Beispiel #1
0
    def __init__(self, criterion, metric, device,
                 optimizer_name="adam", lr_scheduler="sqrt", initial_lr=1e-3, epoch_size=1,
                 embed_size=16, hidden_size=256, n_layers=2):
        super(Model, self).__init__()

        vocab_size = len(string.printable)
        self.net = RNN(vocab_size, embed_size, hidden_size, vocab_size, n_layers).to(device)
        self.criterion = criterion
        self.metric = metric
        self.device = device

        self.optimizer = get_optimizer(optimizer_name, self.net, initial_lr)
        self.lr_scheduler = get_lr_scheduler(self.optimizer, lr_scheduler, epoch_size)
Beispiel #2
0
    def testExpDecaying(self):
        exp_decaying_lr_gamma = 0.66
        FLAGS = easydict.EasyDict({
            'lr_scheduler': 'exp_decaying',
            'epoch_warmup': 5,
            '_steps_per_epoch': 1,
            'lr': 0.256,
            'base_lr': 0.256,
            'exp_decay_epoch_interval': 2,
            'exp_decaying_lr_gamma': exp_decaying_lr_gamma,
            'lr_stepwise': False,
        })
        optimizer = self._setup(FLAGS.lr)
        lr_scheduler = optim.get_lr_scheduler(optimizer, FLAGS)
        res = self._step(optimizer, lr_scheduler, 21)
        self.assertEqual(res[-1], FLAGS.lr * FLAGS.exp_decaying_lr_gamma**10)

        optimizer = self._setup(FLAGS.lr)
        FLAGS.lr_scheduler = 'exp_decaying_trunc'
        lr_scheduler = optim.get_lr_scheduler(optimizer, FLAGS)
        res = self._step(optimizer, lr_scheduler, 122)
        self.assertEqual(res[-1], FLAGS.lr * 0.05)
    def __init__(self, iterator, criterion, metric, device, optimizer_name="adam", lr_scheduler="sqrt", initial_lr=1e-3,
                 epoch_size=1, embedding_dim=100, hidden_dim=256, output_dim=1, n_layers=2, bidirectional=True,
                 dropout=0.5):
        """

        :param iterator:
        :param criterion:
        :param metric:
        :param device:
        :param optimizer_name:
        :param lr_scheduler:
        :param initial_lr:
        :param embedding_dim:
        :param hidden_dim:
        :param output_dim:
        :param n_layers:
        :param bidirectional:
        :param dropout:
        """
        super(Model, self).__init__()

        self.device = device
        self.criterion = criterion
        self.metric = metric

        text_field = iterator.dataset.fields['text']

        pad_idx = text_field.vocab.stoi[text_field.pad_token]
        unk_idx = text_field.vocab.stoi[text_field.unk_token]

        self.net = LSTM(vocab_size=len(text_field.vocab),
                        embedding_dim=embedding_dim,
                        hidden_dim=hidden_dim,
                        output_dim=output_dim,
                        n_layers=n_layers,
                        bidirectional=bidirectional,
                        dropout=dropout,
                        pad_idx=pad_idx).to(device)

        # initialize embeddings
        pretrained_embeddings = text_field.vocab.vectors
        self.net.embedding.weight.data.copy_(pretrained_embeddings)

        self.net.embedding.weight.data[unk_idx] = torch.zeros(embedding_dim).to(self.device)
        self.net.embedding.weight.data[pad_idx] = torch.zeros(embedding_dim).to(self.device)

