Beispiel #1
0
def main():
    # Retrieve config file
    p = create_config(args.config_env, args.config_exp)
    print(colored(p, 'red'))
    
    
    # Model
    print(colored('Retrieve model', 'green'))
    model = get_model(p)
    print('Model is {}'.format(model.__class__.__name__))
    print(model)
    # model = torch.nn.DataParallel(model)
    model = model.to(device)
   
    
    # CUDNN
    print(colored('Set CuDNN benchmark', 'green'))
    torch.backends.cudnn.benchmark = True
    
    
    # Dataset
    print(colored('Retrieve dataset', 'green'))
    transforms = get_val_transformations(p)
    train_dataset = get_train_dataset(p, transforms) 
    val_dataset = get_val_dataset(p, transforms)
    train_dataloader = get_val_dataloader(p, train_dataset)
    val_dataloader = get_val_dataloader(p, val_dataset)
    print('Dataset contains {}/{} train/val samples'.format(len(train_dataset), len(val_dataset)))
    
   
    # Memory Bank
    print(colored('Build MemoryBank', 'green'))
    memory_bank_train = MemoryBank(len(train_dataset), 2048, p['num_classes'], p['temperature'])
    memory_bank_train.to(device)
    memory_bank_val = MemoryBank(len(val_dataset), 2048, p['num_classes'], p['temperature'])
    memory_bank_val.to(device)

    
    # Load the official MoCoV2 checkpoint
    print(colored('Downloading moco v2 checkpoint', 'green'))
    # os.system('wget -L https://dl.fbaipublicfiles.com/moco/moco_checkpoints/moco_v2_800ep/moco_v2_800ep_pretrain.pth.tar')
    # Uploaded the model to Mist : Johan
    moco_state = torch.load(main_dir + model_dir + 'moco_v2_800ep_pretrain.pth.tar', map_location=device)

    
    # Transfer moco weights
    print(colored('Transfer MoCo weights to model', 'green'))
    new_state_dict = {}
    state_dict = moco_state['state_dict']
    # for k in list(state_dict.keys()):
    #     # Copy backbone weights
    #     if k.startswith('module.encoder_q') and not k.startswith('module.encoder_q.fc'):
    #         new_k = 'module.backbone.' + k[len('module.encoder_q.'):]
    #         new_state_dict[new_k] = state_dict[k]
    #
    #     # Copy mlp weights
    #     elif k.startswith('module.encoder_q.fc'):
    #         new_k = 'module.contrastive_head.' + k[len('module.encoder_q.fc.'):]
    #         new_state_dict[new_k] = state_dict[k]
    #
    #     else:
    #         raise ValueError('Unexpected key {}'.format(k))

    #Changed by Johan
    for k, v in state_dict.items():
        if "conv" in k or "bn" in k or "layer" in k:
            new_k = "backbone." + k.split("module.encoder_q.")[1]
            new_state_dict[new_k] = v
        else:
            new_k = "contrastive_head." + k.split("module.encoder_q.fc.")[1]
            new_state_dict[new_k] = v

    model.load_state_dict(new_state_dict)
    # os.system('rm -rf moco_v2_800ep_pretrain.pth.tar')
   
 
    # Save final model
    print(colored('Save pretext model', 'green'))
    torch.save(model.state_dict(), p['pretext_model'])
    # model.contrastive_head = torch.nn.Identity() # In this case, we mine the neighbors before the MLP.
    model.contrastive_head = Identity()
def main():
    # Retrieve config file
    p = create_config(args.config_env, args.config_exp)
    print(colored(p, 'red'))

    # Model
    print(colored('Retrieve model', 'green'))
    model = get_model(p)
    print('Model is {}'.format(model.__class__.__name__))
    print('Model parameters: {:.2f}M'.format(
        sum(p.numel() for p in model.parameters()) / 1e6))
    print(model)
    model = model.to(device)

    # CUDNN
    print(colored('Set CuDNN benchmark', 'green'))
    torch.backends.cudnn.benchmark = True

    # Dataset
    print(colored('Retrieve dataset', 'green'))
    train_transforms = get_train_transformations(p)
    print('Train transforms:', train_transforms)
    val_transforms = get_val_transformations(p)
    print('Validation transforms:', val_transforms)
    train_dataset = get_train_dataset(p,
                                      train_transforms,
                                      to_augmented_dataset=True,
                                      split='train')  # Split is for stl-10
    val_dataset = get_val_dataset(p, val_transforms)
    train_dataloader = get_val_dataloader(p, train_dataset)
    val_dataloader = get_val_dataloader(p, val_dataset)
    print('Dataset contains {}/{} train/val samples'.format(
        len(train_dataset), len(val_dataset)))

