def table_exp(): params = parse_args('test') for ds in ['mini', 'tiered']: for shot in [1, 5]: params.dataset = ds params.n_shot = shot run_exp(params, verbose=500)
def unbalanced_exp(): params = parse_args('test') for ds in ['mini', 'tiered']: params.dataset = ds exp_dict = {} for q in [0, 10, 20, 30, 40, 50]: params.n_unbalance_max = q res, ci = run_exp(params, verbose=500) exp_dict[q] = (res, ci) with open(f'exp_unbalanced_{ds}.pickle', 'wb') as handle: pickle.dump(exp_dict, handle, protocol=pickle.HIGHEST_PROTOCOL)
def n_query_exp(): params = parse_args('test') for ds in ['mini', 'tiered']: params.dataset = ds exp_dict = {} for q in [2, 5, 10, 15, 30, 40, 50]: params.n_query = q res, ci = run_exp(params, verbose=1000) exp_dict[q] = (res, ci) with open(f'exp_n_queries_{ds}.pickle', 'wb') as handle: pickle.dump(exp_dict, handle, protocol=pickle.HIGHEST_PROTOCOL)
def table_exp(): params = parse_args('test') exp_dict = {} for ds in ['mini', 'tiered']: for shot in [1, 5]: params.dataset = ds params.n_shot = shot res, ci = run_exp(params, verbose=500) exp_dict[f'{ds} {shot} shot'] = (res, ci) with open('exp_table.pickle', 'wb') as handle: pickle.dump(exp_dict, handle, protocol=pickle.HIGHEST_PROTOCOL)
def noise_exp(): params = parse_args('test') params.n_semi = 100 for ds in ['mini', 'tiered']: params.dataset = ds exp_dict = {} for q in range(0, 7+1): params.n_distract = q res, ci = run_exp(params, verbose=500) exp_dict[q] = (res, ci) with open(f'exp_noise_semi_{ds}.pickle', 'wb') as handle: pickle.dump(exp_dict, handle, protocol=pickle.HIGHEST_PROTOCOL)
def semi_exp(): params = parse_args('test') exp_dict = {} for ds in ['mini', 'tiered']: for shot in [1, 5]: for num_semi in [30, 50, 100]: params.dataset = ds params.n_shot = shot params.n_semi = num_semi res, ci = run_exp(params, verbose=500) exp_dict[f'{ds} {shot} shot {num_semi} unlabeled'] = (res, ci) with open('exp_semi.pickle', 'wb') as handle: pickle.dump(exp_dict, handle, protocol=pickle.HIGHEST_PROTOCOL)
def projection_dim_exp(): args = [5, 10, 15, 20] params = parse_args('test') params.n_shot = 1 for ds in ['mini', 'tiered']: params.dataset = ds exp_dict = {'args': args} for part in ['val', 'test']: params.part = part res, ci = run_exp(params, verbose=500, args=args) exp_dict[f'{part}'] = (res, ci) with open(f'exp_projection_dim_{ds}.pickle', 'wb') as handle: pickle.dump(exp_dict, handle, protocol=pickle.HIGHEST_PROTOCOL)
import sys import math import torch import logging import os from tqdm import tqdm from typing import Dict from transformers.trainer_utils import EvalPrediction from transformers.integrations import TensorBoardCallback import json import sys if __name__ == '__main__': # read config file and merge with arguments args = parse_args() # path to saved models (based on BERT/CharacterBERT) checkpoints = { "charbert_xs_open_uf": "/data/darwin/xs_open_uf_2e-5/checkpoint-13818", "charbert_xs_open_ua": "/data/darwin/xs_open_ua_2e-5/checkpoint-8430", "charbert_xl_open_uf": "/data/darwin/xl_open_uf_2e-5/checkpoint-23023", "charbert_xl_open_ua": "/data/darwin/xl_open_ua_2e-5/checkpoint-7770", "bert": "pretrained_models/bert-base-uncased", "bert_fs10": "/pan2020/fewshot_chkps/reddit_fewshotbase10%overall0.682", "bert_fs20": "/pan2020/fewshot_chkps/reddit_fewshotbase20%overall0.672", "bert_fs50": "/pan2020/fewshot_chkps/reddit_fewshotbase50%overall0.78", "bert_fs100": "/pan2020/fewshot_chkps/reddit_fewshotbase100%overall0.865", "bert_xl_closed_v1": "/pan2020/pretrained_models/bert-base-uncased-closed-v1-xlloss0.1975", "bert_xl_closed_v2": "/pan2020/pretrained_models/bert-base-uncased-closed-v2-xlloss0.2693", "bert_xl_open_ua": "/pan2020/pretrained_models/bert-base-uncased-open-unseenauthors-xlloss0.4251",