        # Freeze embedding
        self.net.embedding.weight.requires_grad = False

        self.optimizer = get_optimizer(optimizer_name, self.net, initial_lr)
        self.lr_scheduler = get_lr_scheduler(self.optimizer, lr_scheduler, epoch_size)
Beispiel #4
0
def train():
    logger = get_logger("./logger")
    writer = SummaryWriter("./temp.tb")


    train_loader, val_loader = None, None
    test_loader = None

    model = None

    criterion = None
    optimizer = get_optimizer(model)
    scheduler = get_lr_scheduler(optimizer)

    trainer = Trainer(criterion, optimizer, scheduler, logger, writer)
    trainer.train_loop(train_loader, val_loader, test_loader, model)
Beispiel #5
0
    def __init__(self,
                 criterion,
                 metric,
                 device,
                 optimizer_name="adam",
                 lr_scheduler="sqrt",
                 initial_lr=1e-3,
                 epoch_size=1):
        super(Model, self).__init__()

        self.net = CNN().to(device)
        self.criterion = criterion
        self.metric = metric
        self.device = device

        self.optimizer = get_optimizer(optimizer_name, self.net, initial_lr)
        self.lr_scheduler = get_lr_scheduler(self.optimizer, lr_scheduler,
                                             epoch_size)
Beispiel #6
0
    def __init__(self,
                 criterion,
                 metric,
                 device,
                 input_dimension,
                 num_classes,
                 optimizer_name="adam",
                 lr_scheduler="cyclic",
                 initial_lr=1e-3,
                 epoch_size=1):
        super(Model, self).__init__()

        self.criterion = criterion
        self.metric = metric
        self.device = device

        self.net = LinearLayer(input_dimension, num_classes).to(self.device)

        self.optimizer = get_optimizer(optimizer_name, self.net, initial_lr)
        self.lr_scheduler = get_lr_scheduler(self.optimizer, lr_scheduler,
                                             epoch_size)
Beispiel #7
0
    def __init__(self,
                 criterion,
                 metric,
                 device,
                 optimizer_name="adam",
                 lr_scheduler="sqrt",
                 initial_lr=1e-3,
                 epoch_size=1,
                 coeff=1):
        super(Model, self).__init__()

        self.net = resnet18(pretrained=True)
        self.net.fc = nn.Linear(self.net.fc.in_features, NUMBER_CLASSES)
        self.net = self.net.to(device)
        self.criterion = criterion
        self.metric = metric
        self.device = device
        self.coeff = coeff

        self.optimizer = get_optimizer(optimizer_name, self.net, initial_lr)
        self.lr_scheduler = get_lr_scheduler(self.optimizer, lr_scheduler,
                                             epoch_size)
Beispiel #8
0
def train_val_test():
    """Train and val."""
    torch.backends.cudnn.benchmark = True

    # model
    model, model_wrapper = mc.get_model()
    ema = mc.setup_ema(model)
    criterion = torch.nn.CrossEntropyLoss(reduction='none').cuda()
    criterion_smooth = optim.CrossEntropyLabelSmooth(
        FLAGS.model_kwparams['num_classes'],
        FLAGS['label_smoothing'],
        reduction='none').cuda()
    # TODO(meijieru): cal loss on all GPUs instead only `cuda:0` when non
    # distributed

    if FLAGS.get('log_graph_only', False):
        if udist.is_master():
            _input = torch.zeros(1, 3, FLAGS.image_size,
                                 FLAGS.image_size).cuda()
            _input = _input.requires_grad_(True)
            mc.summary_writer.add_graph(model_wrapper, (_input, ),
                                        verbose=True)
        return

    # check pretrained
    if FLAGS.pretrained:
        checkpoint = torch.load(FLAGS.pretrained,
                                map_location=lambda storage, loc: storage)
        if ema:
            ema.load_state_dict(checkpoint['ema'])
            ema.to(get_device(model))
        # update keys from external models
        if isinstance(checkpoint, dict) and 'model' in checkpoint:
            checkpoint = checkpoint['model']
        if (hasattr(FLAGS, 'pretrained_model_remap_keys')
                and FLAGS.pretrained_model_remap_keys):
            new_checkpoint = {}
            new_keys = list(model_wrapper.state_dict().keys())
            old_keys = list(checkpoint.keys())
            for key_new, key_old in zip(new_keys, old_keys):
                new_checkpoint[key_new] = checkpoint[key_old]
                logging.info('remap {} to {}'.format(key_new, key_old))
            checkpoint = new_checkpoint
        model_wrapper.load_state_dict(checkpoint)
        logging.info('Loaded model {}.'.format(FLAGS.pretrained))
    optimizer = optim.get_optimizer(model_wrapper, FLAGS)

