def process_func(self, example_line): """Process the single example line and return data Default behavior, assumes each line is the path to a single image. This is used to train a VAE. """ #return imresize(imread(example_line), [256, 256]) return imread(example_line)
def images_paths(self, set): origin = 'https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/horse2zebra.zip' origin_file_name = os.path.basename(origin) download_folder = os.path.join(DATA_FOLDER, 'horse2zebra') download_path = os.path.join(download_folder, origin_file_name) download(origin, download_path) extract_path = extract_all(download_path) extract_path = os.path.join(extract_path, set + self.name) images_paths = glob(os.path.join(extract_path, '*.jpg')) final_images_paths = [] for image_path in images_paths: image = imread(image_path) if image.shape != self.image_shape: msg = '{} has wrong shape {}. It should be {}. Removing file' print(msg.format(image_path, image.shape, self.image_shape)) os.remove(image_path) else: final_images_paths.append(image_path) return np.array(final_images_paths)
if ckpt_path is None: raise Exception('No checkpoint!') else: print('Copy variables from % s' % ckpt_path) #--test--# b_list = glob('./Datasets/' + dataset + '/bounding_box_train-Market/*.jpg') a_list = glob('./Datasets/' + dataset + '/bounding_box_train-Duke/*.jpg') b_save_dir = './test_predictions/' + dataset + '_spgan' + '/bounding_box_train_market2duke/' a_save_dir = './test_predictions/' + dataset + '_spgan' + '/bounding_box_train_duke2market/' utils.mkdir([a_save_dir, b_save_dir]) for i in range(len(a_list)): a_real_ipt = im.imresize(im.imread(a_list[i]), [crop_size, crop_size]) a_real_ipt.shape = 1, crop_size, crop_size, 3 a2b_opt = sess.run(a2b, feed_dict={a_real: a_real_ipt}) a_img_opt = a2b_opt img_name = os.path.basename(a_list[i]) img_name = 'market_' + img_name # market_style im.imwrite(im.immerge(a_img_opt, 1, 1), a_save_dir + img_name) print('Save %s' % (a_save_dir + img_name)) for i in range(len(b_list)): b_real_ipt = im.imresize(im.imread(b_list[i]), [crop_size, crop_size]) b_real_ipt.shape = 1, crop_size, crop_size, 3 b2a_opt = sess.run(b2a, feed_dict={b_real: b_real_ipt}) b_img_opt = b2a_opt img_name = os.path.basename(b_list[i])
def transform(self, data): image = imread(data[0]) return normalize(image)
def process_func(self, example_line): return imread(example_line)