 5.0),  # warmup epochs (fractions ok)
            'warmup_momentum': (1, 0.0, 0.95),  # warmup initial momentum
            'warmup_bias_lr': (1, 0.0, 0.2),  # warmup initial bias lr
            'box': (1, 0.02, 0.2),  # box loss gain
            'cls': (1, 0.2, 4.0),  # cls loss gain
            'cls_pw': (1, 0.5, 2.0),  # cls BCELoss positive_weight
            'obj': (1, 0.2, 4.0),  # obj loss gain (scale with pixels)
            'obj_pw': (1, 0.5, 2.0),  # obj BCELoss positive_weight
            'iou_t': (0, 0.1, 0.7),  # IoU training threshold
            'anchor_t': (1, 2.0, 8.0),  # anchor-multiple threshold
            'anchors': (2, 2.0, 10.0),  # anchors per output grid (0 to ignore)
            'fl_gamma':
            (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)
            'hsv_h': (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)
            'hsv_s': (1, 0.0,
                      0.9),  # image HSV-Saturation augmentation (fraction)
            'hsv_v': (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)
            'degrees': (1, 0.0, 45.0),  # image rotation (+/- deg)
            'translate': (1, 0.0, 0.9),  # image translation (+/- fraction)
            'scale': (1, 0.0, 0.9),  # image scale (+/- gain)
            'shear': (1, 0.0, 10.0),  # image shear (+/- deg)
            'perspective':
            (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001
            'flipud': (1, 0.0, 1.0),  # image flip up-down (probability)
            'fliplr': (0, 0.0, 1.0),  # image flip left-right (probability)
            'mosaic': (1, 0.0, 1.0),  # image mixup (probability)
            'mixup': (1, 0.0, 1.0),  # image mixup (probability)
            'copy_paste': (1, 0.0, 1.0)
        }  # segment copy-paste (probability)

        with open(opt.hyp, errors='ignore') as f:
            hyp = yaml.safe_load(f)  # load hyps dict
            if 'anchors' not in hyp:  # anchors commented in hyp.yaml
                hyp['anchors'] = 3
        opt.noval, opt.nosave, save_dir = True, True, Path(
            opt.save_dir)  # only val/save final epoch
        # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices
        evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
        if opt.bucket:
            os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {save_dir}'
                      )  # download evolve.csv if exists

        for _ in range(opt.evolve):  # generations to evolve
            if evolve_csv.exists(
            ):  # if evolve.csv exists: select best hyps and mutate
                # Select parent(s)
                parent = 'single'  # parent selection method: 'single' or 'weighted'
                x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
                n = min(5, len(x))  # number of previous results to consider
                x = x[np.argsort(-fitness(x))][:n]  # top n mutations
                w = fitness(x) - fitness(x).min() + 1E-6  # weights (sum > 0)
                if parent == 'single' or len(x) == 1:
                    # x = x[random.randint(0, n - 1)]  # random selection
                    x = x[random.choices(range(n),
                                         weights=w)[0]]  # weighted selection
                elif parent == 'weighted':
                    x = (x * w.reshape(
                        n, 1)).sum(0) / w.sum()  # weighted combination

                # Mutate
                mp, s = 0.8, 0.2  # mutation probability, sigma
                npr = np.random
                npr.seed(int(time.time()))
                g = np.array([meta[k][0] for k in hyp.keys()])  # gains 0-1
                ng = len(meta)
                v = np.ones(ng)
                while all(
                        v == 1
                ):  # mutate until a change occurs (prevent duplicates)
                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) *
                         npr.random() * s + 1).clip(0.3, 3.0)
                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
                    hyp[k] = float(x[i + 7] * v[i])  # mutate

            # Constrain to limits
            for k, v in meta.items():
                hyp[k] = max(hyp[k], v[1])  # lower limit
                hyp[k] = min(hyp[k], v[2])  # upper limit
                hyp[k] = round(hyp[k], 5)  # significant digits

