Beispiel #1
0
def get_test_images(test_file, test_folder):

    print("Getting test images...")
    if not isdir(test_folder):
        os.mkdir(test_folder)

    pic_to_faces = OrderedDict()

    # Read in test_file contents
    with open(test_file, "r") as csvfile:
        test_items = DictReader(
            csvfile, fieldnames=['url', 'file_name', 'num_faces', 'md5_hash'])

        for row in test_items:

            test_file_name = join(test_folder, row['file_name'])

            try:

                # File has already been downloaded
                if isfile(test_file_name) and row['md5_hash'] == file_digest(
                        test_file_name):
                    pic_to_faces[test_file_name] = int(row['num_faces'])
                    #print("Verified {0}".format(test_file_name))
                    continue

                # Download file and test hash
                else:
                    if py3:
                        urlretrieve(row['url'], test_file_name)

                    else:
                        response = urlopen(row['url'])
                        with open(test_file_name, "wb") as local_file:
                            local_file.write(response.read())

                    if row['md5_hash'] != file_digest(test_file_name):
                        os.remove(test_file_name)
                        print(
                            "Warning - {0} did not match expected hash".format(
                                test_file_name))
                    else:
                        pic_to_faces[test_file_name] = int(row['num_faces'])
                        #print("Downloaded {0}".format(test_file_name))

            except:
                print("Error - ", exc_info())
                continue

    print("{0} test images verified\n".format(len(pic_to_faces)))
    return pic_to_faces
Beispiel #2
0
def process_image(image_file,
                  margin,
                  min_size,
                  threshold,
                  scale_factor,
                  reduceby,
                  pnet,
                  rnet,
                  onet,
                  verbose=False):

    filename = image_file.split('/')[-1]

    file_content_hash = file_digest(image_file)
    image = cv2.imread(image_file)
    frame_number = -1

    # Find bounding boxes for face chips in this image
    face_locations, num_detections = identify_chips(image, frame_number,
                                                    margin, min_size,
                                                    threshold, scale_factor,
                                                    reduceby, pnet, rnet, onet)

    # Only save pickle if faces were detected
    if num_detections > 0:
        results = (filename, file_content_hash, [face_locations])
        write_out_pickle(filename, results, "/bboxes", "mtcnn", "bboxes")

    if verbose:
        print("{0} face detections in {1}".format(num_detections, filename))
def process_image(image_file,
                  reduceby,
                  prob_thresh,
                  nms_thresh,
                  use_gpu,
                  verbose=False):

    filename = image_file.split('/')[-1]

    file_content_hash = file_digest(image_file)
    image = cv2.imread(image_file)
    frame_number = -1

    # Find bounding boxes for face chips in this image
    face_locations, num_detections = identify_chips(image, frame_number,
                                                    reduceby, prob_thresh,
                                                    nms_thresh, use_gpu)

    # Only save pickle if faces were detected
    if num_detections > 0:
        results = (filename, file_content_hash, [face_locations])
        write_out_pickle(filename, results, "/bboxes", "tinyface", "bboxes")

    if verbose:
        print("{0} face detections in {1}".format(num_detections, filename))
def process_video(image_file, threshold, nms, reduceby, net, every):

    frame_number = 0
    num_detections = 0
    filename = image_file.split('/')[-1]

    #camera = cv2.VideoCapture(image_file)

    #capture_length = int(camera.get(cv2.CAP_PROP_FRAME_COUNT))
    capture_length = get_movie_length(image_file)
    progress = tqdm(total=capture_length)

    file_content_hash = file_digest(image_file)
    combined_face_locations = list()
    keep_going = True
    first = True

    while keep_going:

        if not first:
            if (every + frame_number) > capture_length:
                keep_going = False
                progress.close()
                break
            frame_number += every
            #camera.set(1, frame_number)
            progress.update(every)
        else:
            first = False

        #keep_going, image = camera.read()
        keep_going, image = get_frame_inefficient(image_file, frame_number)

        # only face detect every once in a while
        progress.set_description(
            'Processing video: {0} detections: {1}'.format(
                filename[0:30] + "...", num_detections))
        progress.refresh()

        # verify that there is a video frame to process
        if image is None:
            progress.refresh()
            progress.write('end of capture:IMG')
            progress.close()
            break
        if frame_number > capture_length:
            progress.refresh()
            progress.write('end of capture:Length')
            progress.close()
            break
        if not keep_going:
            progress.refresh()
            progress.write('end of capture:camera.read')
            progress.close()
            break

        # Find bounding boxes for face chips in this frame
        face_locations, detections = identify_chips(image, frame_number,
                                                    threshold, nms, reduceby,
                                                    net)
        if detections > 0:
            combined_face_locations += [face_locations]
            num_detections += detections

    # Only save pickle if faces were detected
    if num_detections > 0:
        results = (filename, file_content_hash, combined_face_locations)
        write_out_pickle(filename, results, "/bboxes", "frcnn", "bboxes")
def main(jitters=1, tolerance=0.6, chip_size=160, verbose=False):

