Beispiel #1
0
def main(args=None):
    # parse arguments
    if args is None:
        args = sys.argv[1:]
    args = parse_args(args)

    # optionally load config parameters
    if args.config:
        args.config = read_config_file(args, 'debug')

    # make sure keras is the minimum required version
    check_keras_version()

    # create the generator
    generator = create_generator(args)

    # optionally load anchor parameters
    anchor_params = None
    if args.config and 'anchor_parameters' in args.config:
        anchor_params = parse_anchor_parameters(args.config)

    # create the display window
    #cv2.namedWindow('Image', cv2.WINDOW_NORMAL)

    if args.loop:
        while run(generator, args, anchor_params=anchor_params):
            pass
    else:
        run(generator, args, anchor_params=anchor_params)
Beispiel #2
0
def main(args=None):
    # parse arguments
    if args is None:
        args = sys.argv[1:]
    args = parse_args(args)

    # make sure keras is the minimum required version
    check_keras_version()

    # optionally choose specific GPU
    if args.gpu:
        os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    keras.backend.tensorflow_backend.set_session(get_session())

    # make save path if it doesn't exist
    if args.save_path is not None and not os.path.exists(args.save_path):
        os.makedirs(args.save_path)

    # create the generator
    generator = create_generator(args)

    # load the model
    print('Loading model, this may take a second...')
    model = keras.models.load_model(args.model, custom_objects=custom_objects)

    # print model summary
    print(model.summary())

    loss = {'regression': losses.smooth_l1(), 'classification': losses.focal()}

    # start evaluation
    average_precisions = evaluate(
        generator,
        model,
        # loss,
        iou_threshold=args.iou_threshold,
        score_threshold=args.score_threshold,
        max_detections=args.max_detections,
        save_path=args.save_path)

    # print evaluation
    for label, average_precision in average_precisions.items():
        print(generator.label_to_name(label),
              '{:.4f}'.format(average_precision))
    print('mAP: {:.4f}'.format(
        sum(average_precisions.values()) / len(average_precisions)))
Beispiel #3
0
def main(args=None):
    # parse arguments
    if args is None:
        args = sys.argv[1:]
    args = parse_args(args)

    # make sure keras is the minimum required version
    check_keras_version()

    # optionally choose specific GPU
    if args.gpu:
        os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    keras.backend.tensorflow_backend.set_session(get_session())

    # create the model
    print('Loading model, this may take a second...')
    model = keras.models.load_model(args.model, custom_objects=custom_objects)

    # create a generator for testing data
    test_generator = CocoGenerator(args.coco_path, args.set)

    evaluate_coco(test_generator, model, args.score_threshold)
Beispiel #4
0
def main(config_file=None):
    cwd = os.getcwd()

    # parse configuration file
    if config_file is None:
        config_file = sys.argv[-1]
        config_file = os.path.join(cwd, config_file)
    config_file_name = config_file.split('/')[-1]
    configs = parse_config(config_file)

    # save config file
    if configs['Train']['save_configs']:
        # confirm save dir
        config_save_path = 'logs/' + configs['Name']
        config_save_path = os.path.join(cwd, config_save_path)
        if not os.path.exists(config_save_path):
            os.mkdir(os.path.join(cwd, config_save_path))
        # copy config file
        config_dst_name = configs['Name'] + '.json'
        config_file_dst = os.path.join(config_save_path, config_dst_name)
        shutil.copy(config_file, config_file_dst)

    # make sure keras is the minimum required version
    check_keras_version()

    # optionally choose specific GPU
    if configs['Train']['gpu']:
        os.environ['CUDA_VISIBLE_DEVICES'] = configs['Train']['gpu']
    keras.backend.tensorflow_backend.set_session(get_session())