            # Train mutation
            results = train(hyp.copy(), opt, device, callbacks)

            # Write mutation results
            print_mutation(results, hyp.copy(), save_dir, opt.bucket)

        # Plot results
        plot_evolve(evolve_csv)
        LOGGER.info(
            f'Hyperparameter evolution finished\n'
            f"Results saved to {colorstr('bold', save_dir)}\n"
            f'Use best hyperparameters example: $ python train.py --hyp {evolve_yaml}'
        )
Beispiel #24
0
def detect(save_img=False):
    source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source.isnumeric() or source.endswith(
        '.txt') or source.lower().startswith(('rtsp://', 'rtmp://', 'http://'))

    # Directories
    save_dir = Path(
        increment_path(Path("../Results") / opt.name,
                       exist_ok=opt.exist_ok))  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size
    if half:
        model.half()  # to FP16

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        view_img = True
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors for the bounding boxes.
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img
              ) if device.type != 'cpu' else None  # run once

    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()  #Time T1

        pred = model(img, augment=opt.augment)[0]
        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)

        t2 = time_synchronized()  #Time T2

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = Path(path[i]), '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = Path(path), '', im0s

            save_path = str(save_dir / p.name)
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '_%g' % dataset.frame if dataset.mode == 'video' else '')
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                # Plot the bounding boxes.
                for *xyxy, conf, cls in reversed(det):
                    if save_img or view_img:
                        label = '%s %.2f' % (names[int(cls)], conf)
                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=colors[int(cls)],
                                     line_thickness=3)

            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1))
            try:
                im0 = cv2.putText(im0, "FPS: %.2f" % (1 / (t2 - t1)), (30, 30),
                                  cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2,
                                  cv2.LINE_AA)
            except:
                pass

            # saving the image or video to the Results directory.
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fourcc = 'mp4v'  # output video codec
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*fourcc), fps,
                            (w, h))
                    vid_writer.write(im0)

            # Stream live results
            if view_img:
                cv2.imshow("Images", im0)
                if dataset.is_it_web:
                    if cv2.waitKey(1) & 0xFF == ord('q'):  # q to quit
                        raise StopIteration
                else:
                    if dataset.video_flag[0]:
                        if cv2.waitKey(1) & 0xFF == ord('q'):  # q to quit
                            raise StopIteration
                    else:
                        if cv2.waitKey(0) & 0xFF == ord('q'):  # q to quit
                            raise StopIteration

    if save_txt or save_img:
        print('Results saved to %s' % save_dir)
        pass
Beispiel #25
0
 def crop(self, save=True, save_dir='runs/detect/exp'):
     save_dir = increment_path(save_dir,
                               exist_ok=save_dir != 'runs/detect/exp',
                               mkdir=True) if save else None
     return self.display(crop=True, save=save,
                         save_dir=save_dir)  # crop results
Beispiel #26
0
def run(
        weights='yolov5s.pt',  # model.pt path(s)
        source='data/images',  # file/dir/URL/glob, 0 for webcam
        imgsz=640,  # inference size (pixels)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        update=False,  # update all models
        project='runs/detect',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
):
    save_img = not nosave and not source.endswith(
        '.txt')  # save inference images
    webcam = source.isnumeric() or source.endswith(
        '.txt') or source.lower().startswith(
            ('rtsp://', 'rtmp://', 'http://', 'https://'))

    # Directories
    save_dir = increment_path(Path(project) / name,
                              exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(device)
    half &= device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check image size
    names = model.module.names if hasattr(
        model, 'module') else model.names  # get class names
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet50', n=2)  # initialize
        modelc.load_state_dict(
            torch.load('resnet50.pt',
                       map_location=device)['model']).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride)
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride)

