Beispiel #1
0
# Parametros globales
manager = ParamsManager(args.params_file)
agent_params = manager.get_agent_params()
global_step_num = 0

#Fichero del log
summary_filename_prefix = agent_params['summary_filename_prefix']
summary_filename = summary_filename_prefix + args.env + datetime.now(
).strftime("%y-%m-%d-%H-%M")

# Sumary writter de TBX
writer = SummaryWriter(summary_filename)

manager.export_agent_params(summary_filename + "/" + "agent_params.json")
manager.export_env_params(summary_filename + "/" + "env_params.json")

# Habilitar entranamiento por GPU
use_cuda = agent_params['use_cuda']
device = torch.device(
    "cuda:" +
    str(args.gpu_id) if torch.cuda.is_available() and use_cuda else "cpu")

# Hbilitar la semilla aleotoria
seed = agent_params['seed']
torch.manual_seed(seed)
np.random.seed(seed)
if torch.cuda.is_available() and use_cuda:
    torch.cuda.manual_seed_all(seed)

                    help="GPU device ID to use. Default:0",
                    type=int,
                    default=0,
                    metavar="GPU_ID")
args = parser.parse_args()

global_step_num = 0
params_manager = ParamsManager(args.params_file)
agent_algo = "A2C"
summary_file_path_prefix = params_manager.get_agent_params(
)['summary_file_path_prefix']
summary_file_path = summary_file_path_prefix + agent_algo + '_' + args.env + "_" + datetime.now(
).strftime("%y-%m-%d-%H-%M")
writer = SummaryWriter(summary_file_path)
# Export the parameters as json files to the log directory to keep track of the parameters used in each experiment
params_manager.export_env_params(summary_file_path + "/" + "env_params.json")
params_manager.export_agent_params(summary_file_path + "/" +
                                   "agent_params.json")
use_cuda = params_manager.get_agent_params()['use_cuda']
# Introduced in PyTorch 0.4
device = torch.device(
    "cuda:" +
    str(args.gpu_id) if torch.cuda.is_available() and use_cuda else "cpu")

seed = params_manager.get_agent_params()[
    'seed']  # With the intent to make the results reproducible
torch.manual_seed(seed)
np.random.seed(seed)
if torch.cuda.is_available() and use_cuda:
    torch.cuda.manual_seed_all(seed)
Beispiel #3
0
args = args.parse_args()

# Parameter Manager
params_manager = ParamsManager(args.params_file)
seed = params_manager.get_agent_params()['seed']
summary_file_path_prefix = params_manager.get_agent_params(
)['summary_file_path_prefix']

summary_file_path = summary_file_path_prefix + args.env + \
    '_' + datetime.now().strftime('%y-%m-%d-%H-%M')

if not exists(summary_file_path):
    makedirs(summary_file_path)

writer = SummaryWriter(summary_file_path)
params_manager.export_env_params(join(summary_file_path, 'env_params.json'))
params_manager.export_agent_params(join(summary_file_path,
                                        'agent_params.json'))

global_step_num = 0

# GPU Setting
use_cuda = params_manager.get_agent_params()['use_cuda']
device = torch.device(
    'cuda:' +
    str(args.gpu_id) if torch.cuda.is_available() and use_cuda else 'cpu')
torch.manual_seed(seed)
np.random.seed(seed)
if torch.cuda.is_available() and use_cuda:
    torch.cuda.manual_seed_all(seed)