    # Gather file names
    files = [item for item in glob.glob(
        '/bboxes/*') if not os.path.isdir(item)]

    if verbose:
        durations = list()
        kickoff = time()

    for f in files:

        print('Processing:', f.split('/')[-1])
        filename, file_content_hash, bounding_boxes = pickle.load(
            open(f, "rb"))
        file_with_path = join('/media', filename)

        # Verify original file exists on disk and has same content hash
        if os.path.isfile(file_with_path) and file_digest(
                file_with_path) == file_content_hash:
            if len(bounding_boxes) > 0:
                # only allow verbose flag for images
                if verbose and bounding_boxes[0][0] == -1:
                    start = time()
                    extract_chips(
                        filename,
                        bounding_boxes,
                        chip_size,
                        file_content_hash,
                        tolerance,
                        jitters,
                        verbose)
                    duration = time() - start
                    durations.append(duration)
                    print("{0} seconds to process {1}\n".format(
                        '%.3f' % duration, f.split('/')[-1]))
                else:
                    extract_chips(
                        filename,
                        bounding_boxes,
                        chip_size,
                        file_content_hash,
                        tolerance,
                        jitters)

            else:
                print("There were no faces detected in {0}".format(f))
        else:
            print(
                "\tWarning - {0} has bounding box file in /bboxes but was not found in /media.\n".format(filename))

        sys.stdout.flush()
        sys.stderr.flush()

    if verbose and len(durations) > 0:
        average = sum(durations) / len(durations)
        print(
            "\nAverage elapsed time to vectorize faces in an image = {0}".format(
                '%.3f' %
                average))
        print(
            "Total time to vectorize faces in {0} images = {1}".format(
                len(durations), '%.3f' %
                (time() - kickoff)))
Beispiel #6
0
def get_iou_images(iou_url, test_folder, num_test_images=20, seed=41):

    print("Downloading list of test images...")
    if not isdir(test_folder):
        os.mkdir(test_folder)

    pic_to_bbox = OrderedDict()

    # Go get the iou_url file
    iou_file_name = "../test_data/iou_test_file.txt"
    try:
        if py3:
            urlretrieve(iou_url, iou_file_name)
        else:
            response = urlopen(iou_url)
            with open(iou_file_name, "wb") as local_file:
                local_file.write(response.read())
    except:
        print("Error retrieving {0} - {1}".format(iou_url, exc_info()))
        quit()

    # Read in iou_file_name contents
    with open(iou_file_name, "r") as csvfile:
        iou_items = DictReader(
            csvfile,
            fieldnames=['person', 'imagenum', 'url', 'rect', 'md5_hash'],
            delimiter='\t')
        marker = 0
        candidate_list = list()
        for item in iou_items:
            # Skip first two lines of header info
            if item['md5_hash'] is None:
                continue
            candidate_list.append(item)

        # Sample for variety of faces
        random.seed(seed)
        candidate_list = random.sample(candidate_list, num_test_images * 20)

        print("Looking for previously downloaded test images...")
        pop_list = list()
        for i in range(len(candidate_list)):
            test_file_name = join(
                test_folder, candidate_list[i]['person'].replace(" ", "") +
                candidate_list[i]['imagenum'] + ".iou")
            if isfile(test_file_name) and candidate_list[i][
                    'md5_hash'] == file_digest(test_file_name):
                bbox = [
                    int(coordinate)
                    for coordinate in candidate_list[i]['rect'].split(",")
                ]
                pic_to_bbox[test_file_name] = bbox
                pop_list.append(i)
        # Remove already downloaded files from candidate_list
        for index_to_pop in pop_list:
            candidate_list.pop(index_to_pop)

        print("Downloading test images (slow)...")
        for row in candidate_list:

            test_file_name = join(
                test_folder,
                row['person'].replace(" ", "") + row['imagenum'] + ".iou")

            try:

                # File has already been downloaded
                #if isfile(test_file_name) and row['md5_hash'] == file_digest(test_file_name):
                #    bbox = [int(coordinate) for coordinate in row['rect'].split(",")]
                #    pic_to_bbox[test_file_name] = bbox
                #print("Verified {0}".format(test_file_name))
                #    continue

                # Download file and test hash
                #else:
                if py3:
                    urlretrieve(row['url'], test_file_name)
                else:
                    response = urlopen(row['url'])
                    with open(test_file_name, "wb") as local_file:
                        local_file.write(response.read())

                if row['md5_hash'] != file_digest(test_file_name):
                    os.remove(test_file_name)
                    #print("Warning - {0} did not match expected hash".format(test_file_name))
                else:
                    bbox = [
                        int(coordinate)
                        for coordinate in row['rect'].split(",")
                    ]
                    pic_to_bbox[test_file_name] = bbox
                    #print("Downloaded {0}".format(test_file_name))

            except:
                #print("Error - ", exc_info())
                continue

            # Check is enough test images downloaded
            if len(pic_to_bbox) % 5 == 0 and len(pic_to_bbox) > marker:
                print("{0} of {1} test images downloaded and verified".format(
                    len(pic_to_bbox), num_test_images))
                marker = len(pic_to_bbox)
            if len(pic_to_bbox) == num_test_images:
                break