    # check resume training
    if FLAGS.resume:
        checkpoint = torch.load(os.path.join(FLAGS.resume,
                                             'latest_checkpoint.pt'),
                                map_location=lambda storage, loc: storage)
        model_wrapper.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        if ema:
            ema.load_state_dict(checkpoint['ema'])
            ema.to(get_device(model))
        last_epoch = checkpoint['last_epoch']
        lr_scheduler = optim.get_lr_scheduler(optimizer, FLAGS)
        lr_scheduler.last_epoch = (last_epoch + 1) * FLAGS._steps_per_epoch
        best_val = extract_item(checkpoint['best_val'])
        train_meters, val_meters = checkpoint['meters']
        FLAGS._global_step = (last_epoch + 1) * FLAGS._steps_per_epoch
        if udist.is_master():
            logging.info('Loaded checkpoint {} at epoch {}.'.format(
                FLAGS.resume, last_epoch))
    else:
        lr_scheduler = optim.get_lr_scheduler(optimizer, FLAGS)
        # last_epoch = lr_scheduler.last_epoch
        last_epoch = -1
        best_val = 1.
        train_meters = mc.get_meters('train')
        val_meters = mc.get_meters('val')
        FLAGS._global_step = 0

    if not FLAGS.resume and udist.is_master():
        logging.info(model_wrapper)
    if FLAGS.profiling:
        if 'gpu' in FLAGS.profiling:
            mc.profiling(model, use_cuda=True)
        if 'cpu' in FLAGS.profiling:
            mc.profiling(model, use_cuda=False)

    # data
    (train_transforms, val_transforms,
     test_transforms) = dataflow.data_transforms(FLAGS)
    (train_set, val_set, test_set) = dataflow.dataset(train_transforms,
                                                      val_transforms,
                                                      test_transforms, FLAGS)
    (train_loader, calib_loader, val_loader,
     test_loader) = dataflow.data_loader(train_set, val_set, test_set, FLAGS)

    if FLAGS.test_only and (test_loader is not None):
        if udist.is_master():
            logging.info('Start testing.')
        test_meters = mc.get_meters('test')
        validate(last_epoch, calib_loader, test_loader, criterion, test_meters,
                 model_wrapper, ema, 'test')
        return

    # already broadcast by AllReduceDistributedDataParallel
    # optimizer load same checkpoint/same initialization

    if udist.is_master():
        logging.info('Start training.')

    for epoch in range(last_epoch + 1, FLAGS.num_epochs):
        # train
        results = run_one_epoch(epoch,
                                train_loader,
                                model_wrapper,
                                criterion_smooth,
                                optimizer,
                                lr_scheduler,
                                ema,
                                train_meters,
                                phase='train')

        # val
        results = validate(epoch, calib_loader, val_loader, criterion,
                           val_meters, model_wrapper, ema, 'val')
        if results['top1_error'] < best_val:
            best_val = results['top1_error']

            if udist.is_master():
                save_status(model_wrapper, optimizer, ema, epoch, best_val,
                            (train_meters, val_meters),
                            os.path.join(FLAGS.log_dir, 'best_model.pt'))
                logging.info(
                    'New best validation top1 error: {:.4f}'.format(best_val))
        if udist.is_master():
            # save latest checkpoint
            save_status(model_wrapper, optimizer, ema, epoch, best_val,
                        (train_meters, val_meters),
                        os.path.join(FLAGS.log_dir, 'latest_checkpoint.pt'))

        wandb.log(
            {
                "Validation Accuracy": 1. - results['top1_error'],
                "Best Validation Accuracy": 1. - best_val
            },
            step=epoch)