    # Memory Bank
    print(colored('Build MemoryBank', 'green'))
    base_dataset = get_train_dataset(
        p, val_transforms, split='train')  # Dataset w/o augs for knn eval
    base_dataloader = get_val_dataloader(p, base_dataset)
    memory_bank_base = MemoryBank(len(base_dataset),
                                  p['model_kwargs']['features_dim'],
                                  p['num_classes'],
                                  p['criterion_kwargs']['temperature'])
    memory_bank_base.to(device)
    memory_bank_val = MemoryBank(len(val_dataset),
                                 p['model_kwargs']['features_dim'],
                                 p['num_classes'],
                                 p['criterion_kwargs']['temperature'])
    memory_bank_val.to(device)

    # Checkpoint
    if os.path.exists(p['pretext_checkpoint']):
        print(
            colored(
                'Restart from checkpoint {}'.format(p['pretext_checkpoint']),
                'green'))
        checkpoint = torch.load(p['pretext_checkpoint'], map_location='cpu')
        # optimizer.load_state_dict(checkpoint['optimizer'])
        model.load_state_dict(checkpoint['model'])
        model.to(device)
        # start_epoch = checkpoint['epoch']

    else:
        print(
            colored('No checkpoint file at {}'.format(p['pretext_checkpoint']),
                    'green'))
        start_epoch = 0
        model = model.to(device)

    # # Training
    # print(colored('Starting main loop', 'green'))
    # with torch.no_grad():
    #     model.eval()
    #     total_top1, total_top5, total_num, feature_bank = 0.0, 0.0, 0, []
    #
    #     # progress_bar = tqdm(train_dataloader)
    #     for idx, batch in enumerate(train_dataloader):
    #         images = batch['image'].to(device, non_blocking=True)
    #         # target = batch['target'].to(device, non_blocking=True)
    #
    #         output = model(images)
    #         feature = F.normalize(output, dim=1)
    #         feature_bank.append(feature)
    #
    #         if idx % 25 == 0:
    #             print("Feature bank buidling : {} / {}".format(idx, len(train_dataset)/p["batch_size"]))
    #
    #     # [D, N]
    #     feature_bank = torch.cat(feature_bank, dim=0).t().contiguous()
    #     print(colored("Feature bank created. Similarity index starts now", "green"))
    #     print(feature_bank.size())
    #
    #     for idx, batch in enumerate(train_dataloader):
    #
    #         images = batch['image'].to(device, non_blocking=True)
    #         # target = batch['target'].to(device, non_blocking=True)
    #
    #         output = model(images)
    #         feature = F.normalize(output, dim=1)
    #
    #         sim_indices = knn_predict(feature, feature_bank, "", "", 10, 0.1)
    #
    #         print(sim_indices)
    #
    #         if idx == 10:
    #             break

    # # Mine the topk nearest neighbors at the very end (Train)
    # # These will be served as input to the SCAN loss.
    # print(colored('Fill memory bank for mining the nearest neighbors (train) ...', 'green'))
    # fill_memory_bank(base_dataloader, model, memory_bank_base)
    # topk = 20
    # print('Mine the nearest neighbors (Top-%d)' %(topk))
    # indices, acc = memory_bank_base.mine_nearest_neighbors(topk)
    # print('Accuracy of top-%d nearest neighbors on train set is %.2f' %(topk, 100*acc))
    # np.save(p['topk_neighbors_train_path'], indices)

    # Mine the topk nearest neighbors at the very end (Val)
    # These will be used for validation.
    print(
        colored('Fill memory bank for mining the nearest neighbors (val) ...',
                'green'))
    fill_memory_bank(val_dataloader, model, memory_bank_val)
    topk = 5
    print('Mine the nearest neighbors (Top-%d)' % (topk))
    indices, acc = memory_bank_val.mine_nearest_neighbors(topk)
    print('Accuracy of top-%d nearest neighbors on val set is %.2f' %
          (topk, 100 * acc))
    np.save(p['topk_neighbors_val_path'], indices)
Beispiel #3
0
def main():

    # Retrieve config file
    p = create_config(args.config_env, args.config_exp)
    print(colored(p, 'red'))

    # Model
    print(colored('Retrieve model', 'green'))
    model = get_model(p)
    print('Model is {}'.format(model.__class__.__name__))
    print('Model parameters: {:.2f}M'.format(
        sum(p.numel() for p in model.parameters()) / 1e6))
    print(model)
    model = model.to(device)