    # create the generators
    train_generator, validation_generator = create_generators(configs)

    # create the model
    if configs['Train']['load_snapshot'] is not None:
        print('Loading model, this may take a second...')
        model = models.load_model(configs['Train']['load_snapshot'],
                                  backbone=configs['Train']['backbone'])
        training_model = prediction_model = model
    else:
        weights = configs['Train']['weights']
        # default to imagenet if nothing else is specified
        if weights is None and configs['Train']['imagenet_weights']:
            weights = models.download_imagenet(configs['Train']['backbone'])

        print('Creating model, this may take a second...')
        backbone = configs['Train']['backbone']
        num_classes = train_generator.num_classes()
        multi_gpu = configs['Train']['multi_gpu']
        freeze_backbone = configs['Train']['freeze_backbone']

        modifier = freeze_model if freeze_backbone else None

        # Keras recommends initialising a multi-gpu model on the CPU to ease weight sharing, and to prevent OOM errors.
        # optionally wrap in a parallel model
        if multi_gpu > 1:
            with tf.device('/cpu:0'):
                retinanet = models.retinanet_backbone(
                    configs['Train']['backbone'])(num_classes,
                                                  backbone=backbone,
                                                  modifier=modifier)
                model = model_with_weights(retinanet,
                                           weights=weights,
                                           skip_mismatch=True)
            training_model = multi_gpu_model(model, gpus=multi_gpu)
        else:
            retinanet = models.retinanet_backbone(
                configs['Train']['backbone'])(num_classes,
                                              backbone=backbone,
                                              modifier=modifier)
            training_model = model = model_with_weights(retinanet,
                                                        weights=weights,
                                                        skip_mismatch=True)

        # make prediction model
        prediction_model = retinanet_bbox(model=model,
                                          anchor_param=configs['Anchors'])

        # compile model
        subnet_loss = {
            'regression': losses.smooth_l1(),
            'classification': losses.focal()
        }

        # run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        # run_metadata = tf.RunMetadata()

        if configs['Train']['lr_multiplier_layer']:
            optimizer = AdamWithLRMult(
                lr=configs['Train']['init_lr'],
                lr_multipliers=configs['Train']['lr_multiplier_layer'],
                debug_verbose=False,
                clipnorm=0.001)
        else:
            optimizer = keras.optimizers.adam(configs['Train']['init_lr'],
                                              clipnorm=0.001)

        training_model.compile(loss=subnet_loss, optimizer=optimizer)

        # training_model.compile(loss=subnet_loss, optimizer=keras.optimizers.adam(configs['Train']['init_lr'], clipnorm=0.001))

    # this lets the generator compute backbone layer shapes using the actual backbone model
    if 'vgg' in configs['Train']['backbone'] or 'densenet' in configs['Train'][
            'backbone']:
        compute_anchor_targets = functools.partial(
            anchor_targets_bbox, shapes_callback=make_shapes_callback(model))
        train_generator.compute_anchor_targets = compute_anchor_targets
        if validation_generator is not None:
            validation_generator.compute_anchor_targets = compute_anchor_targets

    # create the callbacks
    callbacks = create_callbacks(
        model,
        training_model,
        prediction_model,
        validation_generator,
        configs,
    )

    # start training
    training_model.fit_generator(
        train_generator,
        validation_data=validation_generator,
        validation_steps=39,
        steps_per_epoch=configs['Train']['steps'],
        epochs=configs['Train']['epochs'],
        verbose=1,
        callbacks=callbacks,
    )
Beispiel #5
0
def main(args=None):
    # parse arguments
    if args is None:
        args = sys.argv[1:]
    args = parse_args(args)

    # create object that stores backbone information
    backbone = models.backbone(args.backbone)

    # make sure keras is the minimum required version
    check_keras_version()

    # optionally choose specific GPU
    if args.gpu:
        os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    keras.backend.tensorflow_backend.set_session(get_session())

    # optionally load config parameters
    if args.config:
        args.config = read_config_file(args.config)

    # create the generators
    train_generator, validation_generator = create_generators(args, backbone.preprocess_image)

    # create the model
    if args.snapshot is not None:
        print('Loading model, this may take a second...')
        # model = models.load_model(args.snapshot, backbone_name=args.backbone)
        model = model_with_weights(backbone.fsaf(train_generator.num_classes(),
                                                 modifier=None),
                                   weights=args.snapshot, skip_mismatch=True)
        training_model = model
        prediction_model = fsaf_bbox(model=model)
        # compile model
        training_model.compile(
            loss={
                'cls_loss': lambda y_true, y_pred: y_pred,
                'regr_loss': lambda y_true, y_pred: y_pred,
            },
            # optimizer=keras.optimizers.sgd(lr=1e-5, momentum=0.9, nesterov=True, decay=1e-6)
            optimizer=keras.optimizers.adam(lr=1e-5)
        )
    else:
        weights = args.weights
        # default to imagenet if nothing else is specified
        if weights is None and args.imagenet_weights:
            weights = backbone.download_imagenet()

