Beispiel #1
0
 def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
     # Add one xyxy box to image with label
     if self.pil or not is_ascii(label):
         self.draw.rectangle(box, width=self.lw, outline=color)  # box
         if label:
             w, h = self.font.getsize(label)  # text width, height
             outside = box[1] - h >= 0  # label fits outside box
             self.draw.rectangle(
                 (box[0], box[1] - h if outside else box[1], box[0] + w + 1,
                  box[1] + 1 if outside else box[1] + h + 1),
                 fill=color,
             )
             # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls')  # for PIL>8.0
             self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font)
     else:  # cv2
         p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
         cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
         if label:
             tf = max(self.lw - 1, 1)  # font thickness
             w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0]  # text width, height
             outside = p1[1] - h - 3 >= 0  # label fits outside box
             p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
             cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA)  # filled
             cv2.putText(self.im,
                         label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
                         0,
                         self.lw / 3,
                         txt_color,
                         thickness=tf,
                         lineType=cv2.LINE_AA)
Beispiel #2
0
 def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
     assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.'
     non_ascii = not is_ascii(example)  # non-latin labels, i.e. asian, arabic, cyrillic
     self.pil = pil or non_ascii
     if self.pil:  # use PIL
         self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
         self.draw = ImageDraw.Draw(self.im)
         self.font = check_pil_font(font='Arial.Unicode.ttf' if non_ascii else font,
                                    size=font_size or max(round(sum(self.im.size) / 2 * 0.035), 12))
     else:  # use cv2
         self.im = im
     self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2)  # line width
Beispiel #3
0
 def __init__(self, imgs, pred, files, times=None, names=None, shape=None):
     super().__init__()
     d = pred[0].device  # device
     gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs]  # normalizations
     self.imgs = imgs  # list of images as numpy arrays
     self.pred = pred  # list of tensors pred[0] = (xyxy, conf, cls)
     self.names = names  # class names
     self.ascii = is_ascii(names)  # names are ascii (use PIL for UTF-8)
     self.files = files  # image filenames
     self.xyxy = pred  # xyxy pixels
     self.xywh = [xyxy2xywh(x) for x in pred]  # xywh pixels
     self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)]  # xyxy normalized
     self.xywhn = [x / g for x, g in zip(self.xywh, gn)]  # xywh normalized
     self.n = len(self.pred)  # number of images (batch size)
     self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3))  # timestamps (ms)
     self.s = shape  # inference BCHW shape
Beispiel #4
0
def plot_one_box(box,
                 im,
                 color=(128, 128, 128),
                 txt_color=(255, 255, 255),
                 label=None,
                 line_width=3,
                 use_pil=False):
    # Plots one xyxy box on image im with label
    assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to plot_on_box() input image.'
    lw = line_width or max(int(min(im.size) / 200), 2)  # line width

    if use_pil or not is_ascii(label):  # use PIL
        im = Image.fromarray(im)
        draw = ImageDraw.Draw(im)
        draw.rectangle(box, width=lw + 1, outline=color)  # plot
        if label:
            font = ImageFont.truetype("Arial.ttf",
                                      size=max(round(max(im.size) / 40), 12))
            txt_width, txt_height = font.getsize(label)
            draw.rectangle(
                [box[0], box[1] - txt_height + 4, box[0] + txt_width, box[1]],
                fill=color)
            draw.text((box[0], box[1] - txt_height + 1),
                      label,
                      fill=txt_color,
                      font=font)
        return np.asarray(im)
    else:  # use OpenCV
        c1, c2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
        cv2.rectangle(im, c1, c2, color, thickness=lw, lineType=cv2.LINE_AA)
        if label:
            tf = max(lw - 1, 1)  # font thickness
            txt_width, txt_height = cv2.getTextSize(label,
                                                    0,
                                                    fontScale=lw / 3,
                                                    thickness=tf)[0]
            c2 = c1[0] + txt_width, c1[1] - txt_height - 3
            cv2.rectangle(im, c1, c2, color, -1, cv2.LINE_AA)  # filled
            cv2.putText(im,
                        label, (c1[0], c1[1] - 2),
                        0,
                        lw / 3,
                        txt_color,
                        thickness=tf,
                        lineType=cv2.LINE_AA)
        return im
Beispiel #5
0
 def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
     # Add one xyxy box to image with label
     if self.pil or not is_ascii(label):
         self.draw.rectangle(box, width=self.lw, outline=color)  # box
         if label:
             w = self.font.getsize(label)[0]  # text width
             self.draw.rectangle([box[0], box[1] - self.fh, box[0] + w + 1, box[1] + 1], fill=color)
             self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls')
     else:  # cv2
         c1, c2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
         cv2.rectangle(self.im, c1, c2, color, thickness=self.lw, lineType=cv2.LINE_AA)
         if label:
             tf = max(self.lw - 1, 1)  # font thickness
             w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0]
             c2 = c1[0] + w, c1[1] - h - 3
             cv2.rectangle(self.im, c1, c2, color, -1, cv2.LINE_AA)  # filled
             cv2.putText(self.im, label, (c1[0], c1[1] - 2), 0, self.lw / 3, txt_color, thickness=tf,
                         lineType=cv2.LINE_AA)
Beispiel #6
0
def run(weights='yolov5s.pt',  # model.pt path(s)
        source='data/images',  # file/dir/URL/glob, 0 for webcam
        imgsz=640,  # inference size (pixels)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        visualize=False,  # visualize features
        update=False,  # update all models
        project='runs/detect',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
        ):
    save_img = not nosave and not source.endswith('.txt')  # save inference images
    webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
        ('rtsp://', 'rtmp://', 'http://', 'https://'))