    # CUDNN
    print(colored('Set CuDNN benchmark', 'green'))
    torch.backends.cudnn.benchmark = True

    # Dataset
    print(colored('Retrieve dataset', 'green'))
    train_transforms = get_train_transformations(p)
    print('Train transforms:', train_transforms)
    val_transforms = get_val_transformations(p)
    print('Validation transforms:', val_transforms)
    train_dataset = get_train_dataset(p,
                                      train_transforms,
                                      to_augmented_dataset=True,
                                      split='train')  # Split is for stl-10
    val_dataset = get_val_dataset(p, val_transforms)
    train_dataloader = get_train_dataloader(p, train_dataset)
    val_dataloader = get_val_dataloader(p, val_dataset)
    print('Dataset contains {}/{} train/val samples'.format(
        len(train_dataset), len(val_dataset)))

    # Memory Bank
    print(colored('Build MemoryBank', 'green'))
    base_dataset = get_train_dataset(
        p, val_transforms, split='train')  # Dataset w/o augs for knn eval
    base_dataloader = get_val_dataloader(p, base_dataset)
    memory_bank_base = MemoryBank(len(base_dataset),
                                  p['model_kwargs']['features_dim'],
                                  p['num_classes'],
                                  p['criterion_kwargs']['temperature'])
    memory_bank_base.to(device)
    memory_bank_val = MemoryBank(len(val_dataset),
                                 p['model_kwargs']['features_dim'],
                                 p['num_classes'],
                                 p['criterion_kwargs']['temperature'])
    memory_bank_val.to(device)

    # Criterion
    print(colored('Retrieve criterion', 'green'))
    criterion = get_criterion(p)
    print('Criterion is {}'.format(criterion.__class__.__name__))
    criterion = criterion.to(device)

    # Optimizer and scheduler
    print(colored('Retrieve optimizer', 'green'))
    optimizer = get_optimizer(p, model)
    print(optimizer)

    # Checkpoint
    if os.path.exists(p['pretext_checkpoint']):
        print(
            colored(
                'Restart from checkpoint {}'.format(p['pretext_checkpoint']),
                'green'))
        checkpoint = torch.load(p['pretext_checkpoint'], map_location='cpu')
        optimizer.load_state_dict(checkpoint['optimizer'])
        model.load_state_dict(checkpoint['model'])
        model.to(device)
        start_epoch = checkpoint['epoch']

    else:
        print(
            colored('No checkpoint file at {}'.format(p['pretext_checkpoint']),
                    'green'))
        start_epoch = 0
        model = model.to(device)

    # Training
    print(colored('Starting main loop', 'green'))
    for epoch in range(start_epoch, p['epochs']):
        print(colored('Epoch %d/%d' % (epoch, p['epochs']), 'yellow'))
        print(colored('-' * 15, 'yellow'))

        # Adjust lr
        lr = adjust_learning_rate(p, optimizer, epoch)
        print('Adjusted learning rate to {:.5f}'.format(lr))

        # Train
        print('Train ...')
        simclr_train(train_dataloader, model, criterion, optimizer, epoch)

        # # Fill memory bank
        # print('Fill memory bank for kNN...')
        # fill_memory_bank(base_dataloader, model, memory_bank_base)
        #
        # # Evaluate (To monitor progress - Not for validation)
        # print('Evaluate ...')
        # top1 = contrastive_evaluate(val_dataloader, model, memory_bank_base)
        # print('Result of kNN evaluation is %.2f' %(top1))

        # Checkpoint
        print('Checkpoint ...')
        torch.save(
            {
                'optimizer': optimizer.state_dict(),
                'model': model.state_dict(),
                'epoch': epoch + 1
            }, p['pretext_checkpoint'])

    # # Save final model
    # torch.save(model.state_dict(), p['pretext_model'])
    #
    # Mine the topk nearest neighbors at the very end (Train)
    # These will be served as input to the SCAN loss.
    print(
        colored(
            'Fill memory bank for mining the nearest neighbors (train) ...',
            'green'))
    fill_memory_bank(base_dataloader, model, memory_bank_base)
    topk = 20
    print('Mine the nearest neighbors (Top-%d)' % (topk))
    indices, acc = memory_bank_base.mine_nearest_neighbors(topk)
    print('Accuracy of top-%d nearest neighbors on train set is %.2f' %
          (topk, 100 * acc))
    np.save(p['topk_neighbors_train_path'], indices)

    # Mine the topk nearest neighbors at the very end (Val)
    # These will be used for validation.
    print(
        colored('Fill memory bank for mining the nearest neighbors (val) ...',
                'green'))
    fill_memory_bank(val_dataloader, model, memory_bank_val)
    topk = 5
    print('Mine the nearest neighbors (Top-%d)' % (topk))
    indices, acc = memory_bank_val.mine_nearest_neighbors(topk)
    print('Accuracy of top-%d nearest neighbors on val set is %.2f' %
          (topk, 100 * acc))
    np.save(p['topk_neighbors_val_path'], indices)