        print('Creating model, this may take a second...')
        model, training_model, prediction_model = create_models(
            # backbone_retinanet=backbone.retinanet,
            backbone_retinanet=backbone.fsaf,
            num_classes=train_generator.num_classes(),
            weights=weights,
            num_gpus=args.num_gpus,
            freeze_backbone=args.freeze_backbone,
            lr=args.lr,
            config=args.config
        )

    # print model summary
    # print(model.summary())

    # this lets the generator compute backbone layer shapes using the actual backbone model
    if 'vgg' in args.backbone or 'densenet' in args.backbone:
        train_generator.compute_shapes = make_shapes_callback(model)
        if validation_generator:
            validation_generator.compute_shapes = train_generator.compute_shapes

    # create the callbacks
    callbacks = create_callbacks(
        model,
        training_model,
        prediction_model,
        validation_generator,
        args,
    )

    if not args.compute_val_loss:
        validation_generator = None

    # start training
    return training_model.fit_generator(
        generator=train_generator,
        steps_per_epoch=args.steps,
        initial_epoch=9,
        epochs=args.epochs,
        verbose=1,
        callbacks=callbacks,
        workers=args.workers,
        use_multiprocessing=args.multiprocessing,
        max_queue_size=args.max_queue_size,
        validation_data=validation_generator
    )
Beispiel #6
0
def main(args=None):
    # parse arguments
    if args is None:
        args = sys.argv[1:]
    args = parse_args(args)

    # optionally load config parameters
    if args.config:
        args.config = read_config_file(args, 'evaluation')
        #print("----------------------------------")
        #print("ARGUMENTS IN CONFIG FILE:")
        #for sec in args.config.sections():
        #print(sec, "=", dict(args.config.items(sec)))
        #print("----------------------------------")

    # for arg in vars(args):
    #     print(arg, "=", getattr(args, arg))
    # exit()

    # make sure keras is the minimum required version
    check_keras_version()

    # optionally choose specific GPU
    if args.gpu:
        os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    keras.backend.tensorflow_backend.set_session(get_session())

    # make save path if it doesn't exist
    if args.save_path is not None and not os.path.exists(args.save_path):
        os.makedirs(args.save_path)

    # create the generator
    generator = create_generator(args)

    # optionally load anchor parameters
    anchor_params = None
    if args.config and 'anchor_parameters' in args.config:
        anchor_params = parse_anchor_parameters(args.config)

    # load the model
    print('Loading model, this may take a second...')
    model = models.load_model(args.model, backbone_name=args.backbone)

    # optionally convert the model
    if args.convert_model:
        model = models.convert_model(model, anchor_params=anchor_params)

    # print model summary
    # print(model.summary())

    # layer_outputs = []
    # layer_names = ['res2c_relu',                # C2
    #                'res3b3_relu',               # C3
    #                'res4b22_relu',              # C4
    #                'P2',                        # P2
    #                'P3',                        # P3
    #                'P4',                        # P4
    #                # 'regression_submodel',       # Subreg
    #                # 'classification_submodel',   # SubClas
    #                'regression',                # Regression
    #                'classification']            # Classification
    #
    # for layer in model.layers:
    #     if layer.name in layer_names:
    #         print('------------------------------------------------------------------------------------------------------------------')
    #         print('Layer found: ', layer.name)
    #         print('\tOutput:', layer.output)
    #         print('------------------------------------------------------------------------------------------------------------------')
    #         layer_outputs.append(layer.output)
    #
    # image = preprocess_image(generator.load_image(0))
    # image, scale = resize_image(image, args.image_min_side, args.image_max_side)
    #
    # activation_model = keras.Model(inputs=model.input, outputs=layer_outputs)
    # activations = activation_model.predict(np.expand_dims(image, axis=0))
    #
    # def display_activation(activations, col_size, row_size, act_index):
    #     activation = activations[act_index]
    #     activation_index=0
    #     fig, ax = plt.subplots(row_size, col_size, figsize=(row_size*2.5,col_size*1.5))
    #     for row in range(0,row_size):
    #         for col in range(0,col_size):
    #             ax[row][col].imshow(activation[0, :, :, activation_index], cmap='gray')
    #             activation_index += 1
    #             plt.savefig('layer_{}.png'.format(layer_names[act_index]))
    #
    # display_activation(activations, 8, 8, 0)
    # display_activation(activations, 8, 8, 1)
    # display_activation(activations, 8, 8, 2)
    # display_activation(activations, 8, 8, 3)
    # display_activation(activations, 8, 8, 4)
    # display_activation(activations, 8, 8, 5)
    #
    # exit()