    # Run inference
    if device.type != 'cpu':
        model(
            torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(
                next(model.parameters())))  # run once
    t0 = time.time()
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   conf_thres,
                                   iou_thres,
                                   classes,
                                   agnostic_nms,
                                   max_det=max_det)
        pred = area_kmeans(pred, 4)
        t2 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(
                ), dataset.count
            else:
                p, s, im0, frame = path, '', im0s.copy(), getattr(
                    dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh,
                                conf) if save_conf else (cls,
                                                         *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else (
                            names[c]
                            if hide_conf else f'{names[c]} {conf:.2f}')
                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=colors(c, True),
                                     line_thickness=line_thickness)
                        if save_crop:
                            save_one_box(xyxy,
                                         imc,
                                         file=save_dir / 'crops' / names[c] /
                                         f'{p.stem}.jpg',
                                         BGR=True)

            # Print time (inference + NMS)
            print(f'{s}Done. ({t2 - t1:.3f}s)')

            # Stream results
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                            save_path += '.mp4'
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps,
                            (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")

    if update:
        strip_optimizer(weights)  # update model (to fix SourceChangeWarning)

    print(f'Done. ({time.time() - t0:.3f}s)')
Beispiel #27
0
def detect(save_img=False):
    source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source.isnumeric() or source.endswith(
        '.txt') or source.lower().startswith(('rtsp://', 'rtmp://', 'http://'))

    # Directories
    save_dir = Path(
        increment_path(Path(opt.project) / opt.name,
                       exist_ok=opt.exist_ok))  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model']).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz, stride=stride)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

    # Run inference
    if device.type != 'cpu':
        model(
            torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(
                next(model.parameters())))  # run once
    t0 = time.time()
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)
        t2 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(
                ), dataset.count
            else:
                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if opt.save_conf else (
                            cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or view_img:  # Add bbox to image
                        label = f'{names[int(cls)]} {conf:.2f}'
                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=colors[int(cls)],
                                     line_thickness=3)

            # Print time (inference + NMS)
            print(f'{s}Done. ({t2 - t1:.3f}s)')

            # Stream results
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video'
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fourcc = 'mp4v'  # output video codec
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*fourcc), fps,
                            (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")

    print(f'Done. ({time.time() - t0:.3f}s)')
Beispiel #28
0
def load_model(aha):
    # loads model until 1st inference
    ini_path = os.getcwd()
    
    os.chdir("./yolov5") # pour yolo_and_track
    # os.chdir("./rossis/yolov5") # pour detect_jetson
    
    
    # definition of global variables
    global source, weights, view_img, save_txt, imgsz, webcam, save_dir, device, model, dataset, vid_path, vid_writer, save_img, _
    global conf_thres, iou_thres, save_conf, augment, project, name, exist_ok, agnostic_nms
    global half, classes, classify
    global names, colors, t0
    
    
    opt = aha
    save_img=False # previously was a parameter
    source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    conf_thres, iou_thres, save_conf, augment, project = opt.conf_thres, opt.iou_thres, opt.save_conf, opt.augment, opt.project
    name, exist_ok, agnostic_nms = opt.name, opt.exist_ok, opt.agnostic_nms
    classes = opt.classes
    
    webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
        ('rtsp://', 'rtmp://', 'http://'))

    # Directories
    save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
    
    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img) if device.type != 'cpu' else None  # run once    
    print("bye")
    os.chdir(ini_path)
Beispiel #29
0
            opt = argparse.Namespace(**yaml.load(
                f, Loader=yaml.SafeLoader))  # replace
        opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = '', ckpt, True, opt.total_batch_size, *apriori  # reinstate
        logger.info('Resuming training from %s' % ckpt)
    else:
        # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
        opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(
            opt.cfg), check_file(opt.hyp)  # check files
        assert len(opt.cfg) or len(
            opt.weights), 'either --cfg or --weights must be specified'
        opt.img_size.extend(
            [opt.img_size[-1]] *
            (2 - len(opt.img_size)))  # extend to 2 sizes (train, test)
        opt.name = 'evolve' if opt.evolve else opt.name
        opt.save_dir = increment_path(Path(opt.project) / opt.name,
                                      exist_ok=opt.exist_ok
                                      | opt.evolve)  # increment run