# NOTE(meijieru): from scheduler code, should be called after train/val
# use stepwise scheduler instead
# lr_scheduler.step()
    return
Beispiel #9
0
def train_val_test():
    """Train and val."""
    torch.backends.cudnn.benchmark = True  # For acceleration

    # model
    model, model_wrapper = mc.get_model()
    ema = mc.setup_ema(model)
    criterion = torch.nn.CrossEntropyLoss(reduction='mean').cuda()
    criterion_smooth = optim.CrossEntropyLabelSmooth(
        FLAGS.model_kwparams['num_classes'],
        FLAGS['label_smoothing'],
        reduction='mean').cuda()
    if model.task == 'segmentation':
        criterion = CrossEntropyLoss().cuda()
        criterion_smooth = CrossEntropyLoss().cuda()
    if FLAGS.dataset == 'coco':
        criterion = JointsMSELoss(use_target_weight=True).cuda()
        criterion_smooth = JointsMSELoss(use_target_weight=True).cuda()

    if FLAGS.get('log_graph_only', False):
        if udist.is_master():
            _input = torch.zeros(1, 3, FLAGS.image_size,
                                 FLAGS.image_size).cuda()
            _input = _input.requires_grad_(True)
            if isinstance(model_wrapper,
                          (torch.nn.DataParallel,
                           udist.AllReduceDistributedDataParallel)):
                mc.summary_writer.add_graph(model_wrapper.module, (_input, ),
                                            verbose=True)
            else:
                mc.summary_writer.add_graph(model_wrapper, (_input, ),
                                            verbose=True)
        return

    # check pretrained
    if FLAGS.pretrained:
        checkpoint = torch.load(FLAGS.pretrained,
                                map_location=lambda storage, loc: storage)
        if ema:
            ema.load_state_dict(checkpoint['ema'])
            ema.to(get_device(model))
        # update keys from external models
        if isinstance(checkpoint, dict) and 'model' in checkpoint:
            checkpoint = checkpoint['model']
        if (hasattr(FLAGS, 'pretrained_model_remap_keys')
                and FLAGS.pretrained_model_remap_keys):
            new_checkpoint = {}
            new_keys = list(model_wrapper.state_dict().keys())
            old_keys = list(checkpoint.keys())
            for key_new, key_old in zip(new_keys, old_keys):
                new_checkpoint[key_new] = checkpoint[key_old]
                if udist.is_master():
                    logging.info('remap {} to {}'.format(key_new, key_old))
            checkpoint = new_checkpoint
        model_wrapper.load_state_dict(checkpoint)
        if udist.is_master():
            logging.info('Loaded model {}.'.format(FLAGS.pretrained))
    optimizer = optim.get_optimizer(model_wrapper, FLAGS)

    # check resume training
    if FLAGS.resume:
        checkpoint = torch.load(os.path.join(FLAGS.resume,
                                             'latest_checkpoint.pt'),
                                map_location=lambda storage, loc: storage)
        model_wrapper = checkpoint['model'].cuda()
        model = model_wrapper.module
        # model = checkpoint['model'].module
        optimizer = checkpoint['optimizer']
        for state in optimizer.state.values():
            for k, v in state.items():
                if isinstance(v, torch.Tensor):
                    state[k] = v.cuda()
        # model_wrapper.load_state_dict(checkpoint['model'])
        # optimizer.load_state_dict(checkpoint['optimizer'])
        if ema:
            # ema.load_state_dict(checkpoint['ema'])
            ema = checkpoint['ema'].cuda()
            ema.to(get_device(model))
        last_epoch = checkpoint['last_epoch']
        lr_scheduler = optim.get_lr_scheduler(optimizer,
                                              FLAGS,
                                              last_epoch=(last_epoch + 1) *
                                              FLAGS._steps_per_epoch)
        lr_scheduler.last_epoch = (last_epoch + 1) * FLAGS._steps_per_epoch
        best_val = extract_item(checkpoint['best_val'])
        train_meters, val_meters = checkpoint['meters']
        FLAGS._global_step = (last_epoch + 1) * FLAGS._steps_per_epoch
        if udist.is_master():
            logging.info('Loaded checkpoint {} at epoch {}.'.format(
                FLAGS.resume, last_epoch))
    else:
        lr_scheduler = optim.get_lr_scheduler(optimizer, FLAGS)
        # last_epoch = lr_scheduler.last_epoch
        last_epoch = -1
        best_val = 1.
        if not FLAGS.distill:
            train_meters = mc.get_meters('train', FLAGS.prune_params['method'])
            val_meters = mc.get_meters('val')
        else:
            train_meters = mc.get_distill_meters('train',
                                                 FLAGS.prune_params['method'])
            val_meters = mc.get_distill_meters('val')
        if FLAGS.model_kwparams.task == 'segmentation':
            best_val = 0.
            if not FLAGS.distill:
                train_meters = mc.get_seg_meters('train',
                                                 FLAGS.prune_params['method'])
                val_meters = mc.get_seg_meters('val')
            else:
                train_meters = mc.get_seg_distill_meters(
                    'train', FLAGS.prune_params['method'])
                val_meters = mc.get_seg_distill_meters('val')
        FLAGS._global_step = 0