    # start evaluation
    if args.dataset_type == 'coco':
        from ..utils.coco_eval import evaluate_coco
        evaluate_coco(generator, model, args.score_threshold)
    else:
        average_precisions = evaluate(generator,
                                      model,
                                      iou_threshold=args.iou_threshold,
                                      score_threshold=args.score_threshold,
                                      max_detections=args.max_detections,
                                      save_path=args.save_path,
                                      mask_base_path=args.mask_folder)

        # print evaluation
        total_instances = []
        precisions = []
        F1s = []
        for label, (recall, precision, F1, average_precision,
                    num_annotations) in average_precisions.items():
            print('{:.0f} instances of class'.format(num_annotations),
                  generator.label_to_name(label),
                  'with average precision: {:.4f}'.format(average_precision),
                  'precision: {:.4f}'.format(precision),
                  'recall: {:.4f}'.format(recall),
                  'and F1-score: {:.4f}'.format(F1))
            total_instances.append(num_annotations)
            precisions.append(average_precision)
            F1s.append(F1)

        if sum(total_instances) == 0:
            print('No test instances found.')
            return

        print(
            'mAP using the weighted average of precisions among classes: {:.4f}'
            .format(
                sum([a * b for a, b in zip(total_instances, precisions)]) /
                sum(total_instances)))
        print('mAP: {:.4f}'.format(
            sum(precisions) / sum(x > 0 for x in total_instances)))
        print('mF1: {:.4f}'.format(
            sum(F1s) / sum(x > 0 for x in total_instances)))
Beispiel #7
0
def main(args=None):
    # parse arguments
    if args is None:
        args = sys.argv[1:]
    args = parse_args(args)

    # make sure keras is the minimum required version
    check_keras_version()

    # optionally choose specific GPU
    if args.gpu:
        os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    keras.backend.tensorflow_backend.set_session(get_session())

    # make save path if it doesn't exist
    if args.save_path is not None and not os.path.exists(args.save_path):
        os.makedirs(args.save_path)

    # optionally load config parameters
    if args.config:
        args.config = read_config_file(args.config)

    # create the generator
    generator = create_generator(args)

    # optionally load anchor parameters
    anchor_params = None
    if args.config and 'anchor_parameters' in args.config:
        anchor_params = parse_anchor_parameters(args.config)

    # load the model
    print('Loading model, this may take a second...')
    model = models.load_model(args.model, backbone_name=args.backbone)

    # optionally convert the model
    if args.convert_model:
        model = models.convert_model(model, anchor_params=anchor_params)

    # print model summary
    # print(model.summary())

    # start evaluation
    if args.dataset_type == 'coco':
        from ..utils.coco_eval import evaluate_coco
        evaluate_coco(generator, model, args.score_threshold)
    else:
        average_precisions = evaluate(generator,
                                      model,
                                      iou_threshold=args.iou_threshold,
                                      score_threshold=args.score_threshold,
                                      max_detections=args.max_detections,
                                      save_path=args.save_path)