    # DDP mode
    opt.total_batch_size = opt.batch_size
    device = select_device(opt.device, batch_size=opt.batch_size)
    if opt.local_rank != -1:
        assert torch.cuda.device_count() > opt.local_rank
        torch.cuda.set_device(opt.local_rank)
        device = torch.device('cuda', opt.local_rank)
        dist.init_process_group(backend='nccl',
                                init_method='env://')  # distributed backend
        assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
        opt.batch_size = opt.total_batch_size // opt.world_size

    # Hyperparameters
Beispiel #30
0
    def detect(
            self,
            weights='checkpoints/best_s.pt',  # model.pt path(s)
            source='test',  # file/dir/URL/glob, 0 for webcam
            imgsz=640,  # inference size (pixels)
            conf_thres=0.25,  # confidence threshold
            iou_thres=0.45,  # NMS IOU threshold
            max_det=1000,  # maximum detections per image
            device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
            view_img=False,  # show results
            save_txt=False,  # save results to *.txt
            save_conf=False,  # save confidences in --save-txt labels
            save_crop=False,  # save cropped prediction boxes
            nosave=False,  # do not save images/videos
            classes=None,  # filter by class: --class 0, or --class 0 2 3
            agnostic_nms=False,  # class-agnostic NMS
            augment=False,  # augmented inference
            visualize=False,  # visualize features
            update=False,  # update all models
            project='result',  # save results to project path
            exist_ok=False,  # existing project/name ok, do not increment
            line_thickness=3,  # bounding box thickness (pixels)
            hide_labels=False,  # hide labels
            hide_conf=False,  # hide confidences
            half=False,  # use FP16 half-precision inference
    ):

        save_img = not nosave and not source.endswith(
            '.txt')  # save inference images

        # Directories
        save_dir = Path(project)
        (save_dir / 'labels' if save_txt else save_dir).mkdir(
            parents=True, exist_ok=True)  # make dir

        # Initialize
        set_logging()
        device = select_device(device)
        half &= device.type != 'cpu'  # half precision only supported on CUDA

        # Load model
        w = weights[0] if isinstance(weights, list) else weights
        classify, pt, onnx = False, w.endswith('.pt'), w.endswith(
            '.onnx')  # inference type
        stride, names = 64, [f'class{i}'
                             for i in range(1000)]  # assign defaults
        if pt:
            model = attempt_load(weights,
                                 map_location=device)  # load FP32 model
            stride = int(model.stride.max())  # model stride
            names = model.module.names if hasattr(
                model, 'module') else model.names  # get class names
            if half:
                model.half()  # to FP16
            if classify:  # second-stage classifier
                modelc = load_classifier(name='resnet50', n=2)  # initialize
                modelc.load_state_dict(
                    torch.load(
                        'resnet50.pt',
                        map_location=device)['model']).to(device).eval()
        elif onnx:
            check_requirements(('onnx', 'onnxruntime'))
            import onnxruntime
            session = onnxruntime.InferenceSession(w, None)
        imgsz = check_img_size(imgsz, s=stride)  # check image size

        # Dataloader
        dataset = LoadImages(source, img_size=imgsz, stride=stride)
        bs = 1  # batch_size
        vid_path, vid_writer = [None] * bs, [None] * bs

        # Run inference
        if pt and device.type != 'cpu':
            model(
                torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(
                    next(model.parameters())))  # run once
        t0 = time.time()
        for path, img, im0s, vid_cap in dataset:
            if pt:
                img = torch.from_numpy(img).to(device)
                img = img.half() if half else img.float()  # uint8 to fp16/32
            elif onnx:
                img = img.astype('float32')
            img /= 255.0  # 0 - 255 to 0.0 - 1.0
            if len(img.shape) == 3:
                img = img[None]  # expand for batch dim