    #print("{0} test images verified\n".format(len(pic_to_bbox)))
    return pic_to_bbox
def main(model,
         dlibFacePredictor,
         use_gpu=False,
         tolerance=0.6,
         chip_size=96,
         verbose=False):

    print("Loading Facenet Model...")
    sys.stdout.flush()
    sys.stderr.flush()

    # Load the Facenet model
    if use_gpu:
        net = TorchNeuralNet(model, chip_size, cuda=True)
    else:
        net = TorchNeuralNet(model, chip_size, cuda=False)

    # Load dlib image aligner
    aligner = AlignDlib(dlibFacePredictor)

    # Gather file names
    files = [
        item for item in glob.glob('/bboxes/*') if not os.path.isdir(item)
    ]

    if verbose:
        durations = list()
        kickoff = time()

    for f in files:

        print('Processing:', f.split('/')[-1])
        filename, file_content_hash, bounding_boxes = pickle.load(open(
            f, "rb"))
        file_with_path = join('/media', filename)

        # Verify original file exists on disk and has same content hash
        if os.path.isfile(file_with_path) and file_digest(
                file_with_path) == file_content_hash:
            if len(bounding_boxes) > 0:
                # only allow verbose on images
                if verbose and bounding_boxes[0][0] == -1:
                    start = time()
                    extract_chips(filename, bounding_boxes, chip_size,
                                  file_content_hash, tolerance, net, aligner,
                                  verbose)
                    duration = time() - start
                    durations.append(duration)
                    print("{0} seconds to process {1}\n".format(
                        '%.3f' % duration,
                        f.split('/')[-1]))
                else:
                    extract_chips(filename, bounding_boxes, chip_size,
                                  file_content_hash, tolerance, net, aligner)
            else:
                print("There were no faces detected in {0}".format(f))
        else:
            print(
                "\tWarning - {0} has bounding box file in /bboxes but was not found in /media.\n"
                .format(filename))

        sys.stdout.flush()
        sys.stderr.flush()

    if verbose and len(durations) > 0:
        average = sum(durations) / len(durations)
        print("\nAverage elapsed time to vectorize faces in an image = {0}".
              format('%.3f' % average))
        print("Total time to vectorize faces in {0} images = {1}".format(
            len(durations), '%.3f' % (time() - kickoff)))
def main(model,
         use_gpu=False,
         gpu_memory_fraction=0.8,
         tolerance=0.6,
         chip_size=160,
         verbose=False):

    if use_gpu:
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                                log_device_placement=False))
    else:
        sess = tf.Session()

    # Load the model
    print("Loading Facenet Model...")
    sys.stdout.flush()
    sys.stderr.flush()
    facenet.load_model(model, sess)
    # Get input and output tensors
    images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
    embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
    phase_train_placeholder = tf.get_default_graph().get_tensor_by_name(
        "phase_train:0")

    # Gather files names
    files = [
        item for item in glob.glob('/bboxes/*') if not os.path.isdir(item)
    ]

    if verbose:
        durations = list()
        kickoff = time()

    for f in files:

        print('Processing:', f.split('/')[-1])
        filename, file_content_hash, bounding_boxes = pickle.load(open(
            f, "rb"))
        file_with_path = join('/media', filename)
        # Verify original file exists on disk and has same content hash
        if os.path.isfile(file_with_path) and file_digest(
                file_with_path) == file_content_hash:
            if len(bounding_boxes) > 0:
                if verbose and bounding_boxes[0][0] == -1:
                    start = time()
                    extract_chips(filename, bounding_boxes, chip_size,
                                  file_content_hash, tolerance,
                                  images_placeholder, phase_train_placeholder,
                                  embeddings, sess, verbose)
                    duration = time() - start
                    durations.append(duration)
                    print("{0} seconds to process {1}\n".format(
                        '%.3f' % duration,
                        f.split('/')[-1]))
                else:
                    extract_chips(filename, bounding_boxes, chip_size,
                                  file_content_hash, tolerance,
                                  images_placeholder, phase_train_placeholder,
                                  embeddings, sess)
            else:
                print("There were no faces detected in {0}".format(f))
        else:
            print(
                "\tWarning - {0} has bounding box file in /bboxes but was not found in /media.\n"
                .format(filename))

        sys.stdout.flush()
        sys.stderr.flush()

    sess.close()

    if verbose and len(durations) > 0:
        average = sum(durations) / len(durations)
        print("\nAverage elapsed time to vectorize faces in an image = {0}".
              format('%.3f' % average))
        print("Total time to vectorize faces in {0} images = {1}".format(
            len(durations), '%.3f' % (time() - kickoff)))