    if not FLAGS.resume and udist.is_master():
        logging.info(model_wrapper)
    assert FLAGS.profiling, '`m.macs` is used for calculating penalty'
    # if udist.is_master():
    #     model.apply(lambda m: print(m))
    if FLAGS.profiling:
        if 'gpu' in FLAGS.profiling:
            mc.profiling(model, use_cuda=True)
        if 'cpu' in FLAGS.profiling:
            mc.profiling(model, use_cuda=False)

    if FLAGS.dataset == 'cityscapes':
        (train_set, val_set,
         test_set) = seg_dataflow.cityscapes_datasets(FLAGS)
        segval = SegVal(num_classes=19)
    elif FLAGS.dataset == 'ade20k':
        (train_set, val_set, test_set) = seg_dataflow.ade20k_datasets(FLAGS)
        segval = SegVal(num_classes=150)
    elif FLAGS.dataset == 'coco':
        (train_set, val_set, test_set) = seg_dataflow.coco_datasets(FLAGS)
        # print(len(train_set), len(val_set))  # 149813 104125
        segval = None
    else:
        # data
        (train_transforms, val_transforms,
         test_transforms) = dataflow.data_transforms(FLAGS)
        (train_set, val_set,
         test_set) = dataflow.dataset(train_transforms, val_transforms,
                                      test_transforms, FLAGS)
        segval = None
    (train_loader, calib_loader, val_loader,
     test_loader) = dataflow.data_loader(train_set, val_set, test_set, FLAGS)

    # get bn's weights
    if FLAGS.prune_params.use_transformer:
        FLAGS._bn_to_prune, FLAGS._bn_to_prune_transformer = prune.get_bn_to_prune(
            model, FLAGS.prune_params)
    else:
        FLAGS._bn_to_prune = prune.get_bn_to_prune(model, FLAGS.prune_params)
    rho_scheduler = prune.get_rho_scheduler(FLAGS.prune_params,
                                            FLAGS._steps_per_epoch)

    if FLAGS.test_only and (test_loader is not None):
        if udist.is_master():
            logging.info('Start testing.')
        test_meters = mc.get_meters('test')
        validate(last_epoch, calib_loader, test_loader, criterion, test_meters,
                 model_wrapper, ema, 'test')
        return

    # already broadcast by AllReduceDistributedDataParallel
    # optimizer load same checkpoint/same initialization

    if udist.is_master():
        logging.info('Start training.')