        # print evaluation
        total_instances = []
        precisions = []
        for label, (average_precision,
                    num_annotations) in average_precisions.items():
            print('{:.0f} instances of class'.format(num_annotations),
                  generator.label_to_name(label),
                  'with average precision: {:.4f}'.format(average_precision))
            total_instances.append(num_annotations)
            precisions.append(average_precision)

        if sum(total_instances) == 0:
            print('No test instances found.')
            return

        print(
            'mAP using the weighted average of precisions among classes: {:.4f}'
            .format(
                sum([a * b for a, b in zip(total_instances, precisions)]) /
                sum(total_instances)))
        print('mAP: {:.4f}'.format(
            sum(precisions) / sum(x > 0 for x in total_instances)))

        return precisions, total_instances
Beispiel #8
0
def main(args=None):
    # parse arguments
    if args is None:
        args = sys.argv[1:]
    args = parse_args(args)

    # create object that stores backbone information
    #backbone = models.backbone(args.backbone)
    backbone = models.backbone(args.backbone)

    # make sure keras is the minimum required version
    check_keras_version()

    # optionally choose specific GPU
    if args.gpu:
        os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    keras.backend.tensorflow_backend.set_session(get_session())

    # optionally load config parameters
    if args.config:
        args.config = read_config_file(args.config)

    # create the generators
    #print(args)
    train_generator, validation_generator = create_generators(
        args, backbone.preprocess_image)

    # Log configs
    #run.log('batch-size', args.batch_size)
    #run.log('gamma', args.fl_gamma)
    #run.log('alpha', args.fl_alpha)
    #run.log('lr', args.lr)
    #run.log('neg-overlap', args.neg_overlap)
    #run.log('pos-overlap', args.pos_overlap)
    #run.log('fpn-layers', args.fpn_layers)

    if args.class_weights is not None:
        if args.class_weights == "cw1":
            polyp_weight = 0.25
            #class_weights = {'classification': {0:a_w, 1:a_w, 2:a_w, 3:a_w, 4:a_w, 5:a_w, 6:a_w, 7:polyp_weight}, 'regression': {0:0.25, 1:0.25, 2:0.25, 3:0.25}}
            #class_weights = {'classification': [polyp_weight, a_w, a_w, a_w, a_w, a_w, a_w, a_w]}
        elif args.class_weights == "cw2":
            polyp_weight = 0.5
        elif args.class_weights == "cw3":
            polyp_weight = 0.75
        a_w = (1 - polyp_weight) / 7
        #class_weights = {'classification': [polyp_weight, a_w, a_w, a_w, a_w, a_w, a_w, a_w]}
        class_weights = [polyp_weight, a_w, a_w, a_w, a_w, a_w, a_w, a_w]
    else:
        class_weights = None

    if args.loss_weights is None:
        loss_weights = [1, 1]
    elif args.loss_weights == "lw0":
        loss_weights = [1, 1, 1]
    elif args.loss_weights == "lw1":
        loss_weights = [1, 1, 3]
    elif args.loss_weights == "lw2":
        loss_weights = [1, 1, 10]
    elif args.loss_weights == "lw3":
        loss_weights = [1, 1, 20]

    # create the model
    if args.snapshot is not None:
        print('Loading model, this may take a second...')
        model = models.load_model(os.path.join(args.data_dir, args.snapshot),
                                  backbone_name=args.backbone)
        training_model = model
        anchor_params = None
        if args.config and 'anchor_parameters' in args.config:
            anchor_params = parse_anchor_parameters(args.config)
        prediction_model = retinanet_bbox(model=model,
                                          anchor_params=anchor_params)
    else:
        if args.weights is None and args.imagenet_weights:
            weights = backbone.download_imagenet()
        else:
            weights = args.weights
        # default to imagenet if nothing else is specified
        ## SO the file that is downloaded is actually only the weights
        ## this means that I should be able to use --weights to give it my own model
        sample_test = np.array([[0.25, 0.25, 0.25, 0.25, 0, 0, 0, 0],
                                [10, 10, 10, 10, 10, 10, 10, 10]])
        print('Creating model, this may take a second...')
        model, training_model, prediction_model = create_models(
            backbone_retinanet=backbone.retinanet,
            num_classes=train_generator.num_classes(),
            weights=weights,
            class_weights=class_weights,
            loss_weights=loss_weights,
            multi_gpu=args.multi_gpu,
            freeze_backbone=args.freeze_backbone,
            lr=args.lr,
            config=args.config,
            fl_gamma=args.fl_gamma,
            fl_alpha=args.fl_alpha,
            c_weight=args.c_weight,
            r_weight=args.r_weight,
            p_weight=args.p_weight,
            train_type=args.train_type,
            sample_t=sample_test)

