Beispiel #1
0
    def get_move(self, board):
        current_depth = 0
        # possible_moves = [move for move in board.legal_moves]
        # shuffle(possible_moves)
        possible_moves = get_possible_moves(board,
                                            self.color, [],
                                            0,
                                            history=self.history,
                                            trans_table=self.trans_table)
        best_move = None
        best_score = float('-inf')

        for move in possible_moves:
            board.push_uci(move.uci())

            if board.is_checkmate() and board.turn != self.color:
                return move

            h = ttu.hash_(board)
            score = self.alpha_beta(board, self.heuristic, float('-inf'),
                                    float('inf'), False, current_depth + 1,
                                    self.maximum_depth)
            self.trans_table[h] = score

            board.pop()

            if score > best_score:
                best_score = score
                best_move = move

        # print("AlphaBeta:",best_score)
        print("Move made by AI:", best_move.uci())
        return best_move
Beispiel #2
0
    def alpha_beta(self, board, heuristic, alpha, beta, max_turn, depth, best,
                   pline):
        original_best = best[0]

        if depth == 0 or board.is_game_over():
            curr_score = heuristic(board, self.color, max_turn)
            if curr_score > best[0]:
                pline.clear()
                best.clear()
                best.append(curr_score)
                return curr_score
            else:
                return best[0]

        possible_moves = get_possible_moves(board,
                                            max_turn,
                                            self.pv_line,
                                            self.maximum_depth - depth,
                                            history=self.history)

        best_score = float('-inf') if max_turn else float('inf')
        for move in possible_moves:
            board.push_uci(move.uci())

            score = self.alpha_beta(board, heuristic, alpha, beta,
                                    not max_turn, depth - 1, best, pline)

            if original_best != best[0]:
                original_best = best[0]
                pline.append(board.pop())
            else:
                board.pop()

            if max_turn and score > best_score:
                best_score = score
                if best_score >= beta:
                    if not board.is_capture(move):
                        piece = board.piece_at(move.from_square)
                        self.history[max_turn][piece.piece_type][
                            move.to_square] += pow(2, depth)
                    return best_score
                alpha = max(alpha, best_score)

            if not max_turn and score < best_score:
                best_score = score
                if best_score <= alpha:
                    if not board.is_capture(move):
                        piece = board.piece_at(move.from_square)
                        self.history[max_turn][piece.piece_type][
                            move.to_square] += pow(2, depth)
                    return best_score
                beta = min(beta, best_score)

        return best_score
Beispiel #3
0
    def alpha_beta(self, board, heuristic, alpha, beta, max_turn,
                   current_depth, maximum_depth):

        if current_depth == maximum_depth or board.is_game_over():
            return heuristic(board, self.color, max_turn)

        # captures = mvvlva(board, self.color)
        # moves = [move for move in board.legal_moves if move not in captures]
        # shuffle(moves)
        # possible_moves = captures + moves

        possible_moves = get_possible_moves(board,
                                            max_turn, [],
                                            0,
                                            history=self.history)

        best_score = float('-inf') if max_turn else float('inf')
        for move in possible_moves:
            board.push_uci(move.uci())
            score = self.alpha_beta(board, heuristic, alpha, beta,
                                    not max_turn, current_depth + 1,
                                    maximum_depth)
            board.pop()

            if max_turn and score > best_score:
                best_score = score
                if best_score >= beta:
                    if not board.is_capture(move):
                        piece = board.piece_at(move.from_square)
                        self.history[max_turn][piece.piece_type][
                            move.to_square] += pow(2, current_depth)
                    return best_score
                alpha = max(alpha, best_score)

            if not max_turn and score < best_score:
                best_score = score
                if best_score <= alpha:
                    if not board.is_capture(move):
                        piece = board.piece_at(move.from_square)
                        self.history[max_turn][piece.piece_type][
                            move.to_square] += pow(2, current_depth)
                    return best_score
                beta = min(beta, best_score)