    for epoch in range(last_epoch + 1, FLAGS.num_epochs):
        # train
        results = run_one_epoch(epoch,
                                train_loader,
                                model_wrapper,
                                criterion_smooth,
                                optimizer,
                                lr_scheduler,
                                ema,
                                rho_scheduler,
                                train_meters,
                                phase='train')

        if (epoch + 1) % FLAGS.eval_interval == 0:
            # val
            results, model_eval_wrapper = validate(epoch, calib_loader,
                                                   val_loader, criterion,
                                                   val_meters, model_wrapper,
                                                   ema, 'val', segval, val_set)

            if FLAGS.prune_params['method'] is not None and FLAGS.prune_params[
                    'bn_prune_filter'] is not None:
                prune_threshold = FLAGS.model_shrink_threshold  # 1e-3
                masks = prune.cal_mask_network_slimming_by_threshold(
                    get_prune_weights(model_eval_wrapper), prune_threshold
                )  # get mask for all bn weights (depth-wise)
                FLAGS._bn_to_prune.add_info_list('mask', masks)
                flops_pruned, infos = prune.cal_pruned_flops(
                    FLAGS._bn_to_prune)
                log_pruned_info(mc.unwrap_model(model_eval_wrapper),
                                flops_pruned, infos, prune_threshold)
                if not FLAGS.distill:
                    if flops_pruned >= FLAGS.model_shrink_delta_flops \
                            or epoch == FLAGS.num_epochs - 1:
                        ema_only = (epoch == FLAGS.num_epochs - 1)
                        shrink_model(model_wrapper, ema, optimizer,
                                     FLAGS._bn_to_prune, prune_threshold,
                                     ema_only)
            model_kwparams = mb.output_network(mc.unwrap_model(model_wrapper))

            if udist.is_master():
                if FLAGS.model_kwparams.task == 'classification' and results[
                        'top1_error'] < best_val:
                    best_val = results['top1_error']
                    logging.info(
                        'New best validation top1 error: {:.4f}'.format(
                            best_val))

                    save_status(model_wrapper, model_kwparams, optimizer, ema,
                                epoch, best_val, (train_meters, val_meters),
                                os.path.join(FLAGS.log_dir, 'best_model'))

                elif FLAGS.model_kwparams.task == 'segmentation' and FLAGS.dataset != 'coco' and results[
                        'mIoU'] > best_val:
                    best_val = results['mIoU']
                    logging.info('New seg mIoU: {:.4f}'.format(best_val))

                    save_status(model_wrapper, model_kwparams, optimizer, ema,
                                epoch, best_val, (train_meters, val_meters),
                                os.path.join(FLAGS.log_dir, 'best_model'))
                elif FLAGS.dataset == 'coco' and results > best_val:
                    best_val = results
                    logging.info('New Result: {:.4f}'.format(best_val))
                    save_status(model_wrapper, model_kwparams, optimizer, ema,
                                epoch, best_val, (train_meters, val_meters),
                                os.path.join(FLAGS.log_dir, 'best_model'))

                # save latest checkpoint
                save_status(model_wrapper, model_kwparams, optimizer, ema,
                            epoch, best_val, (train_meters, val_meters),
                            os.path.join(FLAGS.log_dir, 'latest_checkpoint'))

    return
Beispiel #10
0
def train_val_test():
    """Train and val."""
    torch.backends.cudnn.benchmark = True

    # model
    model, model_wrapper = get_model()
    criterion = torch.nn.CrossEntropyLoss(reduction='none').cuda()
    criterion_smooth = optim.CrossEntropyLabelSmooth(
        FLAGS.model_kwparams['num_classes'],
        FLAGS['label_smoothing'],
        reduction='none').cuda()
    # TODO: cal loss on all GPUs instead only `cuda:0` when non
    # distributed

    ema = None
    if FLAGS.moving_average_decay > 0.0:
        if FLAGS.moving_average_decay_adjust:
            moving_average_decay = optim.ExponentialMovingAverage.adjust_momentum(
                FLAGS.moving_average_decay,
                FLAGS.moving_average_decay_base_batch / FLAGS.batch_size)
        else:
            moving_average_decay = FLAGS.moving_average_decay
        logging.info('Moving average for model parameters: {}'.format(
            moving_average_decay))
        ema = optim.ExponentialMovingAverage(moving_average_decay)
        for name, param in model.named_parameters():
            ema.register(name, param)
        # We maintain mva for batch norm moving mean and variance as well.
        for name, buffer in model.named_buffers():
            if 'running_var' in name or 'running_mean' in name:
                ema.register(name, buffer)