    # print model summary
    #print(model.summary())

    # this lets the generator compute backbone layer shapes using the actual backbone model
    if 'vgg' in args.backbone or 'densenet' in args.backbone:
        train_generator.compute_shapes = make_shapes_callback(model)
        if validation_generator:
            validation_generator.compute_shapes = train_generator.compute_shapes

    # create the callbacks
    callbacks = create_callbacks(
        model,
        training_model,
        prediction_model,
        validation_generator,
        args,
    )

    # Use multiprocessing if workers > 0
    if args.workers > 0:
        use_multiprocessing = True
    else:
        use_multiprocessing = False

    temp_df = pd.read_csv(
        os.path.join(args.data_dir, args.annotations),
        names=["image_path", "x1", "y1", "x2", "y2", "object_id"])
    im_count = len(set(list(temp_df.image_path)))

    # start training
    training_model.fit_generator(generator=train_generator,
                                 steps_per_epoch=int(im_count /
                                                     args.batch_size),
                                 epochs=args.epochs,
                                 verbose=1,
                                 callbacks=callbacks,
                                 workers=args.workers,
                                 use_multiprocessing=use_multiprocessing,
                                 max_queue_size=args.max_queue_size
                                 #class_weight=class_weights
                                 )
Beispiel #9
0
def main(args=None):
    # parse arguments
    if args is None:
        args = sys.argv[1:]
    args = parse_args(args)

    # optionally load config parameters
    if args.config:
        args.config = read_config_file(args, 'training')
    #     print("----------------------------------")
    #     print("ARGUMENTS IN CONFIG FILE:")
    #     for sec in args.config.sections():
    #         print(sec, "=", dict(args.config.items(sec)))
    #     print("----------------------------------")
    #
    # for arg in vars(args):
    #     print(arg, "=", getattr(args, arg))
    # exit()

    # create object that stores backbone information
    backbone = models.backbone(args.backbone)

    # make sure keras is the minimum required version
    check_keras_version()

    # optionally choose specific GPU
    if args.gpu:
        os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    keras.backend.tensorflow_backend.set_session(get_session())

    # create the generators
    train_generator, validation_generator = create_generators(
        args, backbone.preprocess_image)

    # # Debuging
    # for i in range(1):
    #     inputs, targets = train_generator.__getitem__(i)
    # exit()

    # create the model
    if args.snapshot is not None:
        print('Loading model, this may take a second...')
        model = models.load_model(args.snapshot, backbone_name=args.backbone)

        # When using as a second step for fine-tuning
        for layer in model.layers:
            layer.trainable = True

        training_model = model
        anchor_params = None
        if args.config and 'anchor_parameters' in args.config:
            anchor_params = parse_anchor_parameters(args.config)
        prediction_model = retinanet_bbox(model=model,
                                          anchor_params=anchor_params)

        ###################################################################################### BRUNO

        # compile model
        training_model.compile(loss={
            'regression': losses.smooth_l1(),
            'classification': losses.focal()
        },
                               optimizer=keras.optimizers.adam(lr=args.lr,
                                                               clipnorm=0.001))
    else:
        weights = args.weights
        # default to imagenet if nothing else is specified
        if weights is None and args.imagenet_weights:
            weights = backbone.download_imagenet()

        print('Creating model, this may take a second...')
        model, training_model, prediction_model = create_models(
            backbone_retinanet=backbone.retinanet,
            num_classes=train_generator.num_classes(),
            weights=weights,
            multi_gpu=args.multi_gpu,
            freeze_backbone=args.freeze_backbone,
            lr=args.lr,
            config=args.config)

    # Print model design
    # print(model.summary())
    # print(training_model.summary())
    # plot_model(model, to_file='model_plot.png', show_shapes=True, show_layer_names=True)
    # exit()

    # Get the number of samples in the training and validations datasets.
    train_size = train_generator.size()
    val_size = validation_generator.size()
    print('Train on {} samples, val on {} samples, with batch size {}.'.format(
        train_size, val_size, args.batch_size))

