x = Dense(10, activation='softmax')(x)

    model = Model(base_model.input, x)
    model.load_weights('weights/nasnet_weights.h5')

    score_list = np.empty((len(imgs), 11), dtype=object)
    step = 20000
    i = 0
    while i < len(imgs):
        print(i)
        imgs_temp = imgs[i:i + step]
        img_array = np.empty((len(imgs_temp), 224, 224, 3))
        file_names = []
        for ind, j in tqdm.tqdm(enumerate(imgs_temp)):
            x = preprocess_input(
                np.expand_dims(img_to_array(
                    load_img(j, target_size=target_size)),
                               axis=0))
            img_array[ind, ] = x
            file_names.append(Path(j).name.lower())

        scores = model.predict(img_array, batch_size=100, verbose=0)

        #si = np.arange(1, 11, 1)

        #mean = np.sum(scores * si, axis=1)

        #std = np.sqrt(np.sum(((np.array([si, ] * len(imgs_temp)) - mean.reshape(len(imgs_temp), -1)) ** 2) * scores, axis=1))

        #result = np.stack([file_names, mean, std]).transpose()
        #result = np.stack([file_names, scores]).transpose()
        #score_list[i:i + step, ] = result
Beispiel #2
0
                              pooling='avg',
                              weights=None)
    x = Dropout(0.75)(base_model.output)
    x = Dense(10, activation='softmax')(x)

    model = Model(base_model.input, x)
    model.load_weights('weights/nasnet_weights.h5')

    score_list = []

    for img_path in imgs:
        img = load_img(img_path, target_size=target_size)
        x = img_to_array(img)
        x = np.expand_dims(x, axis=0)

        x = preprocess_input(x)

        scores = model.predict(x, batch_size=1, verbose=0)[0]

        mean = mean_score(scores)
        std = std_score(scores)

        file_name = Path(img_path).name.lower()
        score_list.append((file_name, mean))

        print("Evaluating : ", img_path)
        print("NIMA Score : %0.3f +- (%0.3f)" % (mean, std))
        print()

    if rank_images:
        print("*" * 40, "Ranking Images", "*" * 40)
    x = Dropout(0.75)(base_model.output)
    x = Dense(10, activation='softmax')(x)

    model = Model(base_model.input, x)
    model.load_weights('weights/nasnet_weights.h5')

    score_list = np.empty((len(imgs), 11), dtype=object)
    step = 20000
    i = 0
    while i < len(imgs):
        print(i)
        imgs_temp = imgs[i:i + step]
        img_array = np.empty((len(imgs_temp), 224, 224, 3))
        file_names = []
        for ind, j in tqdm.tqdm(enumerate(imgs_temp)):
            x = preprocess_input(np.expand_dims(img_to_array(load_img(j, target_size=target_size)), axis=0))
            img_array[ind, ] = x
            file_names.append(Path(j).name.lower())

        scores = model.predict(img_array, batch_size=100, verbose=0)

        #si = np.arange(1, 11, 1)

        #mean = np.sum(scores * si, axis=1)

        #std = np.sqrt(np.sum(((np.array([si, ] * len(imgs_temp)) - mean.reshape(len(imgs_temp), -1)) ** 2) * scores, axis=1))

        #result = np.stack([file_names, mean, std]).transpose()
        #result = np.stack([file_names, scores]).transpose()
        #score_list[i:i + step, ] = result
        score_list[i:i + step, 0] = file_names
                              pooling='avg',
                              weights=None)
    x = Dropout(0.75)(base_model.output)
    x = Dense(10, activation='softmax')(x)

    model = Model(base_model.input, x)
    model.load_weights('weights/nasnet_weights.h5')

    score_list = []

    for img_path in imgs:
        img = load_img(img_path, target_size=target_size)
        x = img_to_array(img)
        x = np.expand_dims(x, axis=0)

        x = preprocess_input(x,
                             data_format=tf.keras.backend.image_data_format())

        scores = model.predict(x, batch_size=1, verbose=0)[0]

        mean = mean_score(scores)
        std = std_score(scores)

        file_name = Path(img_path).name.lower()
        score_list.append((file_name, mean))

        print("Evaluating : ", img_path)
        print("NIMA Score : %0.3f +- (%0.3f)" % (mean, std))
        print()

    if rank_images:
        print("*" * 40, "Ranking Images", "*" * 40)