def read_data(self, list_of_videos):
     for vid in list_of_videos:
         file_ptr = open(vid, 'r') 
         content = file_ptr.read().split('\n')[:-1] 
         
         obs_perc = [.1, .2, .3, .5]
 
         for i in range(len(obs_perc)):
             observed_content = content[:int(obs_perc[i]*len(content))]
             input_vid = encode_content(observed_content, self.nRows, self.nCols, self.actions_dict)
             input_vid = np.reshape(input_vid, [self.nRows, self.nCols, 1])
             
             target_content = content[int(obs_perc[i]*len(content)):int((0.5+obs_perc[i])*len(content))]
             target = encode_content(target_content, self.nRows, self.nCols, self.actions_dict)
             target = np.reshape(target, [self.nRows, self.nCols, 1])
             example = [input_vid, target]
             self.list_of_examples.append(example)
     random.shuffle(self.list_of_examples) 
     return
 observed_content=[]
 vid_len = 0
 if args.input_type == "gt":
     file_ptr = open(vid, 'r') 
     content = file_ptr.read().split('\n')[:-1] 
     vid_len = len(content)
     
 for obs_p in obs_percentages:
     if args.input_type == "decoded":
         file_ptr = open(args.decoded_path+"/obs"+str(obs_p)+"/"+f_name+'.txt', 'r') 
         observed_content = file_ptr.read().split('\n')[:-1]
         vid_len = int(len(observed_content)/obs_p)
     elif args.input_type == "gt":
         observed_content = content[:int(obs_p*vid_len)]
     
     input_x = encode_content(observed_content, args.nRows, nClasses, actions_dict)
     input_x = [np.reshape(input_x, [args.nRows, nClasses, 1])]
     
     with tf.Session() as sess:
         label_seq, length_seq = model.predict(sess, model_restore_path, input_x, args.sigma, actions_dict)
         
     recognition = []
     for i in range(len(label_seq)):
         recognition = np.concatenate((recognition, [label_seq[i]]*int(0.5*vid_len*length_seq[i]/args.nRows)))
     recognition = np.concatenate((observed_content,recognition))
     diff = int((0.5+obs_p)*vid_len)-len(recognition)
     for i in range(diff):
         recognition = np.concatenate((recognition, [label_seq[-1]]))
     #write results to file
     for pred_p in pred_percentages:
         path=args.results_save_path+"/obs"+str(obs_p)+"-pred"+str(pred_p)