    # this lets the generator compute backbone layer shapes using the actual backbone model
    if 'vgg' in args.backbone or 'densenet' in args.backbone:
        train_generator.compute_shapes = make_shapes_callback(model)
        if validation_generator:
            validation_generator.compute_shapes = train_generator.compute_shapes

    # create the callbacks
    callbacks = create_callbacks(
        model,
        training_model,
        prediction_model,
        validation_generator,
        train_size,
        [1e-6, 1e-4],
        args,
    )

    # Use multiprocessing if workers > 0
    if args.workers > 0:
        use_multiprocessing = True
    else:
        use_multiprocessing = False

    # check to see if we are attempting to find an optimal learning rate
    # before training for the full number of epochs
    if args.find_lr:
        # initialize the learning rate finder and then train with learning
        # rates ranging from 1e-10 to 1e+1
        print("[INFO] Finding learning rate...")
        lrf = LearningRateFinder(training_model)
        lrf.find(train_generator,
                 1e-10,
                 1e+1,
                 stepsPerEpoch=np.ceil((train_size / float(args.batch_size))),
                 batchSize=args.batch_size)

        # plot the loss for the various learning rates and save the
        # resulting plot to disk
        lrf.plot_loss()
        plt.savefig("lrfind_plot.png")

        # save values into a csv file
        lrf.save_csv("lr_loss.csv")

        # gracefully exit the script so we can adjust our learning rates
        # in the config and then train the network for our full set of
        # epochs
        print("[INFO] Learning rate finder complete")
        print("[INFO] Examine plot and adjust learning rates before training")
        sys.exit(0)

    # Number of epochs and steps for training new layers
    n_epochs = 350
    steps = train_size // args.batch_size

    # start training
    training_model.fit_generator(generator=train_generator,
                                 validation_data=validation_generator,
                                 steps_per_epoch=steps,
                                 epochs=n_epochs,
                                 verbose=1,
                                 callbacks=callbacks,
                                 workers=args.workers,
                                 use_multiprocessing=use_multiprocessing,
                                 max_queue_size=args.max_queue_size)

    # Unfreeze and continue training, to fine-tune.
    # Train longer if the result is not good.
    if True:
        # for layer in model.layers:
        #     if layer.name is 'bn_conv1':
        #         print("Before\t-> Trainable: {}, Freeze: {}".format(layer.trainable, layer.freeze))

        for layer in model.layers:
            layer.trainable = True

        # recompile to apply the change
        model.compile(
            loss={
                'regression': losses.smooth_l1(),
                'classification': losses.focal()
            },
            # Learning rate must be lower for training the entire network
            optimizer=keras.optimizers.adam(lr=args.lr * 0.1, clipnorm=0.001),
            metrics=['accuracy'])

        if args.multi_gpu > 1:
            from keras.utils import multi_gpu_model
            with tf.device('/gpu:1'):
                training_model = multi_gpu_model(model, gpus=args.multi_gpu)
        else:
            training_model = model

        # recompile to apply the change
        training_model.compile(
            loss={
                'regression': losses.smooth_l1(),
                'classification': losses.focal()
            },
            # Learning rate must be lower for training the entire network
            optimizer=keras.optimizers.adam(lr=args.lr * 0.1, clipnorm=0.001),
            metrics=['accuracy'])
        print('Unfreezing all layers.')

        # for layer in model.layers:
        #     if layer.name is 'bn_conv1':
        #         print("After\t-> Trainable: {}, Freeze: {}".format(layer.trainable, layer.freeze))

        # Print training_model design
        # print(model.summary())
        # print(training_model.summary())

        # create the callbacks
        callbacks = create_callbacks(
            model,
            training_model,
            prediction_model,
            validation_generator,
            train_size,
            [1e-8, 1e-6],
            args,
        )

        batch_size = 2  # note that more GPU memory is required after unfreezing the body
        steps = train_size // batch_size
        print('Train on {} samples, val on {} samples, with batch size {}.'.
              format(train_size, val_size, batch_size))
        training_model.fit_generator(generator=train_generator,
                                     validation_data=validation_generator,
                                     steps_per_epoch=steps,
                                     epochs=args.epochs,
                                     initial_epoch=n_epochs,
                                     verbose=1,
                                     callbacks=callbacks,
                                     workers=args.workers,
                                     use_multiprocessing=use_multiprocessing,
                                     max_queue_size=args.max_queue_size)
Beispiel #10
0
def main(args=None):

    iou_thres_vec = []
    if sys.argv[1:] == []:
        print('Please give at least one value for IoU threshold.')
        exit(0)
    for v in sys.argv[1:]:
        iou_thres_vec.append(float(v))
    print('Doing job for IoU values:', iou_thres_vec)