    if FLAGS.get('log_graph_only', False):
        if is_root_rank:
            _input = torch.zeros(1, 3, FLAGS.image_size,
                                 FLAGS.image_size).cuda()
            _input = _input.requires_grad_(True)
            summary_writer.add_graph(model_wrapper, (_input, ), verbose=True)
        return

    # check pretrained
    if FLAGS.pretrained:
        checkpoint = torch.load(FLAGS.pretrained,
                                map_location=lambda storage, loc: storage)
        if ema:
            ema.load_state_dict(checkpoint['ema'])
            ema.to(get_device(model))
        # update keys from external models
        if isinstance(checkpoint, dict) and 'model' in checkpoint:
            checkpoint = checkpoint['model']
        if (hasattr(FLAGS, 'pretrained_model_remap_keys')
                and FLAGS.pretrained_model_remap_keys):
            new_checkpoint = {}
            new_keys = list(model_wrapper.state_dict().keys())
            old_keys = list(checkpoint.keys())
            for key_new, key_old in zip(new_keys, old_keys):
                new_checkpoint[key_new] = checkpoint[key_old]
                logging.info('remap {} to {}'.format(key_new, key_old))
            checkpoint = new_checkpoint
        model_wrapper.load_state_dict(checkpoint)
        logging.info('Loaded model {}.'.format(FLAGS.pretrained))
    optimizer = optim.get_optimizer(model_wrapper, FLAGS)

    # check resume training
    if FLAGS.resume:
        checkpoint = torch.load(os.path.join(FLAGS.resume,
                                             'latest_checkpoint.pt'),
                                map_location=lambda storage, loc: storage)
        model_wrapper.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        if ema:
            ema.load_state_dict(checkpoint['ema'])
            ema.to(get_device(model))
        last_epoch = checkpoint['last_epoch']
        lr_scheduler = optim.get_lr_scheduler(optimizer, FLAGS)
        lr_scheduler.last_epoch = (last_epoch + 1) * FLAGS._steps_per_epoch
        best_val = extract_item(checkpoint['best_val'])
        train_meters, val_meters = checkpoint['meters']
        FLAGS._global_step = (last_epoch + 1) * FLAGS._steps_per_epoch
        if is_root_rank:
            logging.info('Loaded checkpoint {} at epoch {}.'.format(
                FLAGS.resume, last_epoch))
    else:
        lr_scheduler = optim.get_lr_scheduler(optimizer, FLAGS)
        # last_epoch = lr_scheduler.last_epoch
        last_epoch = -1
        best_val = 1.
        train_meters = get_meters('train')
        val_meters = get_meters('val')
        FLAGS._global_step = 0

    if not FLAGS.resume and is_root_rank:
        logging.info(model_wrapper)
    assert FLAGS.profiling, '`m.macs` is used for calculating penalty'
    if FLAGS.profiling:
        if 'gpu' in FLAGS.profiling:
            profiling(model, use_cuda=True)
        if 'cpu' in FLAGS.profiling:
            profiling(model, use_cuda=False)

    # data
    (train_transforms, val_transforms,
     test_transforms) = dataflow.data_transforms(FLAGS)
    (train_set, val_set, test_set) = dataflow.dataset(train_transforms,
                                                      val_transforms,
                                                      test_transforms, FLAGS)
    (train_loader, calib_loader, val_loader,
     test_loader) = dataflow.data_loader(train_set, val_set, test_set, FLAGS)

