def backpropagate(network, input_vector, target): hidden_outputs, outputs = feed_forward(network, input_vector) # the output * (1 - output) is from the derivative of sigmoid output_deltas = [ output * (1 - output) * (output - target[i]) for i, output in enumerate(outputs) ] # adjust weights for output layer (network[-1]) for i, output_neuron in enumerate(network[-1]): for j, hidden_output in enumerate(hidden_outputs + [1]): output_neuron[j] -= output_deltas[i] * hidden_output # back-propagate errors to hidden layer hidden_deltas = [ hidden_output * (1 - hidden_output) * dot(output_deltas, [n[i] for n in network[-1]]) for i, hidden_output in enumerate(hidden_outputs) ] # adjust weights for hidden layer (network[0]) for i, hidden_neuron in enumerate(network[0]): for j, input in enumerate(input_vector + [1]): hidden_neuron[j] -= hidden_deltas[i] * input
def neuron_output(weights, inputs): return sigmoid(dot(weights, inputs))
def logistic_log_partial_ij(x_i, y_i, beta, j): """here i is the index of the data point, j the index of the derivative""" return (y_i - logistic(dot(x_i, beta))) * x_i[j]
def perceptron_output(weights, bias, x): """returns 1 if the perceptron 'fires', 0 if not""" return step_function(dot(weights, x) + bias)
def logistic_log_likelihood_i(x_i, y_i, beta): if y_i == 1: return math.log(logistic(dot(x_i, beta))) else: return math.log(1 - logistic(dot(x_i, beta)))
y = [row[2] for row in data] # each element is paid_account rescaled_x = rescale(x) random.seed(0) x_train, x_test, y_train, y_test = train_test_split(rescaled_x, y, 0.33) print "linear regression:" #beta = estimate_beta(x_train, y_train) beta_initial = [1, 1, 1] beta = minimize_stochastic(squared_error, squared_error_gradient, x_train, y_train, beta_initial, 0.001) print beta y_pred = [] for x_i, y_i in zip(x_train, y_test): y_pred.append(logistic(dot(beta, x_i))) classification_report(y_test, y_pred) print "logistic regression:" # want to maximize log likelihood on the training data fn = partial(logistic_log_likelihood, x_train, y_train) # need put beta gradient_fn = partial(logistic_log_gradient, x_train, y_train) # need put beta ### max batch gradient beta_0 = [1, 1, 1] beta_hat = maximize_batch(fn, gradient_fn, beta_0) print "beta_batch", beta_hat
def ridge_penalty(beta, alpha): return alpha * dot(beta[1:], beta[1:])
def predict(x_i, beta): return dot(x_i, beta)
random.seed(0) # so that you get the same results as me bootstrap_betas = bootstrap_statistic(zip(x, daily_minutes_good), estimate_sample_beta, 100) bootstrap_standard_errors = [ standard_deviation([beta[i] for beta in bootstrap_betas]) for i in range(4)] print "bootstrap standard errors", bootstrap_standard_errors print print "p_value(30.63, 1.174)", p_value(30.63, 1.174) print "p_value(0.972, 0.079)", p_value(0.972, 0.079) print "p_value(-1.868, 0.131)", p_value(-1.868, 0.131) print "p_value(0.911, 0.990)", p_value(0.911, 0.990) print print "regularization" random.seed(0) for alpha in [0.0, 0.01, 0.1, 1, 10]: beta = estimate_beta_ridge(x, daily_minutes_good, alpha=alpha) print "alpha", alpha print "beta", beta print "dot(beta[1:],beta[1:])", dot(beta[1:], beta[1:]) print "r-squared", multiple_r_squared(x, daily_minutes_good, beta) print