Beispiel #1
0
    def res_blocks(self, inputs, W_name, b_name, scope):
        with tf.variable_scope(scope):
            net = inputs
            for res_id in range(self.num_res_block):
                res_net = net
                for layer_id in range(self.res_block_size):
                    filter_name = "{}{}_{}".format(W_name, res_id, layer_id)
                    bias_name = "{}{}_{}".format(b_name, res_id, layer_id)
                    curr_filter = self.res_filters[filter_name]
                    curr_bias = self.res_biases[bias_name]
                    # convolution
                    net = ne.conv2d_transpose(
                        net,
                        filters=curr_filter,
                        biases=curr_bias,
                        strides=self.res_strides[layer_id],
                        padding=self.res_padding[layer_id])

                    if self.use_norm == "BATCH":
                        net = ne.batch_norm(net, self.is_training)
                    elif self.use_norm == "LAYER":
                        net = ne.layer_norm(net, self.is_training)
                    elif self.use_norm == "INSTA":
                        net = ne.instance_norm(net, self.is_training)
                    net = ne.leaky_relu(net, self.res_leaky_ratio[layer_id])
                    #net = ne.leaky_brelu(net, self.res_leaky_ratio[layer_id], self.layer_low_bound, self.output_up_bound) # Nonlinear act
                    net = ne.drop_out(net, self.res_drop_rate[layer_id],
                                      self.is_training)

                net += res_net
            net = tf.identity(net, name='res_output')
            #import pdb; pdb.set_trace()
            return net
Beispiel #2
0
 def _form_groups(net, start_layer, end_layer):
     for layer_id in range(start_layer, end_layer):
         #res blocks
         W_res_name = "W_g{}_res".format(layer_id)
         b_res_name = "b_g{}_res".format(layer_id)
         net = self.res_blocks(net, W_res_name, b_res_name, scope="RES_{}".format(layer_id))
         # decv
         filter_name = "{}{}".format(W_name, layer_id)
         bias_name = "{}{}".format(b_name, layer_id)
         curr_filter = self.decv_filters[filter_name]
         curr_bias = self.decv_biases[bias_name]
         
         # de-convolution
         net = ne.conv2d_transpose(net,
                                 filters=curr_filter, biases=curr_bias,
                                 strides=self.decv_strides[layer_id], 
                                 padding=self.decv_padding[layer_id])
         # batch normalization
         if self.use_norm == "BATCH":
             net = ne.batch_norm(net, self.is_training)
         elif self.use_norm == "LAYER":
             net = ne.layer_norm(net, self.is_training)
         net = ne.leaky_relu(net, self.decv_leaky_ratio[layer_id])
         net = ne.drop_out(net, self.decv_drop_rate[layer_id], self.is_training)      
         
     return net
Beispiel #3
0
 def _form_groups(net, start_layer, end_layer):
     for layer_id in range(start_layer, end_layer):
         filter_name = "{}{}".format(W_name, layer_id)
         bias_name = "{}{}".format(b_name, layer_id)
         curr_filter = self.conv_filters[filter_name]
         curr_bias = self.conv_biases[bias_name]
         # convolution
         net = ne.conv2d(net, filters=curr_filter, biases=curr_bias,
                         strides=self.conv_strides[layer_id],
                         padding=self.conv_padding[layer_id])
         conv_net = net
         # batch normalization
         if self.use_norm == "BATCH":
             net = ne.batch_norm(net, self.is_training)
         elif self.use_norm == "LAYER":
             net = ne.layer_norm(net, self.is_training)
         elif self.use_norm == "INSTA":
             net = ne.instance_norm(net, self.is_training)
         #net = ne.leaky_brelu(net, self.conv_leaky_ratio[layer_id], self.layer_low_bound, self.output_up_bound) # Nonlinear act
         net = ne.leaky_relu(net, self.conv_leaky_ratio[layer_id])
         net = ne.drop_out(net, self.conv_drop_rate[layer_id], self.is_training)
         # residual for conv
         if conv_residual:
             net += conv_net
         # res blocks
         if self.num_res_block != 0:
             W_res_name = "W_g{}_res".format(layer_id)
             b_res_name = "b_g{}_res".format(layer_id)
             net = self.res_blocks(net, W_res_name, b_res_name, scope="RES_{}".format(layer_id))
     return net
Beispiel #4
0
        def _form_groups(net, start_layer, end_layer):
            for layer_id in range(start_layer, end_layer):
                #res blocks
                W_res_name = "W_g{}_res".format(layer_id)
                b_res_name = "b_g{}_res".format(layer_id)
                net = self.res_blocks(net,
                                      W_res_name,
                                      b_res_name,
                                      scope="RES_{}".format(layer_id))
                # decv
                filter_name = "{}{}".format(W_name, layer_id)
                bias_name = "{}{}".format(b_name, layer_id)
                curr_filter = self.decv_filters[filter_name]
                curr_bias = self.decv_biases[bias_name]