    # get bn's weights
    FLAGS._bn_to_prune = prune.get_bn_to_prune(model, FLAGS.prune_params)
    rho_scheduler = prune.get_rho_scheduler(FLAGS.prune_params,
                                            FLAGS._steps_per_epoch)

    if FLAGS.test_only and (test_loader is not None):
        if is_root_rank:
            logging.info('Start testing.')
        test_meters = get_meters('test')
        validate(last_epoch, calib_loader, test_loader, criterion, test_meters,
                 model_wrapper, ema, 'test')
        return

    # already broadcast by AllReduceDistributedDataParallel
    # optimizer load same checkpoint/same initialization

    if is_root_rank:
        logging.info('Start training.')

    for epoch in range(last_epoch + 1, FLAGS.num_epochs):
        # train
        results = run_one_epoch(epoch,
                                train_loader,
                                model_wrapper,
                                criterion_smooth,
                                optimizer,
                                lr_scheduler,
                                ema,
                                rho_scheduler,
                                train_meters,
                                phase='train')

        # val
        results, model_eval_wrapper = validate(epoch, calib_loader, val_loader,
                                               criterion, val_meters,
                                               model_wrapper, ema, 'val')

        if FLAGS.prune_params['method'] is not None:
            prune_threshold = FLAGS.model_shrink_threshold
            masks = prune.cal_mask_network_slimming_by_threshold(
                get_prune_weights(model_eval_wrapper), prune_threshold)
            FLAGS._bn_to_prune.add_info_list('mask', masks)
            flops_pruned, infos = prune.cal_pruned_flops(FLAGS._bn_to_prune)
            log_pruned_info(unwrap_model(model_eval_wrapper), flops_pruned,
                            infos, prune_threshold)
            if flops_pruned >= FLAGS.model_shrink_delta_flops \
                    or epoch == FLAGS.num_epochs - 1:
                ema_only = (epoch == FLAGS.num_epochs - 1)
                shrink_model(model_wrapper, ema, optimizer, FLAGS._bn_to_prune,
                             prune_threshold, ema_only)
        model_kwparams = mb.output_network(unwrap_model(model_wrapper))

        if results['top1_error'] < best_val:
            best_val = results['top1_error']

            if is_root_rank:
                save_status(model_wrapper, model_kwparams, optimizer, ema,
                            epoch, best_val, (train_meters, val_meters),
                            os.path.join(FLAGS.log_dir, 'best_model'))
                logging.info(
                    'New best validation top1 error: {:.4f}'.format(best_val))

        if is_root_rank:
            # save latest checkpoint
            save_status(model_wrapper, model_kwparams, optimizer, ema, epoch,
                        best_val, (train_meters, val_meters),
                        os.path.join(FLAGS.log_dir, 'latest_checkpoint'))

        # NOTE: from scheduler code, should be called after train/val
        # use stepwise scheduler instead
        # lr_scheduler.step()
    return
Beispiel #11
0
                      classes=CONFIG.classes,
                      se=True,
                      activation="hswish",
                      l_cfgs_name=CONFIG.model,
                      seg_state=CONFIG.seg_state)

        if args.load_pretrained:
            pretrained_dict = load_state_dict(CONFIG.model_pretrained,
                                              use_ema=CONFIG.ema)
            model.load_state_dict(pretrained_dict, strict=False)
            logging.info("Load pretrained from {} to {}".format(
                CONFIG.model_pretrained, CONFIG.model))

        if (device.type == "cuda" and CONFIG.ngpu >= 1):
            model = model.to(device)
            model = nn.DataParallel(model, list(range(CONFIG.ngpu)))

        optimizer = get_optimizer(model.parameters(), CONFIG.optim_state)
        criterion = Loss(device, CONFIG)
        scheduler = get_lr_scheduler(optimizer, len(train_loader), CONFIG)

        start_time = time.time()
        trainer = Trainer(criterion, optimizer, scheduler, device, CONFIG)
        trainer.train_loop(train_loader, test_loader, model, fold)

    logging.info("Total training time : {:.2f}".format(time.time() -
                                                       start_time))
    logging.info(
        "=================================== Experiment title : {} End ==========================="
        .format(args.title))