        return best_score
Beispiel #4
0
    def get_move(self, board):
        """
        Top level function for alpha_beta
        :param board: Board object
        :return: returns a Move object to be used in chess_game.py
        """
        current_depth = 0
        # possible_moves = [move for move in board.legal_moves]
        # shuffle(possible_moves)
        possible_moves = get_possible_moves(board,
                                            True,
                                            self.pv_line,
                                            current_depth,
                                            history=self.history)
        best_move = None
        best_score = float('-inf')
        score_array = [best_score]

        for move in possible_moves:
            board.push_uci(move.uci())

            if board.is_checkmate() and board.turn != self.color:
                return move

            score = self.alpha_beta(board, self.heuristic, float('-inf'),
                                    float('inf'), False,
                                    self.maximum_depth - 1, score_array)

            board.pop()

            if score > best_score:
                best_score = score
                best_move = move

        # print("AlphaBeta:",best_score)
        #self.pv_line.reverse()
        print(self.pv_line)
        print("Combined: ", best_move)
        return best_move
Beispiel #5
0
    def get_move(self, board):
        current_depth = 0
        # possible_moves = [move for move in board.legal_moves]
        # shuffle(possible_moves)
        possible_moves = get_possible_moves(board,
                                            True,
                                            self.pv_line,
                                            current_depth,
                                            history=self.history)
        best_move = None
        best_score = float('-inf')
        score_array = [best_score]

        for move in possible_moves:
            board.push_uci(move.uci())

            if board.is_checkmate() and board.turn != self.color:
                return move

            h = ttu.hash_(board)
            score = self.trans_table.get(h)
            if score is None:
                score = self.alpha_beta(board, self.heuristic, float('-inf'),
                                        float('inf'), False,
                                        self.maximum_depth - 1, score_array,
                                        self.pv_line)
                self.trans_table[h] = score
            board.pop()

            if score > best_score:
                best_score = score
                best_move = move

        # print("AlphaBeta:",best_score)
        self.pv_line.reverse()
        # print(self.pv_line)
        return best_move
Beispiel #6
0
    def alpha_beta(self, board, heuristic, alpha, beta, max_turn, depth, best):
        """
        Same as Alpha Beta from PV Agent
        :param board: chess board
        :param heuristic: heuristic function
        :param alpha: alpha value
        :param beta: beta value
        :param max_turn: maximum depth you wanna go to
        :param depth: current depth
        :param best: best score
        :return: best move
        """

        original_best = best[0]

        if depth == 0 or board.is_game_over():
            curr_score = heuristic(board, self.color, max_turn)
            if curr_score > best[0]:
                self.pv_line.clear()
                best.clear()
                best.append(curr_score)
                return curr_score
            else:
                return curr_score

        possible_moves = get_possible_moves(board,
                                            max_turn,
                                            self.pv_line,
                                            self.maximum_depth - depth,
                                            history=self.history)

        best_score = float('-inf') if max_turn else float('inf')
        for move in possible_moves:
            board.push_uci(move.uci())
            score = self.alpha_beta(board, heuristic, alpha, beta,
                                    not max_turn, depth - 1, best)

            if original_best != best[0]:
                original_best = best[0]
                self.pv_line.insert(0, board.pop())
            else:
                board.pop()

            if max_turn and score > best_score:
                best_score = score
                if best_score >= beta:
                    if not board.is_capture(move):
                        piece = board.piece_at(move.from_square)
                        self.history[max_turn][piece.piece_type][
                            move.to_square] += pow(2, depth)
                    return best_score
                alpha = max(alpha, best_score)

            if not max_turn and score < best_score:
                best_score = score
                if best_score <= alpha:
                    if not board.is_capture(move):
                        piece = board.piece_at(move.from_square)
                        self.history[max_turn][piece.piece_type][
                            move.to_square] += pow(2, depth)
                    return best_score
                beta = min(beta, best_score)

        return best_score