            # Inference
            t1 = time_sync()
            if pt:
                visualize = increment_path(save_dir / Path(path).stem,
                                           mkdir=True) if visualize else False
                pred = model(img, augment=augment, visualize=visualize)[0]
            elif onnx:
                pred = torch.tensor(
                    session.run([session.get_outputs()[0].name],
                                {session.get_inputs()[0].name: img}))

            # NMS
            pred = non_max_suppression(pred,
                                       conf_thres,
                                       iou_thres,
                                       classes,
                                       agnostic_nms,
                                       max_det=max_det)
            t2 = time_sync()

            # Second-stage classifier (optional)
            if classify:
                pred = apply_classifier(pred, modelc, img, im0s)

            # Process predictions
            bbox_pred = []
            for i, det in enumerate(pred):  # detections per image
                bbox_pred.append(det.cpu().numpy()[:, :-1])
                p, s, im0, frame = path, '', im0s.copy(), getattr(
                    dataset, 'frame', 0)

                p = Path(p)  # to Path
                save_path = str(save_dir / p.name)  # img.jpg
                txt_path = str(save_dir / 'labels' / p.stem) + (
                    '' if dataset.mode == 'image' else f'_{frame}')  # img.txt
                s += '%gx%g ' % img.shape[2:]  # print string
                gn = torch.tensor(im0.shape)[[1, 0, 1,
                                              0]]  # normalization gain whwh
                imc = im0.copy() if save_crop else im0  # for save_crop
                if len(det):
                    # Rescale boxes from img_size to im0 size
                    det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                              im0.shape).round()

                    # Print results
                    for c in det[:, -1].unique():
                        n = (det[:, -1] == c).sum()  # detections per class
                        s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                    # Write results
                    if save_txt:
                        f = open(txt_path + '.txt', 'w')
                    for *xyxy, conf, cls in reversed(det):
                        if save_txt:  # Write to file
                            #xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                            line = (
                                *xyxy, conf
                            )  # if save_conf else (cls, *xywh)  # label format
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                        if save_img or save_crop or view_img:  # Add bbox to image
                            c = int(cls)  # integer class
                            label = None if hide_labels else (
                                names[c]
                                if hide_conf else f'{names[c]} {conf:.2f}')
                            plot_one_box(xyxy,
                                         im0,
                                         label=label,
                                         color=colors(c, True),
                                         line_thickness=line_thickness)
                            if save_crop:
                                save_one_box(xyxy,
                                             imc,
                                             file=save_dir / 'crops' /
                                             names[c] / f'{p.stem}.jpg',
                                             BGR=True)
                    if save_txt:
                        f.close()

                # Print time (inference + NMS)
                print(f'{s}Done. ({t2 - t1:.3f}s)')

                # Stream results
                if view_img:
                    cv2.imshow(str(p), im0)
                    cv2.waitKey(1)  # 1 millisecond

                # Save results (image with detections)
                if save_img:
                    if dataset.mode == 'image':
                        cv2.imwrite(save_path, im0)
                    else:  # 'video' or 'stream'
                        if vid_path[i] != save_path:  # new video
                            vid_path[i] = save_path
                            if isinstance(vid_writer[i], cv2.VideoWriter):
                                vid_writer[i].release(
                                )  # release previous video writer
                            if vid_cap:  # video
                                fps = vid_cap.get(cv2.CAP_PROP_FPS)
                                w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                                h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                            else:  # stream
                                fps, w, h = 30, im0.shape[1], im0.shape[0]
                                save_path += '.mp4'
                            vid_writer[i] = cv2.VideoWriter(
                                save_path, cv2.VideoWriter_fourcc(*'mp4v'),
                                fps, (w, h))
                        vid_writer[i].write(im0)

        if save_txt or save_img:
            s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
            print(f"Results saved to {save_dir}{s}")

        if update:
            strip_optimizer(
                weights)  # update model (to fix SourceChangeWarning)

        print(f'Done. ({time.time() - t0:.3f}s)')
        return bbox_pred