Beispiel #1
0
def run_eval(load_model, load_sess, filename, sample_num_file, hparams, flag):
    # load sample num
    with open(sample_num_file, 'r') as f:
        sample_num = int(f.readlines()[0].strip())
    load_sess.run(load_model.iterator.initializer, feed_dict={load_model.filenames: [filename]})
    preds = []
    labels = []
    while True:
        try:
            _, _, step_pred, step_labels = load_model.model.eval(load_sess)
            preds.extend(np.reshape(step_pred, -1))
            labels.extend(np.reshape(step_labels, -1))
        except tf.errors.OutOfRangeError:
            break
    preds = preds[:sample_num]
    labels = labels[:sample_num]
    hparams.logger.info("data num:{0:d}".format(len(labels)))
    res = metric.cal_metric(labels, preds, hparams, flag)
    return res
Beispiel #2
0
def run_eval(load_model, load_sess, filename, sample_num_file, hparams, flag):
    # load sample num
    with open(sample_num_file, 'r') as f:
        sample_num = int(f.readlines()[0].strip())
    load_sess.run(load_model.iterator.initializer, feed_dict={load_model.filenames: [filename]})
    preds = []
    labels = []
    while True:
        try:
            _, _, step_pred, step_labels = load_model.model.eval(load_sess)
            preds.extend(np.reshape(step_pred, -1))
            labels.extend(np.reshape(step_labels, -1))
        except tf.errors.OutOfRangeError:
            break
    preds = preds[:sample_num]
    labels = labels[:sample_num]
    hparams.logger.info("data num:{0:d}".format(len(labels)))
    res = metric.cal_metric(labels, preds, hparams, flag)
    return res