                # de-convolution
                net = ne.conv2d_transpose(net,
                                          filters=curr_filter,
                                          biases=curr_bias,
                                          strides=self.decv_strides[layer_id],
                                          padding=self.decv_padding[layer_id])
                # batch normalization
                if self.use_norm == "BATCH":
                    net = ne.batch_norm(net, self.is_training)
                elif self.use_norm == "LAYER":
                    net = ne.layer_norm(net, self.is_training)
                elif self.use_norm == "INSTA":
                    net = ne.instance_norm(net, self.is_training)

                if layer_id != end_layer - 1:
                    net = ne.leaky_relu(net, self.decv_leaky_ratio[layer_id])
                    net = ne.drop_out(net, self.decv_drop_rate[layer_id],
                                      self.is_training)

                if layer_id == self.num_decv - 2:
                    # mask
                    if FLAGS.USE_LABEL_MASK:
                        w = net.get_shape().as_list()[1]
                        h = net.get_shape().as_list()[2]
                        c = net.get_shape().as_list()[3]
                        net = tf.reshape(net, [-1, w * h, c])
                        net = tf.matmul(net, mask_states)
                        net = tf.reshape(net, [-1, w, h, c])
                        if self.use_norm == "BATCH":
                            net = ne.batch_norm(net, self.is_training)
                        elif self.use_norm == "LAYER":
                            net = ne.layer_norm(net, self.is_training)
                        elif self.use_norm == "INSTA":
                            net = ne.instance_norm(net, self.is_training)
                #import pdb; pdb.set_trace()
            return net
Beispiel #5
0
    def _fc_layers(self, inputs, weights_dict, biases_dict, fc_leaky_ratio,
                   fc_drop_rate, num_fc, W_name, b_name):
        net = inputs
        for layer_id in range(num_fc):
            weight_name = "{}{}".format(W_name, layer_id)
            bias_name = "{}{}".format(b_name, layer_id)
            curr_weight = weights_dict[weight_name]
            curr_bias = biases_dict[bias_name]
            net = ne.fully_conn(net, weights=curr_weight, biases=curr_bias)
            # batch normalization
            if self.use_norm == "BATCH":
                net = ne.batch_norm(net, self.is_training, axis=-1)
            #net = ne.leaky_brelu(net, self.enfc_leaky_ratio[layer_id], self.enfc_low_bound[layer_id], self.enfc_up_bound[layer_id]) # Nonlinear act
            net = ne.leaky_relu(net, fc_leaky_ratio[layer_id])
            net = ne.drop_out(net, fc_drop_rate[layer_id], self.is_training)
            #net = ne.elu(net)

        net = tf.identity(net, name='output')
        return net
Beispiel #6
0
    def defc_layers(self, inputs, W_name="W_defc", b_name="b_defc"):
        net = inputs
        for layer_id in range(self.num_enfc):
            weight_name = "{}{}".format(W_name, layer_id)
            bias_name = "{}{}".format(b_name, layer_id)
            curr_weight = self.defc_weights[weight_name]
            curr_bias = self.defc_biases[bias_name]
            net = ne.fully_conn(net, weights=curr_weight, biases=curr_bias)
            # batch normalization
            if self.use_batch_norm:
                net = ne.batch_norm(net, self.is_training, axis=1)

            #net = ne.leaky_brelu(net, self.defc_leaky_ratio[layer_id], self.layer_low_bound, self.layer_up_bound) # Nonlinear act
            net = ne.leaky_relu(net, self.defc_leaky_ratio[layer_id])
            net = ne.drop_out(net, self.defc_drop_rate[layer_id],
                              self.is_training)
            #net = ne.elu(net)

        net = tf.identity(net, name='output')
        net = tf.reshape(net, [-1] + self.decv_in_shape)
        return net
Beispiel #7
0
    def enfc_layers(self, inputs, W_name="W_enfc", b_name="b_enfc"):
        net = tf.reshape(inputs, [
            -1, self.conv_out_shape[0] * self.conv_out_shape[1] *
            self.conv_out_shape[2]
        ])
        for layer_id in range(self.num_enfc):
            weight_name = "{}{}".format(W_name, layer_id)
            bias_name = "{}{}".format(b_name, layer_id)
            curr_weight = self.enfc_weights[weight_name]
            curr_bias = self.enfc_biases[bias_name]
            net = ne.fully_conn(net, weights=curr_weight, biases=curr_bias)
            # batch normalization
            if self.use_norm == "BATCH":
                net = ne.batch_norm(net, self.is_training, axis=1)
            elif self.use_norm == "LAYER":
                net = ne.layer_norm(net, self.is_training)
            #net = ne.leaky_brelu(net, self.enfc_leaky_ratio[layer_id], self.enfc_low_bound[layer_id], self.enfc_up_bound[layer_id]) # Nonlinear act
            net = ne.leaky_relu(net, self.enfc_leaky_ratio[layer_id])
            net = ne.drop_out(net, self.enfc_drop_rate[layer_id],
                              self.is_training)
            #net = ne.elu(net)

        net = tf.identity(net, name='output')
        return net