    # make sure keras is the minimum required version
    check_keras_version()

    # define base paths
    model_base_path = '/path/snapshots/'
    data_base_path = '/path/dataset/'
    out_imgs_base_path = '/path/out_imgs/'

    # define number of experiments and k-folds
    experiments = ['1']  #,'2','3','4']
    kfolds = ['1']  #,'2','3','4','5']

    # loop for each experiment and k-fold
    for exp in experiments:
        # set experiment name
        if exp == '1': data_name = 'cns_stratified'
        elif exp == '2': data_name = 'cns_unseen_split'
        elif exp == '3': data_name = 'all_stratified'
        elif exp == '4': data_name = 'all_unseen_split'

        for kf in kfolds:
            # set names
            model_name = 'resnet101_fpn4_1000_sc4_ar3_cycLRexp-8_allDataAugm_350-450_exp' + exp + '_k' + kf
            model_path = model_base_path + model_name + '/resnet101_ivm.h5'
            data_path = data_base_path + 'image_sets/' + data_name + '/k_' + kf
            save_path = out_imgs_base_path + model_name

            # copy data image_set to data_base_path
            files = os.listdir(data_path)
            for f in files:
                if f.endswith('.txt'):
                    f = data_path + '/' + f
                    dst = data_base_path + 'image_sets/'
                    # print('File copied\n\tFROM:', f, '\n\tTO:', dst)
                    shutil.copy(f, dst)

            # optionally choose specific GPU
            os.environ['CUDA_VISIBLE_DEVICES'] = '0'
            keras.backend.tensorflow_backend.set_session(get_session())

            # load the model
            print('Loading model, this may take a second...')
            model = models.load_model(model_path, backbone_name='resnet101')

            # convert the model
            model = models.convert_model(model)
            print('Loaded.')

            # create the generator
            generator = IVMGenerator(data_base_path,
                                     'val',
                                     image_min_side=1000,
                                     image_max_side=1400)

            #
            # Grid search
            #
            md = 500
            nms_thres_vec = np.arange(.05, 1., .05)
            score_thres_vec = np.arange(.05, 1., .05)

            # output values
            outputs = []

            # varying params
            for it in iou_thres_vec:
                for nt in nms_thres_vec:
                    for st in score_thres_vec:
                        evaluate_model(generator=generator,
                                       model=model,
                                       nt=nt,
                                       it=it,
                                       st=st,
                                       md=md,
                                       save_path=None,
                                       mask='/path/dataset/all/masks',
                                       output=outputs)

            # save in data frame format
            df = pd.DataFrame(data=outputs)

            # ensure directory created first and save file
            makedirs(save_path)
            out_path = save_path + '/params_search.csv'
            df.to_csv(out_path, index=None, header=True)

            #
            # Get best set of parameters
            #
            # compute measure
            avg_measure = (df['f1_score'] + df['average_precision']) / 2
            df['avg_measure'] = avg_measure

            # set best param values
            best = df.iloc[df['avg_measure'].idxmax()]
            md = best['max_detections'].astype(int)
            it = best['iou_threshold']
            nt = best['nms_threshold']
            st = best['score_threshold']

            # create the generator for test dataset
            generator = IVMGenerator(data_base_path,
                                     'test',
                                     image_min_side=1000,
                                     image_max_side=1400)

            # perform inference in test dataset
            outputs = []

            # varying params
            evaluate_model(generator=generator,
                           model=model,
                           nt=nt,
                           it=it,
                           st=st,
                           md=md,
                           save_path=save_path,
                           mask='/path/dataset/all/masks',
                           output=outputs)

            # save in data frame format
            df = pd.DataFrame(data=outputs)
            out_path = save_path + '/best_output.csv'
            df.to_csv(out_path, index=None, header=True)