    # Directories
    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(device)
    half &= device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    w = weights[0] if isinstance(weights, list) else weights
    classify, suffix, suffixes = False, Path(w).suffix.lower(), ['.pt', '.onnx', '.tflite', '.pb', '']
    check_suffix(w, suffixes)  # check weights have acceptable suffix
    pt, onnx, tflite, pb, saved_model = (suffix == x for x in suffixes)  # backend booleans
    stride, names = 64, [f'class{i}' for i in range(1000)]  # assign defaults
    if pt:
        model = attempt_load(weights, map_location=device)  # load FP32 model
        stride = int(model.stride.max())  # model stride
        names = model.module.names if hasattr(model, 'module') else model.names  # get class names
        if half:
            model.half()  # to FP16
        if classify:  # second-stage classifier
            modelc = load_classifier(name='resnet50', n=2)  # initialize
            modelc.load_state_dict(torch.load('resnet50.pt', map_location=device)['model']).to(device).eval()
    elif onnx:
        check_requirements(('onnx', 'onnxruntime'))
        import onnxruntime
        session = onnxruntime.InferenceSession(w, None)
    else:  # TensorFlow models
        check_requirements(('tensorflow>=2.4.1',))
        import tensorflow as tf
        if pb:  # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
            def wrap_frozen_graph(gd, inputs, outputs):
                x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), [])  # wrapped import
                return x.prune(tf.nest.map_structure(x.graph.as_graph_element, inputs),
                               tf.nest.map_structure(x.graph.as_graph_element, outputs))

            graph_def = tf.Graph().as_graph_def()
            graph_def.ParseFromString(open(w, 'rb').read())
            frozen_func = wrap_frozen_graph(gd=graph_def, inputs="x:0", outputs="Identity:0")
        elif saved_model:
            model = tf.keras.models.load_model(w)
        elif tflite:
            interpreter = tf.lite.Interpreter(model_path=w)  # load TFLite model
            interpreter.allocate_tensors()  # allocate
            input_details = interpreter.get_input_details()  # inputs
            output_details = interpreter.get_output_details()  # outputs
            int8 = input_details[0]['dtype'] == np.uint8  # is TFLite quantized uint8 model
    imgsz = check_img_size(imgsz, s=stride)  # check image size
    ascii = is_ascii(names)  # names are ascii (use PIL for UTF-8)

    # Dataloader
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
        bs = len(dataset)  # batch_size
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
        bs = 1  # batch_size
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference
    if pt and device.type != 'cpu':
        model(torch.zeros(1, 3, *imgsz).to(device).type_as(next(model.parameters())))  # run once
    dt, seen = [0.0, 0.0, 0.0], 0
    for path, img, im0s, vid_cap in dataset:
        t1 = time_sync()
        if onnx:
            img = img.astype('float32')
        else:
            img = torch.from_numpy(img).to(device)
            img = img.half() if half else img.float()  # uint8 to fp16/32
        img = img / 255.0  # 0 - 255 to 0.0 - 1.0
        if len(img.shape) == 3:
            img = img[None]  # expand for batch dim
        t2 = time_sync()
        dt[0] += t2 - t1

        # Inference
        if pt:
            visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
            pred = model(img, augment=augment, visualize=visualize)[0]
        elif onnx:
            pred = torch.tensor(session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: img}))
        else:  # tensorflow model (tflite, pb, saved_model)
            imn = img.permute(0, 2, 3, 1).cpu().numpy()  # image in numpy
            if pb:
                pred = frozen_func(x=tf.constant(imn)).numpy()
            elif saved_model:
                pred = model(imn, training=False).numpy()
            elif tflite:
                if int8:
                    scale, zero_point = input_details[0]['quantization']
                    imn = (imn / scale + zero_point).astype(np.uint8)  # de-scale
                interpreter.set_tensor(input_details[0]['index'], imn)
                interpreter.invoke()
                pred = interpreter.get_tensor(output_details[0]['index'])
                if int8:
                    scale, zero_point = output_details[0]['quantization']
                    pred = (pred.astype(np.float32) - zero_point) * scale  # re-scale
            pred[..., 0] *= imgsz[1]  # x
            pred[..., 1] *= imgsz[0]  # y
            pred[..., 2] *= imgsz[1]  # w
            pred[..., 3] *= imgsz[0]  # h
            pred = torch.tensor(pred)
        t3 = time_sync()
        dt[1] += t3 - t2

        # NMS
        pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
        dt[2] += time_sync() - t3

        # Second-stage classifier (optional)
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process predictions
        for i, det in enumerate(pred):  # per image
            seen += 1
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count
            else:
                p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            annotator = Annotator(im0, line_width=line_thickness, pil=not ascii)
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
                        annotator.box_label(xyxy, label, color=colors(c, True))
                        if save_crop:
                            save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)

            # Print time (inference-only)
            print(f'{s}Done. ({t3 - t2:.3f}s)')

            # Stream results
            im0 = annotator.result()
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[i].release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                            save_path += '.mp4'
                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                    vid_writer[i].write(im0)

    # Print results
    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
    print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {colorstr('bold', save_dir)}{s}")
    if update:
        strip_optimizer(weights)  # update model (to fix SourceChangeWarning)